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ABSTRACT Following COP26, many countries are embarking on decarbonization strategies for the power
sector that may include inter alia storage, hydrogen, and carbon capture (and storage). There is also
significant increase in load that may come in the form of electric vehicles (EV) charging and hydrogen
requirement for decarbonization of other sectors. While there is a growing literature around long-term
decarbonization strategies, there is still ample room for a practical methodology to rigorously test capacity
plans to include a range of options inter alia re-optimization of the mix of renewable technologies, better
coordination of the (EV) load from a system perspective, or augmenting the plan with battery energy
storage (BESS) and hydrogen. This paper presents our research on EV load and green hydrogen modeling
including how they can be integrated into long-term electricity models. We also present a methodology
that allows planners to undertake a rigorous assessment that can be readily implemented using the World
Bank Electricity Planning Model (EPM). The application of the model is illustrated through a case study for
Turkey (Türkiye) for 2050. The case study shows how an incumbent policy-driven capacity plan for 2050 that
included 33% contribution from variable renewable energy (VRE) may be prone to unserved energy risk
during winter months due to seasonal variability of VRE. The analysis goes on to demonstrate how the
plan can be reinforced with additional peaking gas turbines, re-optimization of wind and solar, BESS and
hydrogen. Coordinated charging of EVs is also shown to bring significant relief to investment requirements.

INDEX TERMS Electric vehicles, power system optimization, least-cost planning, variable renewable
energy, decarbonization, hydrogen.

I. INTRODUCTION
With its fast-growing energy demand and high dependence on
imported oil and natural gas, Turkey’s (Türkiye) most recent
energy strategy focuses on strengthening energy supply secu-
rity by increasing the share of domestic energy resource use
in its energy mix. Domestic resources in Turkey primarily
include coal, solar, wind and to a lesser extent geothermal.
In addition to these sources, Turkey has plans to introduce
nuclear into its energy mix in the coming years [1]. The
2019-2023 Strategic Plan of Ministry of Energy and Natural
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Resources (MENR) sets a short-term goal of increasing the
share of renewables in electricity generation up to 38.8 per-
cent by 2023. Turkey has already achieved this goal by reach-
ing 42 percent of renewables share in generation in 2020 [2].
In terms of installed capacity, the share of renewables is 51%,
while the rest consists of coal and natural gas.

While the strategic targets point to the further expansion of
renewable energy, Turkey has already taken significant steps
towards decarbonization. Preceding the COP26 meeting,
Turkey ratified the Paris Agreement and committed to net
zero by 2053. Turkey’s National Climate Change Action Plan
(2011-2023) as well as its INDC targets fall short to address
the needs of net zero decarbonization and are expected to
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be updated in light of the recent commitments. A newly
established Climate Change Council under the Ministry of
Environment, Urbanization and Climate Change (MoEUCC)
is expected to oversee the development of a net zero roadmap
and strategy. In its June 2022meeting, the Council announced
217 climate actions in various sectors and topics. These
action items will help formulate the National Climate Policy
that is currently under preparation (Ministry of Environment,
Urbanization and Climate Change, n.d.). Developing a long-
term energy plan in line with the 2053 net zero goal ahead
of COP27 is the top energy sector priority of the Council.
In addition, increasing the share of VRE as well as system
flexibility options are listed among the main decisions to be
pursued in the energy sector. The council also decided that a
Hydrogen Strategy andRoadmap that prioritizes green hydro-
gen should be prepared. Consideration of carbon capture
and storage technologies, introducing nuclear into the energy
mix and investing in demand side management and energy
efficiency are among other relevant action items. In terms of
decarbonization of the transport sector, the Council empha-
sizes the need of electrification of the sector.

A heavy emphasis on decarbonization as well as energy
supply security implies that the Turkey’s electricity sector
will be required to further scale-up the contribution of VRE
and storage technologies for its long-term energy needs. This
is reflected in MENR’s 2050 plan to include as much as 33%
of electricity coming from VRE resources.

II. LITERATURE REVIEW
A. OVERVIEW OF POWER SECTOR MODELS FOR
DECARBONIZATION ANALYSIS
Optimization models have long been used for power system
planning e.g., studies by NREL USA [3], [4], [5], [6], [7].
Currently, in the context of the ongoing energy transition,
power sector models are increasingly important for the devel-
opment of long-term decarbonization pathways extending
over several decades [8].

Analysis focusing on integration of VRE in the power
sector is often performed with the use of least-cost opti-
mization models. The choice and application of a model is
based on user expert decisions to balance among robustness,
computational effort and required level of accuracy. These in
turn require judicious selection of solver, the level of temporal
disaggregation of the problem, access to good quality histor-
ical data. There are other criteria such as a model’s ability to
account for system, regulation and policy constraints, repre-
sentation of unit commitment constraints, ability to account
for the geospatial effects of VRE and adequate representation
of the grid [9], [10], [11], [12], [13], [14], [15].

Analyses related to grid integration of VRE is usually
conducted with the use of one or more of the following types
of power sector models:1

1It should be noted that there are also grid analysis models, however not
based on optimization methods, which are used to support T&D expansion
and system stability analysis [16].

a) Least-cost capacity expansion models are used to assess
the least cost technology mix to provide future demand
subject to technical, system, policy, and environmen-
tal constraints. They usually make use of low-level
temporal detail on representation of electricity demand
and VRE resource. As a result, least-cost capacity
expansion models have poor capability to analyze in
detail intra-hour and even intra-day effects, including
impacts of variability on system operations and sim-
ulation of medium and long-term storage operation
(see table 1).

b) Production cost models are used to simulate system oper-
ation in detail subject to unit and system constraints. They
are capable of simulating unit dispatch and allocation of
reserves using finer time steps and are used to assess
system flexibility, sizing of energy storage and optimal
charging of EVs. Capacity mix is a fixed input to these
models.
Several international organizations, research centres, aca-

demic institutions and privately owned firms involved in
energy and climate related research have developed a num-
ber power sector models [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27]. As more tools become avail-
able there have been efforts to categorize such tools based
on characteristics, capabilities, spatial and temporal gran-
ularity and scope [28], [29]. There are ongoing efforts to
expand their capabilities to consider emerging topics such
as energy storage, electric vehicles and hydrogen production
[30], [31], [32].

B. IMPACT OF EVs ON THE LOAD
Decarbonization of the energy sector will largely be based on
large-scale adoption of renewable energy sources, especially
VRE, and electrification of sectors and subsectors that are
otherwise difficult to decarbonize. More specifically, elec-
trification of the transport sector, which currently accounts
for about 11% of global energy related emissions, could
reach electrification levels of 45% by 2050. The fleet of two
wheelers, light- and medium- duty vehicles will need to be
electrified at very high levels. Green hydrogen is likely to
drive decarbonization of aviation, heavy duty vehicles and sea
transport [33], [34], [35]. Large scale adoption of EVs will
impact the growth rate and the profile of the load. Studying
the projected changes on magnitude and shape of EV load is
necessary to estimate the required technology mix to reach
specific climate goals.2

EVs are expected to cause a moderate increase on global
total electricity demand by 2050.3 However, if charging
remains uncoordinated the capacity increase on the daily

2Many studies focus on the impact of EVs on the distribution network
aiming to estimate the required network upgrades. While this is a very real
short- tomedium- term concern, this study focuses on EV integration impacts
from a higher altitude focusing on the shape of the aggregated EV load and
the technology mix required to supply the updated demand.

3At around 10 to 15% for most countries, even though the increase will
be more substantial for others.
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TABLE 1. Comparison of least-cost capacity expansion and production cost models.

load profile could be substantial and difficult to manage
from a system operation perspective [36], [37], [38], [39],
[40], [41]. Understanding when, where and how fast drivers
charge allows utilities to adjust their load projections for EV
charging.

In general, the EV load profile depends on the type of
vehicle (light duty vehicles, medium and heavy-duty vehi-
cles (MHDVs), buses, two and three wheelers), usage of
EVs (private commute, commercial use, commute of public,
transfer of goods), charging behaviour (temporal preference
on plugging-in to charge), the vehicle mileage, the size of
the battery, and the speed of charging. The following para-
graphs in this section intent to discuss the findings of various
research related to the charging behaviour of EV owners. This
is because the EV load analysis presented later in this paper
is largely dependent on assumptions related to uncoordinated
versus coordinated charging behaviour. Charging behaviours
below are categorized based on different types of EVs and
related use.

Due to favourable techno-economics, adoption of battery
technology in passenger cars is currently driving the tech-
nological shift in the transport sector. There are increasing
number of studies focusing on EV load profiles based on
historical charging data. It is common in such studies to
estimate EV load based on location (residential, work, public)
and speed of charging (slow, fast, rapid). As an example,
extensive data coveringmore than 30,000 residential charging
events and over 3,200 public charge points across the UK,
show significant differences in residential charging profiles
between commuters and non-commuters. Commuters have a
high propensity to plug in their EVs on weekdays between
5pm and 9pm when they arrive from work, whereas non-
commuters spread their charging time more evenly through-
out the afternoon (see fig. 33) [42].

