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ABSTRACT The consensus control problem of multi-agent systems (MASs) is studied. Firstly, a predefined-
time consensus control algorithm is proposed for nonlinear uncertain systems with the input delay and
switching topology. Then, the problem of resource consumption is considered, a dynamic event-triggered
predefined-time consensus control algorithm is presented by introducing internal dynamic variables, which
can make the MASs achieve consensus in the preset time. The correctness of the algorithm is proved by
algebraic graph theory and Lyapunov theory, and there is no Zeno behavior. Simulation comparison exper-
iments verify the effectiveness and superiority of the proposed algorithm. Compared with the finite-time
control algorithm, the convergence time of this algorithm is independent of the initial state. The upper bound
of the system convergence time can be set by selecting a time parameter. Compared with the fixed-time
control algorithm, the convergence time of this algorithm is independent of the controller parameters, only
related to a single parameter, the setting is simple, and the estimated convergence time is less conservative.
Compared with the static triggeringmechanism, the dynamic triggeringmechanism can avoid a large number
of triggering.

INDEX TERMS Multi-agent systems (MASs), consensus control, the nonlinear uncertain system, input
delay, switching topologies, dynamic event-triggered control, predefined-time consensus control.

I. INTRODUCTION
In recent years, the cooperative control problem of
multi-agent systems (MASs) have received extensive
attention [1], [2], [3], [4]. An important problem of MASs
cooperative control is to design controllers so that all agents
can reach consensus.

The asymptotic convergence result of cooperative con-
trol is given first, and the convergence time is infi-
nite [5], [6], [7], [8]. However, for practical systems,
the design of the control protocol should also consider
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the speed of convergence. Compared with asymptotic
consensus control, finite-time consensus control has the char-
acteristics of faster convergence speed, stronger robustness
and better anti-interference ability [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20]. In [9], the H∞ consen-
sus problem of first-order nonlinear MASs based on directed
graph was discussed. In [10], [11], the consensus problem of
high-order MASs under the influence of mismatch interfer-
ence and uncertain nonlinearity was explored respectively.

However, the convergence time of finite-time consensus
depends on the initial state of the system. If the initial state
difference is large or unknown, the system control require-
ments cannot be met. Therefore, in order to solve the problem
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that the convergence time of the system is affected by the
initial state, researchers have carried out fixed-time control
research [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34]. The first-order multi-agent system
under fixed topology was considered in [21]. Reference [22]
solved the consensus tracking problem of first-order nonlin-
ear MASs. The average consensus problem under switching
topology was developed in [23].

However, there are two main problems with fixed-
time control results. Firstly, the convergence time bound
determined by Lyapunov stability analysis is very con-
servative. Secondly, the convergence time bound of fixed
time consistency is a complex function of system param-
eters, and the direct relationship between the adjustment
parameters and the convergence time bound is not clear.
Recently, researchers have proposed a predefined-time con-
trol [35], [36], [37], [38], [39], [40]. Unlike fixed-time
control, the convergence time is only related to a single
parameter, and the estimated convergence time is close to
the actual convergence time. [35] solved the distributed opti-
mization problem of MASs with equality constraints in pre-
defined time under directed graphs. [36] proposed an adaptive
fuzzy predefined time and precision tracking control scheme
for strict-feedback nonlinear systems. In [37], the problem
of predefined-time bipartite consensus control for uncertain
nonlinear MASs under signed directed topology was devel-
oped. In [38], the problem of predefined-time consensus
tracking for second-order MASs was addressed.

Due to the nonideality of data transmission, time delay
often occurs in controlled system [5], [12], [13], [14], [24],
[25], [26], [27], [32]. The existence of time delay will
reduce the performance of the system. Therefore, it is very
important to consider the delayed MASs. In [5], an event-
triggered adaptive control scheme was proposed for a class
of nonlinear uncertain systems with input delay and com-
munication constraints. In order to ensure faster convergence
speed, the finite-time consensus of MASs with time delay
was achieved in [12], [13], and [14]. In [12], the finite-
time observer-based leader-following consensus problem for
a class of nonlinear MASs with non-uniform time-varying
input delay was addressed. Reference [13] solved the consen-
sus tracking problem for a class of nonlinear heterogeneous
MASs with asymmetric state constraints and input delays.
Reference [14] considered the event-based finite-time con-
sensus problem for second-order MASs with input delay.
Reference [24], [25], and [26] gave the corresponding fixed-
time consistency results. Reference [24] studied the consen-
sus problem of non-strict nonlinear uncertain MASs with
state constraints and input delays. Reference [25] considered
the proportional consensus problem of MASs with input
delay under undirected graphs and directed graphs. Refer-
ence [26] solved the fixed-time leader-following consensus
problem for second-order MASs with input delays.

In addition, due to the limited resources of embedded
processors, the event-triggered approach was proposed to
solve the consensus problem. The main results are as

