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ABSTRACT This paper highlights the importance of precise assessments of greenhouse gas (GHG)
emissions associated with power generation for effective policy making in environmental sustainability.
The current assessment approaches based on historical data or estimated generation using energy models
may not accurately reflect the reality of future power systems due to the impact of spatial-temporal and
techno-economic characteristics of generation mix and load demands. To address this, the paper presents
a comprehensive methodology for accurately quantifying the geographical and temporal variations in
GHG emissions associated with generating units’ operation, startup, and shutdown at an hourly resolution.
The methodology is based on a detailed electricity model that considers various sources of generation,
techno-economic, and spatial-temporal characteristics of system components. The study demonstrates the
effectiveness of the methodology in quantifying GHG emissions in the IEEE RTS-GLMC system, with a
focus on CO2, N20, and CH4. The analysis reveals significant variations in GHG emissions among different
generation buses and hours of the year, attributed to the high proportion of renewable energy in the generation
mix. The paper emphasizes the inadequacy of examining marginal environmental impacts based on GHG
emission intensity alone and suggests a more thorough analysis based on total GHG emissions generation.
Finally, the paper emphasizes the crucial role of time-varying and marginal assessment techniques in
identifying effective strategies for reducing GHG emissions in the electricity sector, including optimizing
the operation and capacity of generation units, energy storage systems, and electric vehicles, including their
locations.

INDEX TERMS Energy, GHG emissions, renewable generation, energy storage, electric vehicle.

I. INTRODUCTION from 7500 TWh in 1990 to 16455 TWh in 2021 [1]. Despite

Electricity and heat are considered among the most sig-
nificant contributors to global CO, emissions, with their
combined contribution rising from 37.2% in 1990 to 42.8%
in 2020 (see Fig. 1) [1]. This is attributed to an increase
in the global share of fossil fuels for power production
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the significant increase in renewable energy penetration since
1990, fossil fuel still dominates global power generation with
65.8% in 2020. Power generation is projected to increase
due to the rising demand and electrification of the heat and
transport sectors [2].

Such a transition would require electricity generation to
be at least competitive from the carbon emission stand-
point compared to conventional technologies; therefore, the
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FIGURE 1. Global CO, emissions from different sectors in the period 1990-2020 Source: IEA 2022 IEA (2022),
Energy Statistics Data Browser, IEA, Paris https://www.iea.org/data-and-statistics/data-tools/energy-

statistics-data-browser report.

benefits of electrification can be justified [3]. Hence, the
environmental impact of electrification must be evaluated to
sustain future regulations and policies without compromising
the security of supply. Life cycle assessment (LCA) was
introduced to assess the electrical system’s environmental
impact across all life cycle stages, referred to as CO, equiva-
lent (COze). Electricity generation and load demand typically
vary depending on the time of day, the season, and the year.
Furthermore, the electricity generation mix varies from one
moment to the next and can differ in different electrical grids.
These specific properties result in evaluating GHG emissions
associated with electricity generation as a complex and chal-
lenging procedure [4].

The International Organization for Standardization (ISO)
(ISO, 20 6a) [5] introduced detailed standards to guide
LCA’s fundamental framework; however, these standards
undetermined the guidelines on how GHG emission of
the electrical system can be determined. Typically, (GHG)
emissions related to electricity generation can be evaluated
using data-based and model-based approaches. The data-
based approach involves collecting data on emissions from
power plants or other sources and using it to estimate GHG
emissions [6], [7], [8], [9]. Since the transparency and cred-
ibility of national statistical data on energy and emissions
are frequently questioned, the results estimated using sta-
tistical data are limited in accuracy and reliability [10].
Moreover, this approach is limited to assessing the previous
or current situation and cannot reflect the situation or pre-
dict changes in the electrical grid from a future perspective.
Some studies use capacity factors, estimated from statisti-
cal data, to estimate the actual energy output of a power
plant. Subsequently, this information can be combined with
emissions factors, which represent the amount of greenhouse
gases emitted per unit of electricity generated, to estimate
the current or future GHG emissions associated with power
generation [11], [12], [13], [14]. The challenge of using
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capacity factors for greenhouse gas (GHG) emissions esti-
mation is the availability and accuracy of national statistical
data. Additionally, using capacity factors can lead to over or
underestimation of GHG emissions, as it does not consider
the variation of load demand and renewable generation within
a particular year. This can result in an incomplete understand-
ing of the system’s actual energy output and emissions [15].