At most workplaces, charging events begin in the mid-
morning around 9am, coinciding with commuters’ arrival
to work (see fig. 34). On weekdays, large public charging
begins in the morning at around 9am, while in weekends it
occurs throughout the day (see fig. 35). Fig. 33 to 35 in the
Appendix refer to the probability of a charging event starting
at time t of the day, also called plug-in probability profile
(PPP). The final load profile depends largely on the speed
of charge. Slow charging extends over many hours while
rapid charging creates short but quite large peaks. Fig. 36
shows the combined EV load from residential, work, and
public charging in Great Britain over a typical week. The EV
charging profile is characterized by a sharp peak during early
evening in weekdays and a less prominent one in themorning.
In a typical weekend, charging extends throughout the day
and the peak occurs late afternoon/early evening [43]. Similar
charging behaviour for electric cars has been observed in
other countries as well [36], [40], [44], [45], [46]

As more real-world data become available, the focus in
research is gradually expanding to other types of EVs includ-
ing MHDVs which have a significant CO2 footprint even
though they exist in smaller numbers compared to cars. As an
example, the CO2 share (over total road transport related
CO2) of MHDVs could be an order of magnitude larger
compared to their vehicle number share (over total number
of vehicles) [47]. MHDVs are typically part of commercial
fleets which present good potential for electrification. As an
increasing number of fleet owners around the world are com-
mitting to electrify part or the whole of their fleets, there
is increased interest on the impacts of the aggregate load
especially in urban areas [48]. As an example a single bus
depot may require 2-10MWs of charging capacity [49], [50].
It is reasonable to assume then that the future aggregated
profile of MHDV’s can be quite significant.
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The uncoordinated load profile of vans, trucks and buses
largely depends on the service hours; usually charging begins
at the time when a vehicle returns to the depot/charging
area and the charging window closes by the time a vehicle
needs to get out to service again [51], [52]. Reference [52]
has been studying the charging loads for school buses and
freight trucks day in a specific area of the National Grid’s
service territory. School buses are most likely to be parked
and charging post 3pm while freight trucks post 9pm (see
fig. 37 to 39 in Appendix). Reference [53] focuses on public
buses and compares the charging schedule for two battery
electric buses (BEBs) in Chicago Transit Authority which
constitutes for 3 to 5 hours overnight charging at 100 kW and
another 3 to 5 hours of midday charging.

Electrification of two-wheelers (2Ws) and three-wheelers
(3Ws) is rapidly expanding especially in the Asian markets.
Around 80% of 2Ws in China are electrified while half of
all rickshaws in India are currently electric. Furthermore,
the Indian government has set a target for 80% of 3Ws by
2026. 2Ws have wide both commercial and personal use.
Commercial use of 2Ws is related to e-commerce, food and
grocery delivery and passengermobility. 3Ws aremostly used
for passenger mobility [54].

The charging profile of two and three wheelers depends
on commercial vs private type of use and battery charging
business model (battery swap, depot, street charging), Charg-
ing a single 2W or 3W battery has a minimal impact of the
grid. However in specific countries the aggregate impact from
electrification of 2Ws could be significant and is comparable
to, or larger than, other types of vehicles due to the dispro-
portionately high number of electric 2Ws on the streets [55].
Unfortunately, there is no literature available focusing on the
aggregate load from 2W and 3W.

Uncoordinated charging could increase considerably the
peak demand, thus increasing the cost of supplying electric-
ity in the form of capital expenditure (CAPEX) for addi-
tional peaking capacity. Coordinated charging can mitigate
the impacts of electrification of the transport sector and bring
significant economic and operational benefits to the power
system at a low cost. Coordinated charging can be imple-
mented through several incentives to shift the charging load
away from the peak. A modeling analysis conducted by the
World Bank for Maldives using the EPM model comprehen-
sively demonstrated that coordinated charging can lead to
substantial reduction in peaking generation capacity [56].

III. STUDY GOALS
The motivating idea for this work stems from the fact that
there is a serious need to develop capacity plans that fully
consider these details on both supply and demand side
including investment requirements to support new capac-
ity as well as the system reliability issues that would be
impacted by higher demand and inclusion of substantial vari-
able renewable energy resources and variability of demand
(Due to EV/hydrogen production). Existing electricity capac-
ity plans are typically being updated driven by long-term

decarbonization policies to add substantial solar and wind
generation in particular. Such a capacity plan would however
need to be tested carefully to ensure that (i) the plan is
adequate in terms of firm capacity, (ii) there is sufficient
energy availability taking into account seasonal and inter-
annual variability of solar, wind and hydro resources; and
(iii) the underlying dispatch renders the system secure in
terms of sufficient frequency control reserve and observes
technical constraints and system operational rules. Additional
requirements for clean energy will also be driven by the need
to meet demand from electric vehicles and green hydrogen,
albeit the latter can also be a useful aid to manage variability
of solar/wind and as a long-term storage/generation resource.
The principal innovation of our work is that a conventional
system planning model has been augmented with decisions
that consider investments on electrolyzers for green hydrogen
production fully integrated in the generation investment and
dispatch optimization.

The above proposed methodologies and model upgrades
have been applied in a real-world case using data from the
Turkish power sector. Firstly, this work evaluates the existing
Turkish capacity plan for 2050 from an energy and capacity
adequacy perspective. Existing capacity expansion plans are
assessed through a detailed dispatch analysis using an hourly
timestep. Secondly, this study aims to complement the capac-
ity plan with alternative technologies through least-cost plan-
ning analysis. More specifically, World Bank’s EPM model
is supplemented with the required mathematical formulation
to consider electrolyzers as an additional demand-side invest-
ment for production of green hydrogen. Costs and benefits of
green hydrogen for decarbonizing the power sector is a key
element of this work. Thirdly, we provide a methodology to
estimate the hourly EV load profile based on official annual
EV load projections and data from the Turkish transport
sector. This is because hourly load is one of key inputs for
LCP and dispatchmodels like EPM. Both production of green
hydrogen and electrification of transport (and other sectors)
can potentially create significant changes to the combined
electricity demand profile such as significant change on the
magnitude and timing of both the peak demand and the gap
between peak and valley. Finally, this work further considers
the impacts of coordinated EV charging on system operations
and costs. Coordinated EV load profiles are estimated on the
basis of providing incentives to shift charging towards low
system marginal prices. In all cases, costs and benefits of
different actions are assessed through comparative analysis
of study scenarios. Real-world system constraints and risks
related to VRE uncertainty have been taken into account
throughout the analysis.

IV. METHODOLOGY
The methodology deployed for the analysis has two distinct
components, namely, a check on the robustness of an existing
plan; and enhancing the plan if the incumbent plan leaves the
system vulnerable to low system security or worse load shed
events. It is structured this way as governments often have an

27192 VOLUME 11, 2023



T. Nikolakakis et al.: Analysis of Long-Term VRE Heavy Capacity Plans Including EV and Hydrogen Scenarios

in-situ master plan that is often prepared using conventional
planning tools that may or may not fully consider the impacts
of large-scale VRE and/or load impact of new technologies
like EV or hydrogen. As the case study in a subsequent sec-
tion demonstrates the draft electricity plan for Turkey needed
checks on seasonal and interannual variability of solar and
wind that may leave the system exposed to significant risk
of loss of load. The methodology then deals with fixing the
plan. This is where an innovative approach is needed to fully
integrate the impacts of renewable and EV load variability
as well endogenous optimization of hydrogen production
which can be used to both augment power production during
periods of low RE availability as well as meet external (non-
power) demand for hydrogen. The methodological improve-
ments around EV and hydrogen have been implemented in an
existing planning model, namely, the World Bank Electricity
Planning Model (EPM). The next section discusses the EPM
model and specific steps followed as part of the methodology.

A. GENERAL METHODOLOGICAL APPROACH WITH EPM
The analysis is based on the World Bank EPM model. EPM
is a least-cost planning tool written in General Algebraic
Modeling System (GAMS) language which can be used for
both long-term capacity expansion analysis and production
cost modeling. The objective of EPM is to minimize total
system costs subject to several system, unit, and policy con-
straints. Detailed description of all equations comprising the
power system optimization problem in EPM can be found in
reference [57]. The methodological approach can be broken
down into two thematic sections:

Thematic section a): Methodology to assess and bridge
system adequacy gaps in the incumbent plan.
1) Use existing capacity plans for a Baseline scenario pro-

vided by MENR to assess system adequacy. The Base-
line scenario is representative ofmoderate climate action
aiming for a minimum of 33% VRE by 2050. Initially
EPM is run in production cost mode to simulate system
performance for years 2049 and 2050. The projected
demand has been estimated considering uncoordinated
EV load charging. EPM reports key indicators like loss
of load, VRE curtailment, shortage on firm capacity
reserves to assess themagnitude, and temporal incidence
of such events.