follows [6], [7], [8], [15], [16], [17], [18], [19], [20], [27],
[28], [29], [30], [31], [32], [33], [34], [39], [40]. Refer-
ence [6] constructed an event-triggered adaptive distributed
observer and proposed an event-triggered dynamic output
feedback control law. In [7] and [8], the event-triggered
tracking control problem for nonlinear second-order MASs
with and without disturbances was considered, respectively.
The problem of convergence speed was considered, [15],
[16], [17], [18], [19], [20] proposed a finite-time event-
triggered consensus algorithm. [15] addressed MASs
with general linear dynamics and directed topology.
Reference [16] studied the Zeno behavior in event-triggered
MASs. Reference [17] solved the finite-time distributed
event-triggered consensus control problem for MASs. Ref-
erence [18] discussed the finite-time consensus problem of
second-order leader-following nonlinear MASs with event-
triggered communication. Reference [19] achieved the finite-
time leader-follower consensus for second-order MASs with
uncertain disturbances. Reference [20] developed the fuzzy
adaptive finite-time consensus control problem for high-
order nonlinear MASs with unknown nonlinear dynamics.
In [27], [28], [29], [30], [31], [32], [33], and [34], the problem
of fixed-time event-triggered consensus control was stud-
ied. Reference [27] considered the event-triggered attitude
consensus of MASs with fixed-time convergence guarantee.
Reference [28] solved the event-triggered attitude consensus
of MASs with fixed-time convergence guarantee. Refer-
ence [29] considered the fixed-time event-triggered consen-
sus problem of uncertain nonlinear MASs. Reference [30]
discussed the fixed-time event / self-triggered leader-follower
consensus problem for MASs with nonlinear dynamics.
In [31], a new dynamic event-triggered control scheme was
proposed for the fixed-time consensus problem of MASs
with nonlinear dynamics. In [32], the fixed-time average
consensus problem for nonlinear MASs with input delay,
external disturbances and switching topology was solved.
Reference [33] studied the problem of team-triggered fixed-
time consensus for a class of double-integrator agents
with uncertain disturbances. Reference [34] considered the
fixed-time event-triggered output consensus tracking prob-
lem of high-order MASs under directed interaction graphs.
In [39] and [40], the consensus control problem triggered
by predefined time events was studied. Reference [39]
addressed the problem of resource allocation in cyber-
physical systems. By applying a dynamic event-triggered
mechanism and a continuous-time function, a new distributed
scheduled-time algorithm and dynamic triggering conditions
were designed. Reference [40] studied the design of event-
triggered prescribed-time output feedback control for nonlin-
ear interconnected systems with non-strict feedback control
structure.

Motivated by the above literature, we consider two aspects.
On the one hand, the input delay of MASs with nonlinear
uncertainty is solved. On the other hand, the problem of
resource loss is considered. The main contributions of this
article are stated as follows.
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1) Different from the fixed-time consensus results
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], the prescribed convergence time of the sys-
tem is independent of the controller parameters, and the
setting is simple and less conservative.

2) Compared with the static event-triggered consensus
results [6], [7], [8], [15], [16], [17], [18], [19], [20], [27], [28],
[29], [30], [32], [33], [34], [40], we introduce a dynamic
event-triggered factor to reduce the number of controller
triggers and resource consumption.

3) Different from the predefined-time consensus
results [35], [36], [37], [38], we consider the case of input
delay, event-triggered and switching topology.

This paper is structured as follows. Section II introduces
preliminaries and problem formulation. Section III consid-
ers the predefined-time consensus of nonlinear uncertainty
MASs with input delay. Section IV considers dynamic event-
triggered predefined-time consensus. Section V is the simu-
lation results and analysis. Section VI concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
Consider a MASs with M agents whose communication
topology is represented by an undirected graph G =

(V , ε,A), where V = {v1, v2, · · · , vm} is the set of nodes,
ε ⊆ V × V represents the set of edges, A = [aij]m×m
is an adjacency matrix. Each node vi represents an agent i,
and the existence of an edge set (vi, vj) ∈ ε indicates that
agents j and i can communicate with each other. For an
adjacency matrix A = [aij]m×m of an undirected graph G,
when (vj, vi) ∈ ε, aij = 1, otherwise aij = 0. The Laplacian
matrix L of an undirected graph G is defined as L = D − A,
where D = diag{d1, d2, · · · , dm} is a diagonal matrix, dj =∑m

i=1,i̸=j aji, j ∈ {1, 2, · · · ,m}. An undirected graphG is said
to be connected if there is at least one path between any two
nodes.

B. DEFINITION AND LEMMAS
Consider the following system

ẋ(t) = f (x(t), t)x(0) = x0 (1)

where x = [x1, x2, · · · , xm]T ∈ Rm, f (x(t), t) : Rm
× R+

→

Rm is a nonlinear function. Let the origin be an equilibrium
point of system (1).
Definition 1 [41]: If the origin of system (1) is globally

uniformly finite-time stable and the convergence time param-
eter T : Rm

→ R+ is globally bounded, then the origin
is called the equilibrium point of global fixed-time conver-
gence, i.e. there exists a finite constant Tmax ∈ R+ such that
for all t ≥ T and x0 ∈ Rm satisfying Ts < Tmax, x(t) = 0,
then the origin of system (1) is pre-determined time
convergent.
Lemma 1 [42]: If there exists a positive definite function

V (x) : Rm
→ R,∀x ∈ Rm, and V (x) = 0 ⇔ x = 0 such that

the following holds

V̇ (x) ≤ −
π

αT
(V (x)1−

α
2 + V (x)1+

α
2 ) (2)

where constant T > 0, 0 < α < 1, then the origin of the
system is stable for the predefined time T.
Lemma 2 [43]: A connected undirected graph G whose

Laplacian matrix L is positive semidefinite with eigenvalues
satisfying

0 = λ1(L) < λ2(L) ≤ · · · ≤ λm(L)

λ2(L) = min
∥x∦=0,

m∑
i=1

xi=0

xTLx

∥x∥2
(3)

For x = [x1, x2, · · · , xm]T ∈ Rn, there is

xTLx =
1
2

m∑
i=1

m∑
j=1

aij(xi − xj)2 (4)