Assessment of GHG emissions using simulation models is
a practical approach to address previous issues related to data
availability and fluctuations of load demand and renewable
generation. This approach can predict the future or current
generation mix using mathematical models instead of the
capacity factor [16]. The accuracy of the results obtained
from this method strongly depends on the level of detail
considered in the model, including the representation of the
power system’s physical and operational characteristics and
the quality of the input data used in the model [17]. Sev-
eral studies have used a modelling approach to estimate the
GHG emissions for the electricity sector. The existing work
ignored the variability of load demand and renewable gener-
ations [18], [19], [20], [21]. Although some studies focused
on the variations in load demand and renewable generations,
variations in marginal emissions cause challenges and could
be addressed similarly. In [22], the authors considered the
variation of marginal emissions, but they used three snapshots
to represent the variability in load demands and renewable
generations. Similarly, in [21], the authors considered time-
varying and marginal emissions, but they used a few hours
per year to evaluate the time-varying and marginal emissions.
Using low-resolution data to represent variability in the grid
may not provide an accurate picture of the emissions, which
can lead to misleading or incorrect conclusions about the
environmental impact of the energy system. Although the
technical parameters of generation units significantly affect
the model accuracy, they were eliminated in most previous
studies [17]. In [23], the authors estimated the seasonal and
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FIGURE 2. Overview of the proposed methods.

zonal marginal CO, emissions factors of the Italian elec-
tricity system. The authors used ARIMA (AutoRegressive
Integrated Moving Average) statistical model to forecast the
generation and load demand time series based on historical
data. Statistical models can only provide a general idea of
future trends based on historical data and patterns. They may
not accurately capture the impact of new technologies like
renewables, electric vehicles, and energy storage, which can
greatly affect future energy generation and demand. Addi-
tionally, these models may not account for sudden changes
in energy market conditions, policies, and regulations, further
affecting their accuracy in predicting future energy scenarios.

97480

In [24], the authors employed an electricity system dis-
patch model to estimate carbon emissions resulting from the
integration of new technologies into the electricity grid. How-
ever, they ignored the impact of techno-economic parameters
and marginal variations of renewable generation and load
demands. The issues related to model accuracy have a great
influence on the model output, which makes it difficult to
conduct an accurate estimation of GHG emissions. So, the
detailed information on the electrical grid is highly relevant
for any environmental impact assessment [4], [25].

In a system with high penetration of time dependence
technologies such as renewable energy, energy storage, and
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electric vehicle, the number of start-ups and shut-downs of
committable generation units can be affected by the other
types of generation technology. For example, renewable
energy sources like solar and wind power are more variable
and intermittent, leading to more frequent start-ups and shut-
downs of fossil fuel generation units to maintain system
stability [26]. Additionally, certain types of committable gen-
eration technologies, such as gas-fired peaker plants, may
be more likely to be used for load following and ramping,
leading to more frequent start-ups and shut-downs. Hence,
the emissions related to start-ups should be considered within
the GHG emissions calculations, which have been ignored in
previous studies.

This study aims to address a significant gap in the existing
literature by providing a comprehensive and accurate method
for estimating Greenhouse Gas (GHG) emissions by consid-
ering three key factors:

1. A highly detailed power system model is used to esti-
mate dispatched power, which accounts for fluctuations
in load demand renewable generation and includes
all techno-economic details of all generation units.
Additionally, the model accounts for limitations on the
capacity of the electrical grid.