2) Optimize system investments and operation to bridge
any adequacy gaps. EPM is run simultaneously on
capacity expansion and production cost mode. The
capacity expansion is performed for two years (2049
and 2050) provided the existing capacity plan for the
above years is given (based on information by MENR)
optimizing for additional investments to ensure energy
and capacity constraints are satisfied.4 Only supply-side
technologies (mainly CCGT, OCGT, PV and wind) and

4That way the focus of the analysis is on the interannual effects of PV and
wind variability in the system rather on the timing of commissioning of new
investments.

electricity storage (BESS and PHP) are considered for
system expansion.

Thematic section b): Development of decarbonization
pathways for Turkey
1) Decarbonization scenarios are representative of the lat-

est official plans for decarbonizing the power sector
by 2053. The scenarios include an annual cap on CO2
emissions from the power sector in years 2049 and 2050
(set at 35Mt based on the discussions around the Turkey
energy strategy [1]). Similarly, as in previous runs, EPM
is run in combined LCP and dispatch model. The main
difference with the previous thematic section is that
the analysis is not building on top of existing capacity
plans but rather develops an optimized decarbonization
pathway considering any existing (or under construc-
tion) capacity that is expected to be online by 2050. For
reducing computational complexity, the temporal aspect
of allocation of investments is omitted (aka LCP is
assessed and reported for years 2049 and 2050). System
expansion considers additional technologies compared
to thematic section a) as in the case of CCS and green
hydrogen production.

2) Additional scenarios/sensitivities are developed to
assess the impact on system performance and costs
of key decisions/parameters. These scenarios examine
system effects from a) lower CAPEX for electrolyzers,
b) accelerated decommissioning of existing coal capac-
ity, c) coordinated EV charging, and d) application of
demand response programs.

3) Cost and benefits of above actions are defined through
comparative analysis across scenarios.

B. MODELING OF HOURLY EV PROFILE
A basic part of the analysis is disaggregation of annual EV
load projections into an hourly EV load which is an input
on LCP analysis. This section describes the disaggregation
process.5 The development of hourly EV load profile is based
on the following methodological steps:
1) The first step is to estimate the daily EV load per typ-

ical use of EVs. Estimation of EV load is based on
information related to mileage (km per day) and fuel
efficiency (kWh per 100km). It also entails estimates
of usage over a weekend versus a weekday (see first
4 columns on Table 3 ). The final outcome is total
electricity requirement separately for a weekday and a
weekend day.

2) The second step is estimation of total number of EVs
based on (2). Estimation is based on the typical daily
load and assumptions related to percentage of EVs being
Plug-In Hybrids (PHEV) versus pure electric vehicles.
More information related to steps 1 and 2 can be found
is section B-1 below.

5It should be noted that the main methodological difference for extracting
uncoordinated versus coordinated EV load is the selection of plug-in proba-
bility profiles (PPPs) to be discussed later in this section.
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3) Finally, the daily load figures are disaggregated into
a typical 24-hour profile through a process described
in detail in section B-2. The process is largely based
on assumptions related to the probability of a vehicle
to be connected for charging at a specific time of the
24-hour period. Such information is largely obtained
based on real-world published data. Calculations related
to EV load profile analysis has been performed using
MATLAB. Illustration of assumptions and results of EV
load analysis are presented for years 2030 and 2050 for
comparative purposes in the following sections.

1) ESTIMATING DAILY ELECTRICITY DEMAND AND TOTAL
NUMBER OF ELECTRIC VEHICLES
EV analysis is largely based on World Bank data listed in
Table 3. Available data for fuel efficiency and breakdown of
BEV versus PHEV are available for the 2020-2030 decade
while 2050 projections uses our own assumptions on mileage
and fuel efficiency improvements. Averagemileage for differ-
ent type of vehicles has been obtained by publicly available
data from the Turkish government [58]. Projected EV load
has been obtained by MENR and is presented in table 4.
Electricity requirement and total number of EVs has been
estimated through (1) and (2):

ElecReqVT,EM,WD,y

= FuelEffVT,EM,y×MilleageVT,EM,WD,y÷100 (1)∑
EM

NEVMVT ,EM ,y

=

[
EVLoadAnny × 109

]
÷

[∑
EM ,WD

ElecReqVT ,EM ,WD,y × EMBdVT ,EM ,y

]
(2)

2) DEVELOPMENT OF THE HOURLY EV LOAD PROFILE
The main goal of the EV load analysis is the development of
the final hourly EV load profile which is based on aggregation
of individual profiles of different type of EVs. The final
aggregated EV load profile is an input to the LCP analysis.
Estimation of EV load is a process performed externally -to
and precedes the LCP.

The final aggregated EV load profile, EVloadAg, is the
sum of individual load profiles of different types of
vehicles (3).

EVLoadAgt,WD,CM,y

=

∑
VT

∑
EM

∑
CS

EVLoadCS,t,VT,EM,WD,CM,y (3)

Estimation of individual EV load profiles ‘‘EVLoad’’ is
based on the following MATLAB script (see (4) to (9)) that
includes multiple ‘‘for’’ loops:

An intermediate step to estimation of EVLoad profiles is
the calculation of the charging hours matrix, CHM. CHM,
contains the number of hours to charge the required energy to

TABLE 2. Symbols and data used on mathematical description of EV load
(outside of EPM) in MATLAB.

cover the daily mileage for each vehicle (see (4)).

CHMCS,VT,EM,WD,y=ElecReqVT,EM,WD,y×

(
1

CPVT,CS,y

)
(4)
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TABLE 3. Turkey transport sector assumptions for years 2030 and 2050. (Source: world bank ESMAP and MENR.)

TABLE 4. Projections of EV load per type of vehicle (Source: MENR).

for CM = CM1:CM2
for y = y1:yNY

for WD = WD1:WD2
for EM = EM1:EM2
for VT = VT1:VT8

NEVCMCS1:CS3,t1:t24,VT ,EM ,WD,CM ,y = NEVMVT ,EM ,y

×CPPCS1:CS3,t1:t24,VT ,WD,CM ,y (5)

for CT = CT1:CT3
for t = t1:t24

EVLoad1t′:t′+(floor(CHMCS,VT,EM,WD,y)))−1)

= HCMCS,VT,y × NEVCMCT,t,VT,EM,WD,CM,y (6)

EVLoad1t:t+(round(CHMCS,VT,EM,WD,y),0)))

=
[
CHMCS,VT,EM,WD,y−floor

(
CHMCS,VT,EM,WD,y

)]
× NEVCMCT,t,VT,EM,WD,CM,y (7)

EVLoad2CS,t1:t48,VT,EM,WD,CM,y

= EVLoad2CS,t1:t48,VT,EM,WD,CM,y + EVLoad1t1:t48 (8)

end for

EVLoadCS,t1:t24,VT,EM,WD,CM,y = EVLoad2t1:t24
+EVLoad2t25:t48 (9)

end for
end for

end for
end for

end for
Equation (5) introduces the number of vehicles that start

charging during hour t of the day, NEVCM, based on the
total number of EVs, NEVM, and their plug-in probability
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profiles CPM. Equations (6) and (7) estimate the charging
load EVLoad1 for each vehicle for the hours a vehicle is
plugged in and charging over a period of 48 hours. It extends
beyond 24 hours to estimate the load from vehicles that were
plugged in during the end of the day and charging extends
over the next day. The total charging load over all different
types of vehicles charging with a specific speed over the
above 48-hour period is calculated in (8). Finally, in (9) the
loads over the two 24-hour periods are superimposed into
a single representative day EVLoad representative for each
type of EV. The final aggregated EV loadmatrix, EVLoadAg,
defined in (3) includes in total 4 profiles (Uncoordinated vs
Coordinated and Weekday vs Weekend) for each year.

3) CHARGING PROBABILITY PROFILES (CPPS)
Estimation of EV load profiles has been based on the mathe-
matical process described above and is largely dependent on
assumptions related to charging behaviour which is mathe-
matically represented through the charging probability pro-
files (CPPs) (refer to (7)).

FIGURE 1. CPP from uncoordinated charging of electric cars over a typical
weekday in year 2030. It is based on a combination of different uses
including individuals charging at home, or at work, or at public charging
stations.

FIGURE 2. CPP from uncoordinated charging of electric cars over a typical
weekday in year 2050. The difference with figure 1 is that by 2050 the
portion of car owners using fast and rapid charging will overshadow slow
charging.

CPPs include information related to the probability that
a specific type of vehicle gets connected to be charged at a

specific hour of the day as well as the charging technology
(charging speed) that is used (see fig. 1 and fig. 2). The
development of CPPs has been based on a) plug-in probability
profiles (PPPs) and b) assumptions related to the use of
charger capacity throughout the study horizon. It is expected
that adoption of faster charging will increase with time.

PPPs include information related to the probability that a
specific type of vehicle gets connected during a specific hour
of the day but are unrelated to the charging speed (see fig. 4).
PPPs have been obtained through the published literature
focusing on charging behaviour of EV owners. Each PPP
is representative of a specific use or service. For example,
electric buses could be used for public transportation or as
school buses - each use having a different representative PPP.
In this study each type of vehicle relates to one or more types
of usage (see Table 5 ). Adoption of faster charging increases
with time for all usage.