Therefore, if 1Tx = 0, that is
m∑
i=1

xi = 0, then λ2(L)xTx ≤

xTLx ≤ λm(L)xTx.
Lemma 3 [44]: If |y| denotes the absolute value of the real

number y, then

d
dy

|y|α+1
= (α + 1)sig(y)α

d
dy
sig(y)α+1

= (α + 1) |y|α

where sig(y)α = sign(y) |y|α .
Lemma 4 [45]: For a real number ε1, ε2, · · · , εm ∈ R+,

one has

m1−p

(
m∑
i=1

εi

)p
≥

m∑
i=1

ε
p
i ≥

(
m∑
i=1

εi

)p
, 0 < 0 ≤ 1

m∑
i=1

ε
q
i ≥ m1−q

(
m∑
i=1

εi

)q
, q > 1

C. PROBLEM DESCRIPTION
Consider nonlinear MASs with input delay disturbance{

ẋi(t) = ui(t − τ ) + f (xi(t), t) + di(xi(t), t)
x(0) = x0

(5)

where xi ∈ Rn and ui ∈ Rn, i = 1, 2, · · · ,m are state and the
control input of agent i, τ is the known input delay, f (x(t), t) :

Rm
× R+

→ Rm is nonlinear uncertainty, di(xi(t), t) ∈ Rn

can represent unknown disturbance and noise, etc..
Definition 2: For the input delay nonlinear MASs (5) with

disturbance, there exists a predefined time constant T such
that when t ≥ T , the system has{

lim
t→T

∣∣xi(t) − xj(t)
∣∣ = 0

xi(t) = xj(t)
(6)

Then the system can achieve predefined time consistency.
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Assumption 1: The nonlinear function f (x(t), t) satisfies
the following conditions∣∣f (xi(t), t) − f (xj(t), t)

∣∣ ≤ γ1 + γ2
∣∣xi(t) − xj(t)

∣∣ (7)

where γ1 ≥ 0, γ2 ≥ 0.
Assumption 2: There exists a known nonnegative con-

stant D satisfying

|di(xi(t), t)| ≤ D (8)

III. PREDEFINED-TIME CONSENSUS UNDER INPUT DELAY
In this part, a distributed input delay predefined-time consen-
sus control algorithm is proposed with γ2 = 0. The MASs
consensus under fixed topology and switching topology are
considered.

Define

ξi(t) =

m∑
j=1

aij(χi(t) − χj(t)) (9)

where χi(t) = xi(t) +
∫ t
t−τ ui(T )dT , i ∈ {1, 2, · · · ,m}.

A. PREDEFINED-TIME CONSENSUS UNDER FIXED
TOPOLOGY
In order to achieve predefined-time consensus ofMASs under
input delay, a predefined-time control law is designed as

ui(t) = −c1sig (ξi(t))1+α − c2sig (ξi(t))1−α − βsign (ξi(t))
(10)

where 
c1 =

π

2αTm−
α
2 (2λ2(L))

1+ α
2

c2 =
π

αT (2λ2(L))
1− α

2

0 < α < 1, β > 0 are the control gain constant, λ2(L) is
the nonzero minimum eigenvalue of the Laplacian matrix L
of MASs, and T is the preset convergence time.

Based on Newton-Leibniz formula, we have

χ̇i(t) = ui(t) + f (xi(t), t) + di(xi(t), t) (11)

Theorem 1: When Assumptions 1, Assumptions 2 and the
following conditions are satisfied.

β ≥
1
2
γ1 + D (12)

Using controller (10) to satisfy input delay MASs achieves
predefined-time consensus in fixed topology.

Proof: Construct the following Lyapunov function

V (t) =
1
2
χT(t)Lχ (t) (13)

where χ (t) = [χ1(t), χ2(t), . . . , χm(t)]T, the derivation of V
is

V̇ (t) =
1
2

(
χT (t)Lχ̇ (t) + χ̇T (t)Lχ (t)

)

= χT (t)Lχ̇ (t)

=

m∑
i=1

m∑
j=1

aij(χi(t) − χj(t)χ̇i(t)

=

m∑
i=1

ξi(t) (ui(t) + f (xi(t), t) + di(xi(t), t))

= −c1
m∑
i=1

|ξi|
2+α (t) − c2

m∑
i=1

|ξi(t)|2−α − β

m∑
i=1

|ξi(t)|

+

m∑
i=1

m∑
j=1

aij(χi(t) − χj(t))f (xi(t), t)

+

m∑
i=1

ξi(t)di(xi(t), t) (14)

By Assumption 1, we have
m∑
i=1

m∑
j=1

aij(χi(t) − χj(t))f (xi(t), t)

≤
1
2

m∑
i=1

m∑
j=1

aij(χi(t) − χj(t))(f (xi(t), t) − f (xj(t), t))

≤
1
2
γ1

m∑
i=1

ξi(t) (15)

Substitute (15) into (14), we can get

V̇ (t) = −c1
m∑
i=1

(
|ξi(t)|2

)1+ α
2

− c2
m∑
i=1

(
|ξi(t)|2

)1− α
2

− β

m∑
i=1

|ξi(t)| +
1
2
γ1

m∑
i=1

ξi(t) +

m∑
i=1

ξi(t)di(xi(t), t)

(16)

By Lemma 4, we have

m∑
i=1

(
|ξi(t)|2

)1+ α
2

≥ m−
α
2

(
m∑
i=1

ξ2i (t)

)1+ α
2

(17)

m∑
i=1

(
|ξi(t)|2

)1− α
2

≥

(
m∑
i=1

ξ2i (t)

)1− α
2

(18)

Applying Lemma 2, one has

2λ2(L)V (t) ≤

m∑
i=1

(
ξ2i (t)

)
≤ 2λm(L)V (t) (19)

Then can be written as

V̇ (t) ≤ −c1m−
α
2

(
m∑
i=1

ξ2i (t)

)1+ α
2

− c2

(
m∑
i=1

ξ2i (t)

)1− α
2

− β

m∑
i=1

|ξi(t)| +

(
1
2
γ1 + D

) m∑
i=1

ξi(t)

≤ −c1m−
α
2 (2λ2(L)V (t))1+

α
2 − c2 (2λ2(L)V (t))1−

α
2
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−

(
β −

1
2
γ1 − D

) m∑
i=1

|ξi(t)|

≤ −
π

αT
(V (t))1+

α
2 −

π

αT
(V (t))1−

α
2 (20)

It follows from Lemma 1 that lim
t→T

V (t) = 0. This means

that when t = T , ui(t) is zero, and when t ≤ T + τi,∫ t
t−τ ui(T )dT is zero. Therefore, when t = Ts ≤ T + τi,
limt→Ts χ (t) = x(t), MASs achieves consistency within a
predefined-time Ts.