2. The study includes emissions from start-ups, which
have been overlooked in most previous studies.

3. The ability of this study to estimate the time and
marginal variations of GHG emissions is particularly
important as it allows to identify the times and regions
where emissions are higher and the units that generate
higher emissions; this is crucial for taking actions to
reduce emissions and meet emissions reduction targets.

Overall, this study significantly contributes to the under-
standing of GHG emissions in the power generation industry
and provides valuable information that can be used to form
policy decisions and emissions reduction strategies.

Due to the lack of rigorous scientific knowledge to cal-
culate the shut-down emissions, the work described in this
paper does not consider the shut-down emissions, which is
one limitation of the study. Also, this approach only con-
siders direct emissions produced by the burning of fossil
fuels. Nevertheless, direct emissions from plant operation
accounted for most of the life cycle emissions for fossil fuel
technologies [27]. It excludes upstream emissions (e.g., coal
mining and washing, plant constructions, generation units
manufacturing) or end-of-life emissions (i.e., emissions from
equipment disposal), which are not negligible but are minor
compared to direct emissions.

The rest of the paper is organized as follows. Section II
presents the proposed methodology, including the details of
the electricity model, the optimization function, the case
study, and the adopted technique used to run the optimization
models. In Section III, the results of the GHG emissions
associated with their geographical location are presented and
discussed on an annual and hourly scale. The paper is sum-
marized and concluded in Section I'V.
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Il. METMETHODOLOGY AND CASE STUDY
To assess GHG emission of electricity generation can be
summarized in four steps, as illustrated in Fig. 2.

Step 1: Prepare the electrical grid model. The goal of this
step is to define the generation capacity, techno-economic
and environmental details of each generation unit. Moreover,
different hourly profiles of each renewable generation unit
and load demand at each bus in the system are estimated in
this step, as detailed in Section D-II.

Step 2: Run the electricity model. This step is achieved by
running of power system simulation model, which simulates a
complex power system with different types of energy sources’
combinations under other load demands as described in Equa-
tions 1-9. The number of start-ups and shut-downs and hourly
electricity generation of each generation unit are calculated in
this step, as detailed in Section A-II.

Step 3: Assessment of greenhouse gas emissions. In this
step, the output of power system simulation results from the
previous stage is used to calculate the total, time-varying,
and marginal GHG emissions and intensity, as detailed in
Section C-II.

The following sections describe the electricity model and
greenhouse gas emissions calculation in more detail.

A. ELECTRICITY MODEL

The optimization model is presented as techno-economic lin-
ear functions (Equations 1-2) to minimize the total generation
cost. Equations 3-9 illustrate that this optimization model
is constrained by physical and technical constraints. A free
open-source Python library named Python for Power System
Analysis (PyPSA) was employed to simulate the model [28],
and the Gurobi optimizer was used to solve the optimization
problem as described in Section B-II. The study [17] presents
a simulation and validation of the proposed electricity model
using PyPSA and Gurobi Optimizer to guarantee the accuracy
of assessment results.

1) OBJECTIVE FUNCTION

As stated in Equations 1 and 2, the main goal of the objective
function is to meet the load demands at the lowest possible
generation cost. The generation cost comprises three parts—
marginal, start-up, and close-down costs. The marginal cost
of all generators includes operating and maintenance costs,
which vary depending on the type and location of the gen-
eration unit. The overall annual generation cost is defined in
Equation 1 as the sum of the annual costs of dispatched power
from each generator at each bus in the system.

Min ZtT:lS%O[ZS:l (Z:_l Cg,b.Pg,b(t)) At
3, Z; (i + Can)! )

where C, ; is the dispatch cost associated with IMWh by
a generation unit g on bus b. P, ,(#) describes the hourly
power dispatched by generation unit g on bus b. Assuming
unit commitment initiates at t, the startup and shutdown costs
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for a given generation unit g are represented by C ,and, C,- o.b
respectively. G, B, and T represent the total number of gener-
ators, buses, and simulation hours. The optimization model is
performed over several periods ¢ with various generation and
demand conditions to determine the optimal generation mix.
The study period can have a different temporal resolution
(At), which was one hour for this analysis.