Over a number of research works, PPP profiles have been
obtained for cars, taxis, motorcycles, buses and commercial
medium and heavy duty vehicles respectively [42], [43], [51],
[59], [60], [61], [62]. PPPs of passenger cars is characterized
by two small peaks - one in the morning and a second
in the early afternoon, followed by a large early evening
peak. The morning peak is mostly related to charging at
workplaces; the early afternoon peak is related to residential
charging from non-commuters. The large peak is due to post-
work (public and residential) overnight charging [42], [43].
Charging of taxis (including ride-hailing services) takes place
at depots or at a driver’s residence after a shift however rapid
chargingwithin the shift has already been observed [59], [63],
[63]. Charging of public buses has the highest probability to
begin right after the end of the service day and with smaller
probability between dayshifts [60], [61]. The electric school
bus fleet has a predictable PPP highly dependent on school
schedule. School buses have a relative short-service span over
a few hours in the morning when collecting students and a
few hours in the afternoon to return students to their homes.
Most buses are connected for charging after the afternoon
ride while a smaller number of school buses is connected
for recharge between rides [64]. Commercial charging in
this study is mostly related to delivery of goods by medium
and heavy-duty vehicles. Interestingly the probability for
initiating a commercial charging event is the highest during
the middle of the day shift. This is because vehicles charge
within rides [65], [66], [67], [68]. Finally commercial long-
haul charging behaviour is characterized by overnight driving
followed by charging during the day time; data availability
on PPPs for commercial long-haul EVs is limited; sources
[62], [68] indicate a morning peak at around 10am. Finally,
data availability for 2-Wheeler (2-Ws) PPPs is very limited.
For this project the 24-hr plug-in probability of 2 wheelers is
assumed to be a combination of residential and commercial
charging of cars.

Historical real-world data related to coordinated charging
are very limited in literature. In this study PPPs of coordinated
charging have been developed with the objective of shifting
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charging towards hours where marginal cost of electricity
production is low. However, marginal electricity prices are an
output of EPM. While estimation of uncoordinated EV load
takes place exogenous to the LCP model, coordinated charg-
ing requires running EPM to estimate such periods where
marginal cost of electricity production is low. After PPPs
for coordinated charging have been developed the LCP is
performed again assuming coordinated charging. The process
has been based on the following two steps:
a) Estimation of hourly marginal prices for the relevant sce-

nario through running EPM using uncoordinated charg-
ing. Identify hours with low marginal prices; and

b) Shifting the probability of the plug-in events (PPPs)
towards low-cost hours, also considering constraints
related to the timing of operational use of each type of
vehicle. Fig. 3 shows an example of developing PPPs for
cars of commuters who do not charge at work but rather
prefer to charge at home. Running EPM has indicated that
electricity prices are high from 5pm to 9pm. Electricity
prices are the lowest from 9am to 4pm due to low-cost
PV production during those hours; electricity prices are
relatively low for the remaining hours 10pm to 8am. For
this type of EV use, it is not possible to plug-in during
work time. The best option is to shift charging towards
late night hours.

FIGURE 3. Example of adjustment of PPP from uncoordinated to
coordinated. Dots represent hours of low system marginal prices.

Fig. 4 and fig. 5 compare PPPs for uncoordinated and coor-
dinated charging respectively for different types of vehicles
over a typical weekday.

Using the finalized PPPs as inputs (together with all other
inputs from transport sector discussed earlier) and running
the MATLAB script which performs calculations defined
by (3) to (9), the final EV load can be estimated for both
uncoordinated and coordinated charging. Fig. 6 to 9 show the
resultant EV load profile for Turkey based on the analysis pre-
sented above. Hourly EV load from uncoordinated charging is
characterized by an evening peak at 6pm – coincidingwith the
system demand peak of 162.3GW- mostly driven by private
car CPPs. The EV load peak is very high reaching 39.2 GWs.
The EV related peak of coordinated charging is also high
reaching 38.5 GWs, but it is more skewed towards midday

(1pm) creating in fact a new system peak of 159.3GW in
2050. While in absolute terms, reduction of system peak due
to coordinated charging is only 3GW, the temporal shift of the
peak creates potential for significant economic, operational
and emissions related benefits in decarbonization scenarios.
The capability of the system to absorb solar power at low cost
(without requiring electricity storage) greatly increases which
holds very significant cost relief both in terms of reducing the
need for peaking capacity in the evening as well as fuel costs.

FIGURE 4. Plug-in probability profiles (PPPs) from uncoordinated
charging for different type of vehicles over a typical weekday.7

FIGURE 5. Plug-in probability profiles (PPPs) from coordinated charging
for different type of vehicles over a typical weekday.

C. MODELING INVESTMENTS ON ELECTROLYZERS AND
GREEN HYDROGEN AS A FUEL
Modeling electrolyzer investments and hydrogen fuel use for
electricity production endogenously in the model required a

7The PPP of cars presented is based on a combination of 4 PPPs namely
residential charging of commuters, residential charging of non-commuters,
work charging and public charging. Taxi charging is based on 2 PPPs.
Charging at depot after the work shift and rapid charging within the shift.
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TABLE 5. Example: Relation of EV types and EV use with CPPs for year 2030. Each EV type can relate to more than one CPP.

major extension to EPM. A detailed account of all existing
equations including the objective function, the transmission
network constraints, system requirements, generation con-
straints, investment constraints, energy storage constraints,
environmental policy and time consistency of power system
additions and requirements – are reported in [57]. In this
section, we present the new equations that constitute the
hydrogen production module of EPM.

The PPP of cars presented is based on a combination
of 4 PPPs namely residential charging of commuters, resi-
dential charging of non-commuters, work charging and public
charging. Taxi charging is based on 2 PPPs. Charging at depot
after the work shift and rapid charging within the shift.

Equations (10) to (14) represent the time consistency of
electrolyzer capacity additions and retirements when EPM is
run as a linear model. Equation (10) defines the electrolyzer
capacity balance on the first year of the study horizon.
Equation (11) defines the capacity balance of existing and
committed electrolyzers (Eh) while (12) represents the capac-
ity balance of new electrolyzers (Nh). Equations (13) and (14)
put limits on the newly built capacity for committed (Eh)

and new electrolyzers (Nh) respectively. In all above cases,
capacity additions and retirements are continuous variables.
Equations (15) and (16) are activated when EPM is run
as a mixed integer programming model. These two equa-
tions impose integer limits on new capacity additions or
retirements.

vCaph,y = vCaph,y−1 + vBuildh,y
− vRetireh,y, ∀(ord (y) = 1,

∀
(
val (y) > pCommissionYearh

)
(10)

vCaph,y = pCapacityEh,y−1 + vBuildh,y
− vRetireh,y, ∀(ord (y)>1,

∀
(
val (y) > pCommisionYearEh

)
(11)

vCapNh,y = vCapNh,y−1+vBuildNh,y,

∀(ord (y) > 1 (12)∑
y

[
vBuildEh,y

]
= pCapacityEh,
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FIGURE 6. EV load profile from uncoordinated charging over a typical
weekday of year 2030.

FIGURE 7. EV load profile from coordinated charging over a typical
weekday of year 2030.

∀ (val (y) > pCommissionYearEh)

(13)∑
y

[
vBuildNh,y

]
≤ CapacityNh (14)

vBuildNh,y = pUnitSizeNh × bvBuiltCapVarNh,y
(15)

vRetireEh,y = pUnitSizeEh × bvRetireCapVarEh,y
(16)

Equations (17) to (20) define the various uses of renewable
energy in the power system. Equation (17) describes the
breakdown of renewable energy over two main uses, supply
of electricity demand and hydrogen production. Equations

FIGURE 8. EV load profile from uncoordinated charging over a typical
weekday of year 2050.

FIGURE 9. EV load profile from coordinated charging over a typical
weekday of year 2050.

(18) and (19) aggregate the above two types of electricity use
over a zonal level. Equation (20) introduces power injection
by electrolyzers and aggregates total power over a zonal level.

vPwrOutRE,f,q,d,t,y

= vREPwr2GridRE,f,q,d,t,y

+ vREPwr2H2RE,f,q,d,t,y (17)

vPwrREGridz,q,d,t,y

=

∑
gfmap(RE,f),gzmap(RE,z)

[
vREPwr2GridRE,f,q,d,t,y

]
(18)

vPwrREH2z,q,d,t,y

=

∑
gfmap(RE,f),gzmap(RE,z)

[
vREPwr2H2RE,f,q,d,t,y

]
(19)
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TABLE 6. Symbols used on mathematical description of hydrogen
production in EPM.

TABLE 6. (Continued.) Symbols used on mathematical description of
hydrogen production in EPM.
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TABLE 6. (Continued.) Symbols used on mathematical description of
hydrogen production in EPM.