B. PREDEFINED-TIME CONSENSUS UNDER SWITCHING
TOPOLOGY
This section extends the fixed topology dynamic event-
triggered protocol to the switching topology for analysis.
Let the undirected graph set Gs = {G1,G2, · · · ,GN } rep-
resent the set of MASs communication topology graphs. The
switching signal s(t) : [0,+∞) → �, � = {1, 2, · · · ,N }

is the graph Gs index set. The communication topology is
defined as Gs(t0) when the sampling time is t0, and the cor-
responding Laplacian matrix is L(Gs(t0)).
In order to achieve predefined-time consensus of nonlinear

MASs Eq. (5) under switching topology, a predefined-time
control law is designed as

ui(t) = −c̃1sig (ξi(t))1+α − c̃2sig (ξi(t))1−α − βsign (ξi(t))

(21)

where 
c̃1 =

π

2αTm−
α
2 (2λmin

2 (L))
1+ α

2

c̃2 =
π

αT (2λmin
2 (L))

1− α
2

λmin
2 (L) = min {λ2(L(t0)), λ2(L(t1)), . . .} .

Theorem 2: When Assumptions 1, Assumptions 2 and the
following conditions are satisfied.

β ≥
1
2
γ1 + D (22)

The controller (21) enables MASs to achieve predefined-time
consensus under switching topologies.

Proof: Similar to the proof of Lemma 1, the derivative
of V(t) is

V̇ (t)

≤ −c1m−
α
2 (2λ2(L)V (t))1+

α
2 − c2 (2λ2(L)V (t))1−

α
2

−

(
β −

1
2
γ1 − D

) m∑
i=1

|yi(t)|

≤ −c̃1m−
α
2

(
2λmin

2 (L)V (t)
)1+ α

2
− c̃2

(
2λmin

2 (L)V (t)
)1− α

2

−

(
β −

1
2
γ1 − D

) m∑
i=1

|yi(t)|

≤ −
π

αT

(
V

2−α
2 (t) + V

2+α
2 (t)

)
(23)

Based on Lemma 1, under the switching signal s(t) :

[0,+∞) → �, V(t) is stable at a predefined-time T, and
MASs achieves consistency within a predefined-time Ts.

The proof is completed.
Remark 1: Different from the existing finite-time controls

with input delay [12], [13], [14], the convergence time of the
proposed predefined-time controls (10), (21) are independent
of the initial state.
Remark 2: Compared with the existing fixed-time con-

trols with input delay [24], [25], [26], [27], [32], the
convergence time of the proposed predefined-time con-
trols can be given as an exact controller parameter in
advance.
Remark 3: Considering the input delay multi-agent

predefined-time consensus control under switching topology,
which provides a good reference value for the communication
transformation of the system in practical applications.

IV. PREDEFINED-TIME CONSENSUS UNDER DYNAMIC
EVENT TRIGGERING
In this section, a dynamic event-triggered predefined-time
consensus control algorithm is designed without input
delay (τ = 0).

A. PREDEFINED-TIME CONSENSUS UNDER FIXED
TOPOLOGY

Define yi(t) =

m∑
j=1

aij(xi(t) − xj(t)). Design the predefined-

time control law as

ui(t)=−k1y
1+α
i (t ik )−k2y

1−α
i (t ik )−k3yi(t

i
k ) − βsign

(
yi(t ik )

)
(24)

where 
k1 =

π

2αT (1 − ε)m−
α
2 (λ2(L))

1+ α
2

k2 =
π

αT (1 − ε)(2λ2(L))
1− α

2

.

k3 > 0, ε ∈ (0, 1), t ik is the latest trigger time, k =

0, 1, 2, · · · , ω > 0, β > 0, κ ≥ 0 is a very small positive
constant that can be set as needed.

Substituting Eq. (24) into Eq. (5) yields, we get

ẋi(t) = −k1y
1+α
i (t ik ) − k2y

1−α
i (t ik ) − k3yi(t ik )

− βsign
(
yi(t ik )

)
+ f (xi(t), t) + di(xi(t), t) (25)

The measurement error of agent i is defined as

ei(t)
= k1y

1+α
i (t ik ) + k2y

1−α
i (t ik ) + k3

(
yi(t ik )

)
+ βsign

(
yi(t ik )

)
− k1y

1+α
i (t) − k2y

1−α
i (t) − k3 (yi(t))− βsign (yi(t))

(26)
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The trigger function for constructing agent i is

ψi(t)

= θ
(
|ei(t)|−εk1

∣∣∣y1+αi (t)
∣∣∣−εk2 ∣∣∣y1−αi (t)

∣∣∣−εk3 |yi(t)|−εβ
)

(27)

where θ > 0, ε ∈ (0, 1) is the preset trigger parameter.
A new internal dynamic variable ηi is designed, which

satisfies

η̇i(t) = δ |yi(t)|
(
εk1

∣∣∣y1+αi (t)
∣∣∣+ εk2

∣∣∣y1−αi (t)
∣∣∣

+εk3 |yi(t)| + εβ − |ei(t)|)− k4η
1+ α

2
i (t)