At any given bus, the hourly demand P 5 (f) must be met
by either local generation or by transmission L’s power flow
Py p(1).

B G
20 2

2) CAPACITY CONSTRAINTS

For each generation technology category, the decision vari-
ables focused on how much capacity could be deployed
during a specified time period on a specific bus. The hourly
output power of each generator was constrained by the entire
capacity of each generation technology. The dispatch powers
P p(t) are a part of each dispatchable generator in a single
bus across the electrical grid (where g is a specific generator
at bus b and time 7), and they are constrained as follows:

ug,b () * (I)g,b (®) * :_Pg,b = :Pg,b n=< ug,b (0 * j‘)g,b (©) * Tg,b
Vg bt (3

Pe®E Y P =D Py ()

where U, p(t) describes the operational status of a generator
g at the bus b in binary form Ugu(t) € {0, 1}, to show if
the generator g is running (1) or not (0) at a specific period
of time 7. ﬁg,b(t) is the per-unit power available from both
renewable and thermal unit g on bus b at any given time t,
while f’g,b (t) indicates the per-unit power from the plant’s
de-rating. P 5(1) is the rating capacity of generator g on bus
b. For a semi-flexible thermal generation unit, Py ,(t) = 0 and
Py (=1, however in the case of a fluctuating renewable
generation unit, i’g,h(t) and Pg (1) represent the weather-
dependent generated power.

3) RAMPING CONSTRAINTS
Ramping constraints refer to the limits on the rate at which
a power generation unit can increase or decrease its output
power. These limits are typically imposed for technical and
operational reasons, such as to protect the power system’s
integrity and the generation unit’s equipment [28]. The ramp
rate can be defined as the maximum rate of increase (R*) or
decrese (R™) in change of power output over a given period
of time, usually measured in MW/min or MW/h as described
in this study. It depends on the type of generator, technology,
and capacity.

Throughout the optimization process, the following con-
straints are imposed on the outputs of the generators to ensure
the optimal functioning of the system.:

—R %Py < (Pep(t) — Pept—1)) < RT %Py
Vtell,...J} )

During the start-up and shutdown processes, the ramping
values may differ from those of normal operating conditions.
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Therefore, specific constraints are imposed to maintain opti-
mal operating conditions as follows:

[RE * Ug () — R Ug p(t— 1) —
< (Pe () — Py p(t— 1))
< [RY 5 Ugn(t — 1) + R (Ug b()) — Ug n(t — 1)] Py
(5)

wherein, (R("’)') and (R;) denote the ramping up and down
values specifically for during the start-up and shutdown con-
ditions. This study assumes that the ramping limits for renew-
able generation units are equal to their nominal power output.
However, for conventional generation units, the limits can
vary based on the type and size of the unit. The assumption
made is that the ramping limits during startup and shutdowns
are the same as during normal operation. Section V of the
Data Availability Statement provides specific ramping limits
for each generation unit.

Uy, b(0)] Peb

4) UNIT COMMITMENT CONSTRAINTS

The generation units are regularly started and stopped to fulfil
the load requirements, including online and offline reserve
generation units. The online generation unit must operate for
the least uptime ( mm) similarly, the offline generation unit
must be shut down for the least downtime (7', ; ), as described
by Equations 6 and 7:

ZI/ tmm Ugb (t) > Tmm(Ug» p(®) — Ugp(t — 1))

Vie{l,...|T| -1}
6)
t‘lfrr?lin / —
> (1 = Ug )= Ty (U p(t = 1) = Ugp0) Vb, . 1
N

In case the generator has recently been started on at the
time ¢ then Ug p(t — 1) = 0, Ugp(t) = 1, and Ug p(t — 1) —
Ug b(t) = 1, and thus, it must be kept running for at least T, .
Periods.