∑
hzmap(h,z)

[
vH2PwrInh,q,d,t,y

]
= vPwrREH2z,q,d,t,y (20)

Equations (21) and (22) place operational limits on elec-
trolyzers. Equation (21) places a seasonal limit on elec-
trolyzer availability while equation (22) places an upper limit
on power drawn by each electrolyzer.∑

d,t

[
pHoursq,d,t,y × vH2PwrInh,q,d,t,y

]
≤ pAvailabilityh,q × vCaph,y

×

∑
d,t

[
pHoursq,d,t,y

]
(21)

vH2PwrInh,q,d.t.y ≤ vCapH2h,y (22)

Equations (23) and (24) introduce hydrogen as a fuel for
electricity production. Equation (23) adds hydrogen in the
pool of fuels for electricity production via the vFuelz,f ,y
variable. Equation (23) also puts a limit on the amount of
H2 that can be burned in gas turbines based on the amount
that it has been produced on an annual basis. Equation (24)
aggregates total seasonal hydrogen production into an annual
value. ∑

z

[
vFuelz,f=H2,y

]
=

∑
z

[
vFuelH2z,y

]
(23)∑

q

[
vFuelH2Seasonz,q,y

]
= vFuelH2z,y (24)

Equations (25) and (26) introduce an exogenous hydrogen
demand for decarbonization of other sectors. Equation (25)
disaggregates total green hydrogen produced at the elec-
trolyzers in two elements, namely, hydrogen to be used for
electricity production; and hydrogen to be used in other
sectors. Variable vUnmetExternalH2z,q,y represents unserved
external hydrogen demand which incurs an economic penalty
described in (27). Equation (26) places an upper limit on the

amount of vUnmetExternalH2z,q,y.

pExternalH2z,q,y − vUnmetExternalH2z,q,y
+ vFuelH2Seasonz,q,y

=

∑
hzmap(h,z)

[
vH2PwrInh,q,d,t,y

× pHoursq,d,t,y × pH2ConvRateh
]

(25)

vUnmetExternalH2z,q,y
≤ pExternalH2z,q,y (26)

vH2UnservedCosth,q,d.t.y

=

∑
q

[
vUnmetExternalH2z,q,y

]
× pH2UnservedCost

(27)

Equation (28) shows the demand supply balance that
accounts for the additional electricity demand for hydrogen
production.

pDemandDataz,q,d.t.y

=

∑
gfmap(RE,f),gzmap(RE,z)

[
vPwrOutg,f,q,d,t,y

]
−

∑
hzmap(h,z)

[
vH2PwrInh,q,d,t,y

]
−

∑
sTopology(z,z2)

[
vFlowz,z2,q,d,t,y

]
+

∑
sTopology(z,z2)

[
vFlowz2,z,q,d,t,y

]
×

(
1 − pLossFactorz,z2,y

)
−

∑
gzmap(g,z)

[
vStorInjst,q,d,t,y

]
+ vImportPwrz,q,d.t.y − vExportPwrz,q,d.t.y
+ vUSEz,q,d.t.y − vSurplusz,q,d.t.y (28)

Equations (29) to (31) introduce the annualized CAPEX
and total variable and fixed costs related to green hydro-
gen production and use. Elements vH2FixedCostz,y and
vH2VariableCostz,y of Equations (30) and (31) have been
added into the objective function of the main EPM code to
integrate hydrogen related cost into system wide costs.

vAnnCapexH2h,y
= vAnnCapexH2h,y−1+vBuildh,,y × pH2CAPEXh

× pCAPEXTrajectoryH2h,y × pCRFh (29)

vH2FixedCostz,y

=

∑
hzmap(h,z)

[
vAnnCapexH2h,y + vCaph,y

× vH2FOMh
]

(30)

vH2VariableCostz,y

=

∑
hzmap(h,z)

[
pVOMH2h × pH2ConvRateh

× vH2FOMh × vH2PwrInh,q,d.t.y × pHoursq,d,t,y
]
(31)

VOLUME 11, 2023 27201



T. Nikolakakis et al.: Analysis of Long-Term VRE Heavy Capacity Plans Including EV and Hydrogen Scenarios

V. SCENARIOS AND MAIN ASSUMPTIONS
The analysis is structured around five key scenarios. All
scenarios use the same demand projections in energy terms;
and all scenarios account for EV charging. However, the
shape of the demand profile depends on whether EV charging
is uncoordinated or coordinated. The first two scenarios are
built around the Baseline plan (see table 7) which is rep-
resentative of moderate CO2 reduction ambitions (i.e., 33%
of VRE in 2050). Scenarios 1 and 2 assume uncoordinated
EV charging. Scenarios 3 to 5 were developed to support
the development of a decarbonization pathway considering
additional technologies (relative to scenarios 1 and 2). Such
technologies include electrolyzers for production of green
hydrogen, demand response and Carbon Capture and Storage
(CCS). Scenario 5 is the only one which considers coordi-
nated EV charging. In all scenarios (1 to 5) the combined LCP
and dispatch simulations are performed for years 2049 and
2050. The reason for simulating two consecutive years is to
account for VRE uncertainty by using representative histor-
ical data from both average and low VRE resource years.
A more detailed description of scenarios and related assump-
tions follows below:

Scenario 1: The goal of the Baseline scenario is to assess if
the incumbent capacity plan presents energy and/or capacity
adequacy issues. The Baseline is characterized by moderate
CO2 reduction ambition, having as a main goal to achieve
33% of solar and wind energy by 2050. It also assumes hydro
economic potential of around 36GWwill be utilized by 2030.

TABLE 7. Draft capacity plan for the baseline scenarios (1 and 2).

The assessment is based on dispatch simulations wherein
no additional capacity additions are allowed. Generation ade-
quacy for the system is assessed using relevant indicators like
loss of load, generation, provision of reserves, and system
capacity reserve.

Scenario 2: The goal of scenario 2 is to assess the optimal
capacity additions which are needed to bridge any adequacy
gaps identified in scenario 1 through combined dispatch and

LCP simulations. System adequacy is driven by an economic
penalty for failing to supply required energy and/or opera-
tional reserves and/or system need for capacity reserves. The
base capacity plan can be supplemented with PV, wind, com-
bined cycle gas turbines (CCGTs), open-cycle gas turbines
(OCGTs), battery electricity storage systems (BESS) and
pumped hydro plants (PHPs). Uncoordinated EV charging is
assumed.

Scenario 3: This Decarbonization scenario is developed to
estimate the least-cost plan subject to system constraints and
policy obligations. System optimization takes place through
combined dispatch simulations and LCP subject to same sys-
tem constraints described in scenario 2. The main policy con-
straint considered by the model is a cap on systemwide CO2
emissions at 35 million tonnes in year 2050. The scenario
considers the remaining existing and planned capacity that
will still be online by 2050 based on information by MENR
(see table 8). Any additional investments are optimized on
top of this fixed capacity. In addition, the LCP considers
investments in electrolyzers for green hydrogen production
and CCS. Electrolyzer capacity and operation is subject to
optimization. This means that green hydrogen in scenario 3
becomes part of the capacity plan if it causes a reduction on
total system cost. This can happen if the additional CAPEX
(of electrolyzers and additional VRE) is lower than the reduc-
tion in use of fossil fuels. However, the scenario includes a
target for green hydrogen and synthetic methane gas (SNG)
production to support decarbonization of other sectors. This
constraint imposes some capacity of electrolyzer to be built as
mandatory. More detailed discussion on electrolyzer related
assumptions follows on section V-III. The above assumptions
are also applied on all following scenarios.

TABLE 8. Fixed capacity in scenarios 3 to 5.

Scenario 3a is a sensitivity on fixed costs of green hydrogen
production. This scenario intends to assess if adopting opti-
mistic cost projections on electrolyzer CAPEX could have a
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significant impact on the capacity plan in theDecarbonization
scenario.

Scenario 3b aims to assess the system needs for natural gas,
VRE and electrolyzers, excluding coal from analysis. The
main assumption in this scenario is that existing or planned
capacity on coal will be decommissioned by 2050.

Scenario 4: The goal of this scenario is to assess any
economic and operational benefits of demand response (DR).
Inclusion of DR is the only difference compared to sce-
nario 3. DR is modelled as flexible demand where reduction
is associated with some costs. The optimal amount of demand
response depends on its net benefit and is limited by power
and energy limits (see section V.5)

Scenario 5: This scenario was developed to assess any eco-
nomic and operational benefits from coordinated EV charg-
ing. From an analytical perspective, the only difference with
scenario 4 is the profile of electricity demand. Any techno-
logical costs or other types of costs related to coordinated
charging are not accounted for in the analysis. The main
benefits for the system are related to shifting the peak towards
midday, which increases absorption of solar power and the
capacity credit of PV in the system. This translates into lower
costs for PV and higher contribution of solar into system firm
capacity.