− k5η
1− α

2
i (t) − k6η2i (t) (28)

where 
k4 =

π

2−
α
2m−

α
2 αT

k5 =
π

αT

k6 > 0, ηi(0) > 0, δ ∈ (0, 1). Define the trigger condition as

t ik+1 = inf
{
t > t ik |ψi(t) − ηi(t) ≥ 0

}
(29)

This trigger condition guarantees that when t ∈ (t ik , t
i
k+1),

we have ψi(t) ≤ ηi(t), which means

|ei(t)|≤εc1
∣∣∣y1+αi (t)

∣∣∣+εc2 ∣∣∣y1−αi (t)
∣∣∣+εc3 |yi(t)|+εβ+

ηi(t)
θ

(30)

In addition, from Equation (29)(30), when t > 0, one has

η̇i(t) ≥ −k4η
1+ α

2
i (t) − k5η

1− α
2

i (t) − k6η2i (t) −
δ

θ
|yi(t)| ηi(t)

(31)

Applying the comparison principle, we have

ηi(t) ≥ ηi(0)e
∫ t
0 φi(t)ds > 0 (32)

where φi(t) = −k4η
α
2
i (t) − k5η

−
α
2

i (t) − k6ηi(t) −
δ
θ

|ξi(t)|.
Theorem 3: When Assumption1, Assumption2, and the

following conditions are met

(1 − ε)k3λ2(L) ≥ 2γ2 (33)

(2(1 − ε)k3k6)
1
2 =

1 − δ

θ
(34)

(1 − ε)β ≥ D+
1
2
γ1 (35)

Using controller (24), dynamic trigger function (27) and trig-
ger condition (29), the predefined-time consensus of nonlin-
ear uncertain MASs under fixed topology can be achieved.

Proof: Construct Lyapunov function

W (t) = V1(t) + V2(t) (36)

where V1(t)= 1
2x(t)

TLx(t)= 1
2

[
1
2

m∑
i=1

m∑
j=1

aij(xi(t) − xj(t))2
]
,

V2(t) =

m∑
j=1
ηi(t), combined with Lemma 4, the derivation of

W (t) is

Ẇ (t) = x(t)TLẋ(t) +

m∑
i=1

η̇i(t)

=

m∑
i=1

yi(t) (ui(t) + f (xi(t), t) + di(xi(t), t))

− k2(1 − ε) (2λ2(L)V1(t))1−
α
2 +

m∑
i=1

η̇i(t)

− k4m−
α
2 (V2(t))1+

α
2 − k5 (V2(t))1−

α
2

≤ −
2
α
2

αT
π (V1(t))1+

α
2 −

π

αT
(V1(t))1−

α
2

−
2
α
2

αT
π (V2(t))1+

α
2 −

π

αT
(V2(t))1−

α
2

≤ −
2
α
2

αT
π
(
(V1(t))1+

α
2 + (V2(t))1+

α
2

)
−

π

αT

(
(V1(t))1−

α
2 +

π

αT
(V2(t))1−

α
2

)
≤ −

π

αT

(
(W (t))1+

α
2 + (W (t))1−

α
2

)
(37)

According to the formula (36)(37), combined with
Lemma 2, we can get

|yi(t)| ≤ ∥y(t)∥ ≤

√
2λm(L)V1(t) ≤

√
2λm(L)V1(0) (38)

Theorem 4: When Assumptions 1, Assumptions 2 and the
following conditions are satisfied

(1 − ε)k3λ2(L) ≥ 2γ2 (39)

(2(1 − ε)k3k6)
1
2 =

1 − δ

θ
(40)

(1 − ε)β ≥ D+
1
2
γ1 (41)

Nonlinear uncertainMASs without Zeno behavior under trig-
gering condition (29).

Proof: According to the measurement error for-
mula (26), combined with the Lemma 3, the Dini derivative
can be obtained.

D+
|ei(t)|

≤ |ėi(t)|

=

∣∣∣∣(−k1y1+αi (t) − k2y
1−α
i (t) − k3yi(t) − βsign (yi(t))

)′
∣∣∣∣

≤
(
k1(1 + α)

∣∣yαi (t)∣∣+ k2(1 − α)
∣∣y−αi (t)

∣∣+ k3
)
|ẏi(t)|

≤ (φ1 + k3)

∣∣∣∣∣∣
m∑
j=1

aij(ẋi(t) − ẋj(t))

∣∣∣∣∣∣
≤ (φ1 + k3)

∣∣∣∣∣∣
m∑
j=1

aij(ui(t) − uj(t))

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
m∑
j=1

aij(f (xi(t), t) − f (xj(t), t))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
m∑
j=1

aij(di(xi(t), t) − dj(xj(t), t))

∣∣∣∣∣∣


≤ (φ1 + k3)

∣∣∣∣∣∣
m∑
j=1

lijuj(t
j
k ′ )

∣∣∣∣∣∣+ lii (γ1 + 2D)

+γ2

m∑
j=1

aij
∣∣xi(t) − xj(t)

∣∣
≤ (φ1 + k3)

∣∣∣∣∣∣
m∑
j=1

lijuj(t
j
k ′ )

∣∣∣∣∣∣+ lii (γ1 + 2D)

+ γ2m
1
2

√√√√ m∑
i=1

m∑
j=1

aij
(
xi(t) − xj(t)

)2
≤ (φ1 + k3)

(
φ2(t

j
k ′ ) + φ3

)
(42)

where

φ1 = k1(1 + α) (2λm(L)V1(0))
α
2

+ k2(1 − α) (2λm(L)V1(0))−
α
2 (43)