With regard to non-zero start-up cost C;b, for every time
associated with each time t, the objective function must be
modified by the inclusion of inequality C ;b(t) > 0, as illus-
trated below:

Cap® = Cl(Ugh() — Ugp(t— 1) Vb, g1 (8)
The inequality is only non-zero at the startup point, hence
Ug,p(t) = Ug p(t — 1) = 1 when C (1) = C; .-

Consequently, Equation 9 descnbes the shutdown costs
when Cg’h(t) > 0:

Cop® = Cpy(Ugn(t— 1) = Ugp(®) Vb, gt (9)
B. OPTIMIZATION SOLVER
The electricity model that is formed in Section II-A with

objective functions with constraints Eqgs. [1], [2], [3], [4],
[51, [6], [7], [8], [9], [10], [11], [12], [13] is a mixed-integer
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linear programming (MILP) problem. A MILP problem can
be solved using an open-source or commercial optimization
solver such as a GUROBI mathematical programming solver.
Gurobi is a state-of-the-art optimization software package
that can be used to solve a wide range of optimization
problems, including (MILP) problems. A free Gurobi aca-
demic license was implemented by the Pyomo Python library
to solve the optimization problem in this study [29], [30].
Gurobi uses a number of different techniques to solve MILP
problems, and it can automatically select the most appropriate
method based on the specific characteristics of the problem.
In this study, the technique used by Gurobi to solve the opti-
mization problem is the branch and bound. Branch and bound
is a general optimization algorithm that involves dividing the
feasible region of the problem into smaller subproblems and
solving each of these subproblems optimally. The implemen-
tation of the electricity model and optimization problem using
PyPSA and Gurobi optimizer is detailed in the study [28].

C. GHG EMISSIONS CALCULATION

The GHG emissions resulting from the combustion of fossil
fuels that produce CO;, CHy, and N;O and GHGs (CO»,
CHy, and N, O) are typically presented in CO, equivalent or
“COze”.

The total life cycle GHG emissions from all generation
units in the system (GHG) can be calculated as a total annual
CO»e emission divided by the annual generation of the sys-
tem as:

Total CO;e emissions (tone/year)

GHG (kg/kWh) = -
Total system generations (MWh/year)

(10)

The CO», emissions for each generation units were calcu-
lated with the following formulas:

Total COje emission (tonne/year)
= Total normal operation COze emissions
+ .starty, CO2e emissions (11)
Total normal operation COe emission

B.G T=8760
= Zb g=1 [Zt=1 (Pg’b (t) * HRg)b k Engb)]
% 10° % 453.6 (12)

where:

Py p (¢) is the hourly generated power by generation unit g
located at bus b, predicted as described in Equations 1-5.

HRg p, is heat rate (BTU/kWh) of generator g at bus b, and
ERg p is COze emission rate (Lbs./MMBTU) of generator g
at bus b.

The factors 10° and 453.6 are used to convert the
units of heat and emission rates to MMBTU/MWh and
tonne/MMBTU respectively.

The COse is typically based on CO,, CHy, and N,O
specific Global Warming Potentials (GWP). Each GHG con-
stituent has a different heat-trapping capability; the corre-
sponding GWP has been calculated to reflect how long the
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gas remains in the atmosphere, on average, and how strongly
it absorbs energy relative to CO;. Gases with a higher GWP
absorb more energy per pound than gases with a lower GWP.
Factors used to calculate COe (GWP) equal 1 for CO3,, 25 for
CHy and 298 for N>O based on IPCC’s fourth assessment
report (AR4). Therefore, the equation to calculate the emis-
sion rate of CO»e based on each of the sources is [31]:

ERg p
= [ERco, * GWPco, | 4+ [ERcH, * GWPcH, |
+ [ERNZO * GWPNzo] (13)
Start up (CO,e) emission

B,G N
- Z:b,gzl [anl (SHCg,b,n * ERg,b)

N
+ Zni] (SHHg,b,n * ERg,b)} (14)

where:

N, and Nj, are the total number of start-ups of generator g
at bus b at cold and hot conditions, and they are estimated by
the model described in Section A-II.