The following assumptions have been made to articulate
the scenarios:

1) ELECTRICITY DEMAND
Table 9 shows demand projections based on MENR. Net
demand in table 9 represents aggregate electric demand from
sectors other than transport (blue color in fig. 10 and fig. 11).
While the estimated level of electrification in residential,
industry and services sectors is included as part of annual
projections, the impact of transport electrification on the
shape of demand is explicitly considered as part of this study.
This is important as EV load is expected to contribute up to
19% of total electricity demand by 2050.

TABLE 9. Electricity demand projections (Source: MENR).

The shape of load for sectors other than transport has been
estimated by scaling up historical hourly electricity demand
data from year 2017 (blue area on fig. 10 and fig. 11) and it is
the same across all scenarios. When we add on top of non-EV
load the uncoordinated EV load (red area on fig. 10), the com-
bined peak of 162.3GW occurs at 6pm (fig. 10). Coordinated
EV charging shifts the combined system peak of 159.3GW
to 1pm (fig 11). Estimation of EV load profile through the
process described in section IV-B is exogenous to the LCP

and the combined hourly EV load is an input on EPM. The
EV load profile analysis also shows the level of deviation in
magnitude and temporal occurrence of the peak by comparing
it to the combined load if it were estimated through the
simplified process of scaling up historical profiles (see black
line on fig. 10 and fig. 11). The system peak considering
uncoordinated and coordinated EV load analysis is larger by
7GW and 4.2GW, respectively, compared to the simplified
approach of scaling historical demandwhich is widely used in
LCP analysis. This is indicative for the need to account for the
effects of electrification on system load in decarbonization
LCP analysis. It should be noted that figures 10 and 11 show
a single day of electricity demand which is an input to EPM.
The additional electricity demand for green hydrogen pro-
duction is subject to optimization (electrolyzer operation is
optimized by EPM) and not shown in fig. 10 and fig. 11. The
additional contribution of electrolyzer operation on system
demand is discussed on results section.

2) TECHNOECONOMIC INFORMATION OF GENERATORS,
ELECTRICITY STORAGE AND ELECTROLYZERS
Tables 10 to 12 present assumptions of main techno-
economic parameters used as inputs to EPM for electricity
generating technologies, electricity storage and electrolyzers,
respectively. Costs of candidate technologies for generators
and electricity storage are estimates for year 2035 which is
the mid-point over the study period 2023-2050. Estimates for
electrolyzers are for year 2050 based on the assumption that
electrolyzers will be economic for the system towards the end
of the study horizon due to stringent CO2 cap and high VRE
penetration.

Assumptions on table 10 are based on MENR estimates.
Storage assumptions presented on tables 10 and 11 are based
on NREL and PNNL respectively [69], [70]. Pumped hydro
is assumed to have fixed storage discharge time of 10 hours
while the discharge time of BESS is optimized.

Table 12 shows estimates of techno-economic parameters
of Alkaline electrolyzers in 2050. Electrolyzers are assumed
to have 80% efficiency and a CAPEX of 200,000 USD
per MW. Fixed operation and maintenance (FOM) costs are
assumed to be 4% of CAPEX while variable O&M (VOM)
covers the cost of water and compression. In scenario 3a,
CAPEX costs are assumed to be reduced by 12.5% repre-
senting more optimistic projections [71], [72], [73], [74].
It should be noted that the cost of electricity to run elec-
trolyzers is not accounted for since this work is based on
system wide economic analysis The cost of electricity to run
electrolyzers is indirectly accounted in the LCP as RE related
CAPEX and OPEX. If for example electrolyzers are run
through -otherwise- curtailed VRE the cost of electrolyzer
electricity is nearly zero.

3) PRODUCTON OF GREEN HYDROGEN AND SNG
In our modelling construct, green hydrogen can be used
directly or be converted into synthetic methane (SNG)
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FIGURE 10. Electricity demand during the day of the peak load in year 2050. The colored area is the electricity demand used in this analysis
disaggregated into non-EV demand and uncoordinated EV related demand. The black line is the system wide electricity demand without accounting
of analysis of EV load profile (EV load that would have been estimated by scaling 2017 demand; illustrated in the graph but not used in analysis).

FIGURE 11. Electricity demand during the day of the peak load in year 2050. The colored area is the electricity demand used in this analysis
disaggregated into non-EV demand and coordinated EV related demand.

i.e., power to gas (P2G). The combined final efficiency of
P2G process is 62% which combines 80% efficiency from
electrolysis, 80% efficiency for the methanation process and
around 2% of losses on compression [75] (fig. 12). Techno-
economic assumptions related to P2G plants are listed in
table 12.

FIGURE 12. Sankey diagram for P2G process (Source: [75]).

Production of green hydrogen is assumed to be a) recircu-
lated back to the power sector for electricity production essen-
tially using green hydrogen as a long-term storage; or b) used

in other sectors. The latter case is modeled as a mandatory
external demand of green hydrogen and SNG to be produced
by the power system. The external 2050 green hydrogen
and SNG demand estimates from MENR are 20TWh and
143TWh, respectively. Green hydrogen and SNG for electric-
ity production (i.e., recirculation to power sector) is deter-
mined endogenously in EPM. The following assumptions
have been made:

• Green hydrogen can be burned directly as fuel by con-
ventional existing, or new OCGT and/or CCGT if mixed
at 20% per volume with natural gas and/or SNG;

• Pure green hydrogen can be burned directly by new
OCGTs and/or CCGTs modified for hydrogen fuel; and

• Pure SNG can be used directly by conventional existing
or new turbines.

Assumptions related to modified gas turbines for hydrogen
are listed on table 10. Fixed and variable costs are assumed
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TABLE 10. Techno-economic parameters of electricity generating technologies used as inputs on EPM. (Technologies without capex represent capacity
that is expected to be part of the system but not optimized.)

TABLE 11. Techno-economic parameters of electricity storage technologies used as inputs on EPM.

TABLE 12. Techno-economic parameters of electrolyzers used as inputs on EPM.

to be similar to those of conventional gas generators [76].
Due to NOx control issues hydrogen turbines are assumed to
have lower efficiency compared to conventional technologies
[77], [78].

4) FUEL COSTS AND EMISSIONS FACTORS
Assumptions related to fuel costs and emissions are presented
on table 13.

5) MODELING DEMAND RESPONSE
Demand response is modeled as flexible load with a cost of
$80 perMWh reduction.Maximum reduction (in GW)within
one hour is equal to 10% of the annual peak (nearly 16GW).

Demand response is limited to a maximum of 100 hours per
year.

6) RE RESOURCE DATA
Actual historical timeseries of hourly capacity factors of
RE production from years 2016-2021 were obtained from
MENR. This is used to represent resource constraints and
construct RE scenarios. VRE production (PV, wind and RoR)
in EPM is modeled based on historical hourly generation.
When VRE cannot be absorbed, it is curtailed incurring an
assumed penalty of $60/MWh. Hydro storage production is
optimized within each month; however the monthly capacity
factor is constrained based on the historical figures.
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TABLE 13. Fuel cost assumptions used as inputs on EPM.

The choice of representative years is made based on sta-
tistical analysis and in collaboration with MENR. Average
resource year for all three resources (hydro, solar and wind)
happened to occur in 2020. Low resource year for hydro (both
RoR and storage) is 2021, while for PV and wind it is the year
2018 (fig. 13 to 15).

FIGURE 13. Monthly capacity factors of wind and PV inputs.

FIGURE 14. Monthly capacity factors for hydro storage and hydro RoR
inputs.

7) SYSTEM NON-SYNCHRONOUS PENTRATION LIMIT
A power system’s ability to absorb non-synchronous gener-
ation from solar and wind is limited due to system security

FIGURE 15. Annual capacity factors for wind, PV, hydro storage and hydro
RoR.

issues. Very high instantaneous generation from VRE limits
a system’s ability to recover effectively from contingencies.
There are measures to increase a system’s ability to absorb
very high shares of VRE albeit these issues are beyond the
scope of this paper [79].

The EPM Turkey model includes an instantaneous system
non-synchronous penetration (SNSP) limit of 80% for years
2049 and 2050. The SNSP assumption was made in collab-
oration with MENR. The SNSP limit is defined as the sum
of non-synchronous generation over total generation and is
applied for each hour of operation [80].

8) POLICY GOALS
In scenarios 1 and 2 there is a constraint of 33% generation
from PV and wind at minimum in 2049 and 2050. In decar-
bonization scenarios there is a system cap on CO2 emissions
for a maximum of 38 and 35 million tons of CO2 in 2049 and
2050, respectively. The CO2 cap is not a hard constraint in
EPM. The model includes a penalty for breaching the CO2
cap at $300 per ton. This reflects the cost the society would
bear for utilizing some backstop technology to mitigate CO2
impacts.

VI. RESULTS
The first part of analysis focuses on system reliability of the
Baseline plan. In the Baseline, the system experiences loss of
load at various instances throughout the year (fig. 16)
Loss of load varies across the months/seasons (fig. 17).