φ2(t
j
k )=

∣∣∣∣∣∣
m∑
j=1

lij

(
k1
(
yj(t ik ′ )

)1+α
+k2

(
yj(t ik ′ )

)1−α
+ k3yj(t ik ′ )

+ βsign
(
yj(t ik ′ )

))∣∣∣+ lii (γ1 + 2D) (44)

φ3 = γ2
√
4mV1(0) (45)

Due to ei(t
j
k ) = 0, one has

|ei(t)| ≤

∫ t

t ik

(φ1 + k3)
(
φ2(t

j
k ′ ) + φ3

)
ds+

∣∣∣ei(t ik )∣∣∣
=

∫ t

t ik

(φ1 + k3)
(
φ2(t

j
k ′ ) + φ3

)
ds (46)

By the trigger condition (29) and the measurement error
|ei(t)| upper bound (46), we have∣∣∣ei(t ik+1)

∣∣∣ = εk1
∣∣∣y1+αi (t ik+1)

∣∣∣+ εk2
∣∣∣y1−αi (t ik+1)

∣∣∣
+ εk3

∣∣∣yi(t ik+1)
∣∣∣+ εβ +

ηi(t ik+1)

θ

≤

∫ t ik+1

t ik

(φ1 + k3)
(
φ̄2 + φ3

)
ds

≤ (φ1 + k3)
(
φ̄2 + φ3

)
(t ik+1 − t ik ) (47)

where

φ̄2 =

m∑
j=1

∣∣lij∣∣ (k1 (2λm(L)V1(0)) 1+α2 + k2 (2λm(L)V1(0))
1−α
2

+k3 (2λm(L)V1(0))
1
2 + β

)
+ lii (γ1 + 2D)

Trigger interval t ik+1 − t ik ≥

∣∣ei(t ik+1)
∣∣

(φ1+k3)(φ̄2+φ3)
≥

εβ

(φ1+k3)(φ̄2+φ3)
> 0, which means no Zeno behavior in the

system.

B. PREDEFINED-TIME CONSENSUS UNDER SWITCHING
TOPOLOGY
In order to achieve predefined-time consensus of nonlinear
MASs Eq. (5) under switching topology, a predefined-time
control law is designed as

ui(t)=−k̃1y
1+α
i (t ik )−k̃2y

1−α
i (t ik ) − k̃3yi(t ik ) − βsign

(
yi(t ik )

)
(48)

where 
k̃1 =

π

2αT (1 − ε)m−
α
2 (λmin

2 (L))
1+ α

2

k̃2 =
π

αT (1 − ε)(2λmin
2 (L))

1− α
2

Theorem 5: When Assumption 1, Assumption 2, and the
following conditions are met,

(1 − ε)k̃3λmin
2 (L) ≥ 2γ1 (49)(

2(1 − ε)k̃3k6
) 1

2
=

1 − δ

θ
(50)

(1 − ε)β ≥ D+
1
2
γ2 (51)

Using controller (48), dynamic trigger function (27) and
trigger condition (29), the predefined-time consensus of non-
linear uncertain MASs under switching topology can be
achieved.

Proof: Similar to Lemma 4, one has

Ẇ (t) ≤ −k̃1(1 − ε)m−
α
2

(
2λmin

2 (L)V1(t)
)1+ α

2

−

(
k̃3(1 − ε)λmin

2 (L) − 2γ1
)
V1(t)

− k̃2(1 − ε)
(
2λmin

2 (L)V1(t)
)1− α

2

− k4m−
α
2 (V2(t))1+

α
2 − k5 (V2(t))1−

α
2

≤ −
2
α
2

αT
π
(
(V1(t))1+

α
2 + (V2(t))1+

α
2

)
−

π

αT

(
(V1(t))1−

α
2 +

π

αT
(V2(t))1−

α
2

)
≤ −

π

αT

(
(W (t))1+

α
2 + (W (t))1−

α
2

)
(52)

Therefore, according to Lemma 1, MASs can achieve con-
sensus within a predefined-time under switching topology.

Similarly, it can be proved that the system has no Zeno
behavior.

The proof is completed.
Remark4: Different from the static event-triggered

predefined-time consensus [40], the dynamic triggering
mechanism can avoid a large number of triggering.
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V. SIMULATION EXPERIMENT
Two sets of numerical examples are designed to verify the
effectiveness and superiority of the proposed algorithm. The
first set of numerical examples is the simulation results of
Section II. The second set of numerical examples is the
simulation results of Section III.

Without losing generality, the system is set to contain six
agents, and the system dynamics model is{

ẋi(t) = ui(t − τ ) + f (xi(t), t) + di(xi(t), t)
x(0) = x0

(53)

Example 1: Based on Section II, we set τ = 0.06s,
f (xi(t), t) = 0.2 cos(xi(t)), di(xi(t), t) = 0.3 sin(xi(t)). There-
fore, we can set D = 0.3. Assuming that the initial state of
each agent is x(0) = [−5, 0, 4, 9,−3, 2]T, and its communi-
cation topology is shown in Fig. 1, the Laplacian matrix is

L =


2 −1 0 −1 0 0

−1 2 −1 0 0 0
0 −1 3 0 −1 −1

−1 0 0 2 −1 0
0 0 −1 −1 3 −1
0 0 −1 0 −1 2



FIGURE 1. Communication topology.

Then the eigenvalue λ2(L) = 1 is obtained. Design param-
eter α = 0.5, β = 0.5,T = 2, then under the condition of
delayed input, the preset upper bound of the system conver-
gence time is T (x) ≤ T + τ = 2.06. Simulation results are
shown in Fig. 2 and Fig. 3.