SHC (Start Heat Cold): the required heat to start up from
the cold condition in a Metric Million British Thermal Unit
(MMBTU) per start-up.

SHH (Start Heat Hot): the heat necessary to start-up from
hot conditions of the generator in MMBTU per start-up.

Equations 11 and 13 are used to evaluate hourly and
marginal GHG emissions by calculating the total emissions
either at each hour or at each bus in the system.

D. CASE STUDY

The National Renewable Energy Laboratory’s (NREL)
2019 dataset (labelled IEEE RTS-GMLC) is utilised for the
case study presented herein. This model is an abstracted
power model whose load patterns, transmission network,
and generators are all firmly defined [33]. This case study
contains 106 high voltage transmission lines rated within
138 and 500kV, 73 buses, 58 one-year hourly load profiles,
and 155 generation units. The generation capacity was modi-
fied to contain 54 conventional and 80 renewable generators.
Among the conventional generation units are a 400 MW
nuclear power plant, 16 coal-fired units rating between 76 and
350 MW and 37 natural gas-fired units rating between 55 and
355 MW.

The renewable capacity involved 20 hydroelectric genera-
tion units, each with a capacity of 50 MW, 56 PV generation
units rated between 9.1 and 125.1 MW, and 4 wind generation
units with capacities ranging from 148 to 847 MW. The
emission rates, heat rate, and fuel price of each generator
are also detailed in IEEE RTS-GLMC. Fig. 3(a) shows the
geographic variations of the cumulative capacity of each
generation technology in RTS-GLMC.

The electrical grid data includes the transmission capac-
ity, length and impedance of each transmission line. The
load profiles are arranged in hourly intervals across a one-
year period, allowing consideration of different time steps,
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FIGURE 3. (A). The layout of RTS-GMLC, annotated with relative size and
location of generation capacity [17]. (B). The Peak Load Distribution of
RTS-GMLC, annotated using the bus’s location [17].

including seasonal, weekly, and daily changes. The maximum
geographical load distribution is shown in Fig. 3(b). The
model has been tested and validated with the full non-linear
power flow [32] and production cost models [17], available
in the open-source system known as PyPSA [28].

Ill. RESULTS AND DISCUSSION

Based on the output of the electricity model described in
Section A-II, the Equations described in Section B-1I are
used to calculate the GHG emissions at start-up and normal
operating conditions. Results and discussion are divided into
three subsections. Subsection D-III discusses the system the
variation of system emission over time. Subsection E-I113.2
details the marginal GHG emission at each bus over the sys-
tem. The detailed results for different generation technologies
and GHG contributors at start-ups and regular operations are
presented in subsection F-III.

A. TIME-VARYING EMISSIONS

Fig. 4 shows monthly generation mix and CO,e emissions for
different generation technologies. Significant distinctions in
terms of CO,e emissions are observed between months and
generation technologies. The GHG emissions are higher in
the summer (i.e., 1 June -31 August) and lower in the winter
(i.e., 1 Dec -29 Feb), with some exceptions, for example,
November. The difference in the GHG emission is mainly
explained by the higher share of renewables and lower load in
the low-emission months (e.g., more wind production in the
winter months compared to summer). However, the peak in
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emissions is caused indirectly by increasing the need for gas
power in the summer months. Solar and hydro generations
have a higher potential during the peak load periods of the
year, so the capacity share of solar and hydro generation could
be increased to reduce the impact of fossil emissions in the
summer months for this electricity model.