Both occurence and magnitude of loss of load are higher over
September to February, affected by lower capacity factors of
hydro and solar generation ( fig. 13 and fig. 14) and also
in July, when peak demand of the year occurs. In addition,
as expected, loss of load is higher in a year with low RE
resource compared to average conditions. Simulations indi-
cate that loss of load witin a low RE year fluctuates between
around 0.5% and 6% of monthly generation while over an
average year the range becomes 0% - 2% (fig. 18). These
are clearly too high that breaches most reliability standards
including that for Turkey.

Another metric to measure system reliability is the gen-
eration reserve margin expressed in terms of available
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FIGURE 16. Example of optimized dispatch over the 29th and 30th of
January 2050 (Scenario 1).

FIGURE 17. Optimized monthly generation and loss of load for year 2050
(Scenario 1).

generation (considering capacity factors and historical avail-
ability) minus demand divided by demand. As an example a
system where available generation is 110TWh and demand is
100TWh will have generation reserve margin of 10%. Fig. 19
shows generation availability and reserve margin over a year
with low RE resource. It can be observed that generation
availability falls short of demand only in July and December
while the system experiences loss of load over a larger period
as discussed earlier. The reason the system can not absorb
all available energy is due to system flexibility limitations
caused by ramping and the SNSP constraints. Fig. 20 shows
an example of two days dispatch where variation of RE
creates extensive cycling of coal generation and at the same
time SNSP causes curtailment of VRE.

The above observations indicate that a system with posi-
tive generation reserve margin could still experience loss of
load if it lacks flexibility. A system, however, with negative

FIGURE 18. Comparison of loss of load for years 2049 (average RE) and
2050 (low RE) based on simulated system operation (Scenario 1).

FIGURE 19. Generation availability and generation reserve margin per
month in year 2050 (Scenario 1).

FIGURE 20. Two days dispatch indicative of increased cycling of coal and
VRE curtailment (Scenario 1).

generation reseve margin will always experience loss of load.
Simulations indicate that the system experiences a range of
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months (July to February) with low generation reservemargin
(below 10%) in both high and low RE resource years. The
system experiences negative generation reserve margin in
July and December in low RE years and in October over an
average year (fig. 21).

FIGURE 21. Comparison of generation reserve margin for years 2049 and
2050.

A third system reliability metric is capacity reservemargin.
The capacity reserve margin is the firm capacity of the system
on top of peak demand divided by peak demand. In this
study, thermal generators are assumed to have firm capacity
of 100%, electricity storage (BESS and PHP) 75% and hydro
storage 100%. The firm capacity of VRE is estimated by EPM
using a simplified approach which compares the capacity
factor of VRE during the peak demand hour with the average
capacity factor over a full year.8

Seasonal analysis of demand and VRE time-series indicate
that over both low and average RE year, system capacity
reserve margin is negative over all months (fig. 22). In addi-
tion seasonal correlation of VRE and capacity reserve margin
is weak (fig. 23 and fig. 24). The firm capacity of both
technologies is below 10% of rated capacity over July when
system experiences the largest capacity shortfall. Over an
average RE year, both wind and PV offer low firm capacity
in November and December when again, system experiences
shortage of firm capacity.

The analysis above suggests a possible need for year round
back-up firm capacity (for example OCGT), which seem to
be confirmed by the results of the LCP to be discussed later
on. More detailed analysis of system reliability involving
estimation of VRE effective load carrying capability (ELCC)
is beyond the scope of this work but could provide valuable
insights.

System inability to supply demand at all times has potential
impacts on thewider economy. To account for this, the Turkey
model includes a penalty of $2,000 per MWh of unserved

8Fig.22 shows system firm capacity on monthly basis. It should be noted
that the firm capacity constraint on EPM is based on a single annual value of
firm capacity for each technology. Firm capacity of wind and PV on uncorrdi-
nated charging scenarios has been estimated as 7.5% and 6% respectively for
year 2049 and 7.4% and 4.5% for year 2050. In scenarios with coordinated
charging the capacity factors for wind and PV has been estimated as 4.8 %
and 16.1% respectively for year 2049 and 3.6% and 13.4% for year 2050.

FIGURE 22. Firm capacity and capacity reserve margin over year 2050.

FIGURE 23. Comparison of system capacity reserve margin and firm
capacity of VRE over a low RE year.

FIGURE 24. Comparison of system capacity reserve margin and firm
capacity of VRE over an average RE year.

electricity demand. This is accounted for in the objective
function of EPM and reported as part of system cost. Fig. 25
shows the seasonal operational costs of the system over an
average RE year (2049). It can be seen that there are months
where system costs due to loss of load exceed all other costs
combined including fuel; this indicates that system opera-
tion in the incumbent plan is uneconomical from a societal
prespective.

The next step in analysis involved the combined dispatch
with LCP optimization to bridge the identified gaps in system
adequacy. A comparison of total installed capacity between
the Baseline plan and the enhanced plan (Scenario 2) is shown
in fig. 26. Nearly 95GW of additional capacity is needed
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FIGURE 25. Breakdown of system operational costs over an average RE
resource year.

to restore system generation reserve margin. The breakdown
of additional capacity per technology is shown in table 14.
The Baseline capacity mix needs to be supplemented by a
total of 22GW of CCGT, 25GW of OCGT and 46GW of
PV. This significant amount of capacity satisfies the system
requirement of 8% capacity margin9 and eliminates the loss
of load enabling the system to supply demand at all times
including years of low RE resource (see table 15).

FIGURE 26. Comparison of capacity plans (Baseline vs Baseline & LCP).
In the enhanced plan capacity is broken down as existing and new
additions.

Table 15 shows a comparison of system operation between
the Baseline and the updated plan. The net present value of
costs of the updated plan is nearly one third compared to
the Baseline even though the updated plan is heavy on new

9The capacity margin constraint is defined as an input on EPM. Assump-
tion for system capacity margin of 8% was made after consultation with
MENR.

TABLE 14. Capacity additions (MW) over baseline in Scenario 2.

investments. This is because the economic impact of fail-
ing to meet demand (in Scenario 1) dominates system costs
being nearly an order of magnitude larger than CAPEX costs
in Scenario 2. CO2 emissions in the draft plan are around
236 million tonnes in 2050. This translates into emissions
intensity for the system at around 252gr of CO2 per kWh.
After additions of around 46GW of PV capacity total

installed capacity of wind and PV reaches 67.4GW and
113.5GW respectively by 2050. Increased PV generation
increases VRE curtailment. Around 1.9% of PV and Wind
generation (or around 7.4TWh) is curtailed in an average
RE year. New PV combined with additional 48.3GW of gas
fired capacity (CCGT/OCGT) greatly improves reliability
metrics. More specifically, loss of load is eliminated, while
generation reserve margin always stays above 40% (fig. 27).
The optimal capacity plan (using EPM) is designed for a
capacity reserve margin of 8%. As shown in fig. 28, the
capacity reserve margin of the system is always above 8%
reaching its minimum level (of 8%) in July and exceeding
14% all other times. Significant contribution on firm capacity
is provided by OCGTs that are added in the optimal plan as
peaking capacity operating at a capacity factor of 2% and
providing backup capacity. New CCGTs, on the other hand,
run at a capacity factor of 80%.

The second part of analysis focuses on estimation of the
least-cost capacity mix to achieve decarbonization of the
power sector. Total installed generation capacity in the Decar-
bonization scenario reaches 573GW of capacity i.e., nearly
twice the capacity in the enhanced Baseline (refer to fig. 29).
It should be noted that the two capacity plans are not directly
comparable because total electricity demand in the Decar-
bonization scenario is also higher by 321TWh (nearly one
third of demand) to meet the exogenous demand for green
hydrogen. Comparing capacity needs, though, provides an
indication of the additional power capacity required for cross
sectoral decarbonization.

The capacity plan in the Decarbonization scenario (Sce-
nario 3) is dominated by renewables accounting for 79%
of generation capacity in 2050. More specifically, solar and
wind account for 72% of total installed capacity and hydro
around 6.5% with the remaining 0.5% being biofuels and
geothermal. If nuclear and CCS are added, total non (or -low)
emitting technologies account for 94.3% of total installed
generation capacity.
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TABLE 15. Comparison of system simulation results between
scenarios 1 and 2.

FIGURE 27. Updated generation reserve margin after capacity additions
on the Baseline (Scenario 2).

In the Decarbonization, scenario a significant amount of
electrolyzer capacity and P2G plants is required for produc-
tion of green hydrogen. Around 79GW of electrolyzers and
58GWof P2G plants are required to produce around 143TWh
of SNG and 68TWh of pure hydrogen. From the above it can

FIGURE 28. Updated capacity reserve margin after capacity additions on
the Baseline (Scenario 2).

FIGURE 29. Comparison of capacity plans. (Enhanced baseline vs
decarbonization.)

be concluded that P2G plants are operated at higher capacity
factors (fig. 32). All 143TWh of SNG and 20TWh of green
hydrogen are used in other sectors (mandatory production)
while 48TWh of hydrogen are recirculated in the power sector
for electricity production (optimized hydrogen production).
Recirculation of SNG for power production is not economic
based on results. It should be noted that while the external
demands for green hydrogen and SNG are inputs on EPM,
the electrolyzer capacity is optimized and thus it is an output
of the model.