FIGURE 2. State evolution.

FIGURE 3. Control input evolution.

Fig. 2 and Fig. 3 show the state evolution and control
input evolution of the six agents. As can be seen from the
figure, under the action of the predefined-time controller (10),
the system can achieve system state consistency within
about 0.7s, satisfying T (x) ≤ T + τ = 2.06.
In order to verify the switching topology, each agent can

also achieve consistency within a predefined-time under the
action of controller (21). Set the communication topology as
shown in Fig. 4.

FIGURE 4. Switching topologies.

When t < 0.3s is set, the topology graph G1 is adopted in
Fig.4 (a). When 0.3s ≤ t < 1.2s is set, the topology graph
G2 is adopted. When t > 1.2s is set, the topology graph G3
is adopted. Thus, λmin

2 (L(G�)) = 0.7639 is obtained, and
the controller parameters α = 0.5, β = 0.5,T = 2 are
designed. At this time, the upper bound of the preset system
convergence time is T (x) ≤ T + τ = 2.06. The simulation
results are shown in Fig.5 and Fig.6.

As can be seen from Fig. 5 and Fig. 6, under the condi-
tion of switching topology, the system can achieve system
state consistency within about 0.6s, satisfying T (x) ≤ T +

τ = 2.06.
To verify the superiority of the proposed predefined-time

controller with input delay, we will compare it with the fixed
time controller proposed in [26].
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FIGURE 5. State evolution.

FIGURE 6. Control input evolution.

Because this paper is different from the system discussed
in [26], for fairness, we obtain a fixed-time controller suitable
for the system discussed in this paper according to the con-
troller design strategy in [26]. For convenience, the algorithm
in this paper and the algorithm in literature [26] are shown in
formula (54) and formula (55).

ui(t) = −
π

2αTm−
α
2 (2λ2(L))

1+ α
2
sig (ξi(t))1+α

−
π

αT (2λ2(L))
1− α

2
sig (ξi(t))1−α − βsign (ξi(t)) (54)

ui(t) = −wsig (ξi(t))
µ
ϖ − vsig (ξi(t))

p
q − βsign (ξi(t))

(55)

where the controller (55) parameters w = 0.5, v = 10,
µ = 7,ϖ = 5, p = 3, q = 5, β = 0.5 are selected.
In this paper, the controller parameters α = 0.4, β = 0.5 are
selected. It is worth noting that the time parameter T of
the controller (54) is selected. In order to obtain fairness,
the parameters are determined by the time function of [26].
Substituting the fixed-time controller (55) into the proof of
Theorem 1 in this paper, it is obtained that

V̇ (t) ≤ −wm
1
2−

µ
2ϖ (2λ2(L))

1
2+

µ
2ϖ (V (t))

1
2+

µ
2ϖ

− v (2λ2(L))
1
2+

p
2q (V (t))

1
2+

p
2q (56)

It can be obtained from the preset convergence time func-
tion of the system in [26] that

T ≤ Tmax :=
1

wm
1
2−

µ
2ϖ (2λ2(L))

1
2+

µ
2ϖ

((
1
2 +

µ
2ϖ

)
− 1

)
+

1

v (2λ2(L))
1
2+

p
2q
(
1 −

(
1
2 +

p
2q

)) (57)

After calculation, T= 6.2677. Consensus-keeping ErrorMet-
ric (CKM) in MASs is defined as

CKM =

√√√√√m−1∑
i=1

m∑
j=i+1

(
χi(t) − χj(t)

)2 (58)

Fig. 7 shows the CKM comparison simulation results of
the system under two control laws.

FIGURE 7. The CKM comparison.

It can be seen from Fig. 7 that under the input delay, the
predefined-time controller designed in this paper has lower
conservatism and lower jitter than the controller of the fixed-
time control method under the CKM index, which means that
the predefined-time controller has better convergence effect.

Example 2: Based on Section III, f (xi(t), t) = 0.3xi(t) −

0.2 sin(xi(t)), di(xi(t), t) = 0.3 cos(xi(t)) are set. Therefore,
we have γ1 = γ2 = D = 0.3. Assume that the initial state of
each agent is x(0) = [−5, 0, 4, 9,−3, 2]T. Consider the fixed
topology Fig.1, then λ2(L) = 1. In addition, the controller
(24) parameters α = 0.5, β = 0.9, ε = 0.5, θ = 0.5, δ =

0.5, k3 = 6
/
5, k6 = 5

/
6,T = 2, ηi(0) = 20 are set. The

simulation results are shown in Fig. 8- Fig. 10.
Fig. 8, Fig. 9 and Fig. 10 show the state evolution, trigger

time and dynamic variable evolution of the six agents. As can
be seen from the figure, under the action of a predefined-
time controller (24), a trigger function (27), a dynamic vari-
able (28), and a trigger condition (29), the system can achieve
system state consistency within approximately 0.6s.

In order to verify the switching topology, each agent can
also achieve consistency within a predefined-time under the
action of controller (48). Switching topology Fig. 4, switch-
ing time identical to Example 1.
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FIGURE 8. State evolution.

FIGURE 9. Triggering instants.

FIGURE 10. Dynamic variable evolution.

Parameters λmin
2 (L(G�)) = 0.7639, α = 0.5, β = 0.9,

ε = 0.5, θ = 0.5, δ = 0.5, k3 = 3
/
2, k6 = 2

/
3,

T = 2, ηi(0) = 20. The simulation results are shown in
Fig. 11-Fig. 13.
From Fig. 11, Fig. 12 and Fig. 13, it can be seen that in the

case of switching topology, using the predefined-time con-
troller (48), the system can achieve system state consistency
within about 0.6s. Similarly, fewer triggers in the system
convergence phase.