Demand response at $80/MWh is utilized by the system
bringing a net economic benefit mostly related to CAPEX
savings. As seen in fig. 30 and table 16, demand response

27210 VOLUME 11, 2023



T. Nikolakakis et al.: Analysis of Long-Term VRE Heavy Capacity Plans Including EV and Hydrogen Scenarios

TABLE 16. Capacity additions (GW) and capacity savings (GW) among
decarbonization scenarios.

FIGURE 30. Comparison of capacity plans among decarbonization
scenarios (Scenarios 3 to 5). Capacity is broken down per technology and
per status (existing versus new). Existing capacity represents capacity
which is currently online or is planned for commissioning in the medium
term and expected to still be online by 2050. New capacity represents
optimized additions to supply 2050 demand.

reduces system needs for generation capacity by around
12GW and electrolyzers/P2G by 7GW. Coordinated charging
further reduces capacity needs by an additional 18GWof gen-
eration capacity. The combined capacity benefits of demand
response and coordinated charging on the system is 30GW
of generation capacity and 4 GW of electrolyzers/P2G. This
is a significant impact on capacity needs, showcasing the
important benefits of these actions to the system.

In the Decarbonization scenario, VRE energy production
accounts for 70% of total generation (fig. 31). Total non -
emitting generation together with low emitting CCGT with
CCS generation account for more than 95% of total gen-
eration in the power sector. Fig. 32 shows an example of

hourly dispatch for two days for scenario 4. Electrolyzers
charge mostly during the daytime to take advantage of solar
generation. During hours when combined non-synchronous
generation (PV and wind) is very high, production of syn-
chronous generators increases to strengthen system stability.
Demand response is economic when demand is high and
VRE production is low. In such a future state of the system
dispatchable units will need to cycle frequently to match
supply and demand. Even though around 18GW of BESS
(2hrs of storage) are part of the decarbonization scenario its
main role is supportive in the system providing operational
and capacity reserve.

FIGURE 31. Energy mix by fuel for Decarbonization scenario per year.

FIGURE 32. Example of two-day dispatch (Scenario 4: decarbonization &
demand response.
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Electrolyzers absorb most of VRE and there is little need
for intra-day, time-shift of VRE. However, there is some
need for long-term energy storage in the system which is
provided through production of green hydrogen which in turn
is converted back to electricity during the winter months.
Most of the green hydrogen is used directly in hydrogen
turbines but a small portion is mixed with natural gas to
be used in conventional gas technologies. Electricity from
green hydrogen accounts for around 2% of total electricity
generation.

Production of green hydrogen does greatly increase peak
demand. Based on results of this analysis, peak demand is
expected to nearly double due to electrolyzer operation (see
table 17). Apart from major ramifications of such a sharp
increase in peak demand on the capacity plan itself, sharp
peaks will also pose stress on the transmission and distribu-
tion (T&D) networks. T&D investments analysis was not part
of this study.

TABLE 17. Demand and supply balances and CO2 emissions comparison
across decarbonization scenarios.

CO2 emissions in the Decarbonation scenarios are only
21% of emissions of the Baseline scenario. More specifically,
the CO2 emissions cap of 38 million tonnes is achieved in
2049 but the constraint of 35million tonnes of CO2 is violated
by 1.3 million tonnes in 2050, which is a year with low RE
resource. This is because the system is reaching its limits on
absorbing VRE. Further marginal decarbonization will come
at high marginal system costs. Thus, it is cheaper for the
system to bear some penalty (provided as input at $300/ton)
rather than incurring substantially higher cost tomeet the CO2
target.

Table 18 shows a breakdown of nominal system costs
for the decarbonization scenarios. The nominal value of

total annual system cost is the sum of annualized CAPEX,
OPEX costs and all type of system penalties. In the Decar-
bonization scenario, annualized CAPEX accounts for 52%
of total system costs in 2050 and is the largest of all cost
elements, followed by FOM (22.5%) and fuel costs (17.2%).
While demand response reduces generation capacity needs by
around 12GW, any economic benefits from capacity deferrals
are largely counterbalanced by the cost of DR and increased
fuel costs so that the net economic benefit is small, only
around 200 million USD per annum. However, when com-
bined with coordinated charging the net economic benefit on
the system is much larger (around 1.5 billion USD per year)

TABLE 18. Comparison of system costs across decarbonization scenarios.

Additional analysis to fully understand the Decarboniza-
tion included running two sensitivities around it. The first
sensitivity included optimistic electrolyzer CAPEX (Sce-
nario 3a). The second sensitivity assumed no existing coal
by 2050 (Scenario 3b).

Adoption of optimistic cost for hydrogen production has
a small effect on electrolyzer capacity (see table 19) and
recirculation of green hydrogen in the power system.

In the ‘‘no coal’’ sensitivity, there seem to be significant
differences on capacity additions. The existing coal capacity
of nearly 9GW is replaced by 9GW of CCGT. Total OCGT
additions amount 56GW, which is comparable to OCGT
additions in the Decarbonization scenario. However, it is
interesting to note that hydrogen recirculation in the power
system is no longer cost effective as natural gas is more
competitive in this scenario.

VII. CONCLUDING REMARKS
The present modeling exercise explores some of the emerging
challenges that many countries are facing today including
Turkey, around their decarbonization goals. As a starting
point for the analysis, we used a capacity plan prepared by the
Ministry of Energy and Natural Resources of Turkey which
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TABLE 19. Comparison of new capacity additions across decarbonization
and sensitivities.

FIGURE 33. Average plug-in start time profiles at home for weekday
charge events for (a) commuters and (b) non-commuters, from the
interim Electric Nation dataset of the United Kingdom. BEV stands for
battery electric vehicles, PHEV for plug-in electric vehicles. ‘n’ is the
number of charge events in the sample (Source: [42]).

FIGURE 34. Average plug-in start time profiles at workplace charge
points, from various data sources in the United Kingdom ‘n’ is the number
of charge events in the sample (Source: [42]).

FIGURE 35. Average (a) weekday and (b) weekday plug-in start time
profiles from various data sources in the United Kingdom. ‘n’ is the
number of charge events in the sample. PiP stands for Plugged-in Places,
LCL for Low Carbon London and ESB for ESB e-cars(Source: [42]).

has a large share of solar and wind to meet 33% of its baseline
electricity requirement in 2050. Our analysis using the World

FIGURE 36. Weekly average demand profile, averaged over full year for a
stock of 180,00EVs in Great Britain based on data from 2018
(Source: [43]).

FIGURE 37. Number of vehicles likely to be parked at the fleet depot
throughout the day for two types of fleet vehicles: school buses and
freight trucks. Freight vehicles tend to start later than school buses and
return over a longer period of time as they complete their trips
(Source: [52]).

FIGURE 38. (a) 1,000 charging scenarios for a fleet of 30 school buses in
the winter. The charging requirement for the fleet is facilitated by
15 chargers rated at 19.2kW each. School buses in most scenarios start
trips between 5:00-7:00am, and return to the depot between
3:00-6:00pm, with an average dwell time between 13-16 hours. (b) During
summer charging time is reduced to 5-6 hours from 8-9 hours in winter
(Source: [52]).

FIGURE 39. Freight fleet’s aggregate charging load during winter and
summer for a fleet of 72 freight trucks. The fleet depot is assumed to
have 36 chargers rated at 150kW each. Charging efficiency is similarly
lower during winter months. Freight trucks return at the depot from 4pm
to midnight (Source: [52]).

Bank Electricity Planning Model (EPM) revealed the need
for great attention needs to be paid to assess the performance
of such a plan taking into consideration significant seasonal
and interannual variability of solar and wind. Indeed, our
findings included a high probability of loss of load during
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several months of the year arising from such variability.
As the next step, we developed amitigation strategy including
re-optimization of the capacity mix that can restore system
adequacy at nominal cost. The second set of challenges for
Turkey is its aspiration to electrify its transport and also pro-
duce green hydrogen to decarbonize other sectors. As most of
the existing planning tools cannot fully address some of the
modeling requirements like endogenous treatment of green
hydrogen or coordinated charging of EVs –we extended EPM
to model these aspects. The additional load arising from EV
and green hydrogenmay place a great burden in terms of addi-
tional investments needed that further emphasizes the need to
optimize investment and production decisions. These include
the significant relief that may be elicited from the coordinated
charging of EVs, using part of the green hydrogen as a fuel to
meet peaking requirements when the VRE level is low, and
introducing large-scale demand response programs. There is
a viable pathway for Turkey to decarbonize its economy.
However, it requires great care in analyzing the options at
hand not to expose the system to a risk of running out of power
or an exorbitant level of investment in a backup capacity.

APPENDIX
See Figs. 33–39.
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