FIGURE 11. State evolution.

FIGURE 12. Triggering instants.

FIGURE 13. Dynamic variable evolution.

In order to reflect the superiority of the dynamic event-
triggered predefined-time control algorithm proposed in this
paper, the following will be compared with the dynamic
event-triggered fixed-time control algorithm in [31] on the
basis of Example 2. For convenience, the dynamic event-
triggered fixed-time controller in the algorithm of this paper
and [31] is shown in Equations (46) and (47).

ui(t) = −
π

2αT (1 − ε)m−
α
2 (λ2(L))

1+ α
2
y1+αi (t ik )
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−
π

αT (1 − ε)(2λ2(L))
1− α

2
y1−αi (t ik )

− k3yi(t ik ) − βsign
(
yi(t ik )

)
(59)

ui(t) = −c1y
p
i (t

i
k ) − c2yi(t ik ) − c3 tanh(κyi(t ik )) (60)

where the controller (60) parameters are consistent with the
original. c1 = 3, c2 = 16c3 = 6, p = 7/5, κ = 100.
In addition, the trigger function and internal dynamic vari-

able of agent i in [31] satisfy

ψi(t) = θ
(
|ei(t)| − εc1

∣∣ypi (t)∣∣− εc2 |yi(t)| − εc3
)

(61)

η̇i(t) = δ |yi(t)|
(
εc1

∣∣ypi (t)∣∣+ εc2 |yi(t)|

+εc3 − |ei(t)|)− c4η
p+1
2

i (t)

− c5η
1
2
i (t) − c6η2i (t) (62)

where θ = 0.1, δ = 0.5, ε = 0.5, c4 = 0.9, c5 = 1, c6 =

25/16, ηi(0) = 10.
The parameters ε = 0.5, θ = 0.1, δ = 0.5, ηi(0) = 10 of

trigger function (28) and internal dynamic variable (29) in
this paper are consistent with that in [31]. It is worth noting
that the time parameter T of the controller is selected. In order
to obtain fairness, the parameters are determined by the time
function of [31], that is

T ≤ Tmax =
2

β̂φ
+

2(p+1)/2

α̂φ
(63)

where α̂=min
{
c1(1−ε)m(1−p)/2(2λ2(L))

(1+p)/2
, c4m(1−p)/2

}
,

β̂ = min
{
c3(1 − ε)(2λ2(L))

1/2
, c5
}
, φ ∈ (0, 1).

After calculation, T = 5.5220 can be selected. Fig. 14 and
Fig. 15 are the comparative simulation results of the system
under the action of two control laws.

FIGURE 14. The CKM comparison.

From Fig. 14 and Fig. 15, it can be seen that the dynamic
trigger predefined-time controller designed in this paper has
lower conservatism under the CKM index than the controller
of the dynamic trigger fixed-time control method, and the
control input jitter amplitude is small, which has better pro-
tection for the hardware in practical applications.

FIGURE 15. Control input evolution.

In order to verify the advantages of the dynamic triggering
mechanism in this paper, the following will be compared
with the static triggering method in [29], [45], and [46]. For
the sake of fairness, the controller is the controller of this
paper, and only the trigger method is changed. The trigger
parameters in [45] and [46] are the same as those in the
original text. For convenience, the static triggering method
in [29], [45], and [46] are as follows.

In [45], the event-triggered condition of agent i is defined
as

|ei(t)| ≤ σi |yi(t)| (64)

where σ1 = σ2 = σ3 = σ4 = σ5 = σ6 = 0.006.
In [46], the event-triggered condition of agent i is defined

as

|ei(t)| ≤
1
2
τ |yi(t)| (65)

where τ = 1.2.
In [29], the design of the trigger function is similar to the

method of this paper. The difference is that there is no internal
dynamic variable. According to the method, the event trigger
condition of agent i can be defined as

|ψi(t)| ≤ |ei(t)| − εc1
∣∣∣y1+αi (t)

∣∣∣
− εc2

∣∣∣y1−αi (t)
∣∣∣− εc3 |yi(t)| − εβ (66)

where the parameters of Equation (66) are the same as those
of Equation (29).

Fig. 16, Fig. 17, and Table 1 show the comparative simula-
tion results of the system under static and dynamic triggering
mechanisms.

From Fig.16, Fig. 17 and Table 1, it can be seen that
the dynamic triggering mechanism adopted by the controller
in this paper has less triggering than the static triggering
mechanism, which greatly reduces the resource consumption.

In summary, for MASs with nonlinear uncertainty, the
predefined-time consensus control algorithm under input
delay and dynamic event-triggered predefined-time consen-
sus control algorithm proposed in this paper are effective and
superior. The simulation results show that under the action of
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FIGURE 16. The CKM comparison.

FIGURE 17. Triggering instants.

TABLE 1. Number of events triggered.

the controller, the system can be stable in the preset time, the
convergence performance is exceptional, and the convergence
speed is independent of the initial state of the system, the
resource consumption is low, and the topological conditions
are relaxed.

VI. CONCLUSION
This paper aims to study the MASs consensus control prob-
lem with nonlinear uncertainties. Considering the input delay
and switching topology of MASs, predefined-time consensus
controllers (10), (21) are proposed. Considering the problem
of resource loss, dynamic event-triggered predefined-time
consensus controllers (24), (48) are proposed. The correct-
ness of the algorithm is proved by Lyapunov stability theory
and algebraic graph theory. By proving that the minimum
trigger time interval is greater than a positive number, it is
concluded that the system does not have Zeno behavior. The
superiority of the provided controller in convergence time
and resource saving is verified by simulation experiments.
In this paper, first-order nonlinear MASs are considered, and
further research can be extended to second-order or high-
order MASs.
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