In Fig.5, the hourly GHG emissions present the distribution
of daily fluctuation in the GHG emissions in a day. It indicates
how much the hourly generation mix influences the emis-
sions over a day. A significant difference can be observed
between day and night hours. Although the peak load hours
are between 14:00 to 18:00, the peak in emissions occurred
at 17:00 and 20:00. This difference between peak load and
peak GHG emissions is primarily due to the high availability
of renewable generation, especially solar PV, within the peak
load hours.

Here, three scenarios can be established to reduce GHG
emissions. First, due to the high wind generation availability
during peak emissions hours, increasing the share of wind
capacity can reduce the dependence on fossil fuel generation
(gas CC), which leads to a significant reduction in GHG
emissions. The second scenario is introducing energy storage
to shift the timing of generation. The third scenario can be
established by using off-peak electricity with special tariffs,
which encourages load flexibility in the consumer to reduce
peak load in the network and decrease the intra-day variation.
However, the second and third scenarios can only change
the time variation of the GHG emissions associated with the
shifted load or stored energy. While the aggregated amount of
daily GHG emission can stay constant if there are no changes
in renewable generation curtailment.

In Fig. 6, the hourly GHG emissions are plotted on a
heatmap to provide a clear overview of the pattern of daily
fluctuation in GHG emissions over the entire year. Each
column in the heatmap corresponds to a single day of the
year, while each row corresponds to a single hour of the day
annotated with color and text indicating the amount of GHG
emissions. There is a significant variation between different
times of the day. This difference is more significant during the
summer when the emission peak is observed between 2:00 pm
and 11:00 pm. In contrast, a less emission-intensive emission
peak is observed between 2:00 pm and 11:00 pm during the
winter season. This is mostly due to the varying availability of
photovoltaic (PV) generation during the day and night hours,
as well as the seasonal variation in load.

To estimate the GHG emissions of the electricity system
with a high share of intermittent renewable resources and
energy storage, it is recommended to use hourly environmen-
tal data instead of average annual data. Compared to yearly
average data, hourly data may provide more accurate results;
however, it may increase the complexity of the assessment
process.

B. MARGINAL EMISSIONS

Beyond estimation of the marginal environmental impacts
are economic concerns about the cost and emissions of the
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electricity system in both the operational and planning stage.
Accurately estimating these emissions is essential for set-
ting optimal policies about changing the generation mix and
capacity. Moreover, it is necessary for comprehensive anal-
yses of where to deploy new technologies such as energy
storage and electric vehicle.

Fig. 7 and Fig. 8 show the variation of total annual COe
emission and generation mix over the system labeled with
generation unit contributors. Fig. 7 shows region 2 (buses
between 201 and 223) has the highest total amount of COe
emissions, and the highest individual bus emissions with
annual COse emission equal to 1.752 Mt/year at bus 223.
These significantly high emissions are a result of coal and Gas
CC generation units with high emission rates at these buses
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as illustrated in Fig. 8. Although buses 215 and 222 have a
higher generation share than some buses in the system, the
total annual emissions at these buses equal 0. This is because
all generation share of these buses come from renewable
sources such as hydro and solar, or nuclear. On the other hand,
at bus 207, the total annual emissions are equal to zero as
the primary source of generation is Gas CT where the cost of
electricity generation is high hence it is not dispatched in the
model (see Fig. 8).

Fig. 7 shows that region 1 (buses from 101 to 123) has
the second-largest annual CO»e emissions. Over this region,
bus 123 has the highest amount of GHG emissions equal
to 0.938 Mt/year. The annual GHG contribution at buses
102, 115, and 116 are relatively high for region 1, varying
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between 0.855 and 0.938 Mt/year. Although these buses have
lower generation shares, the higher shares of GHG emissions
are because of the dispatch of coal power plants which are
installed at these buses, with only a small contribution from
a PV power plant at bus 102. At buses 103, 104, 113, 119,
the GHG emissions are almost 0 because the generation at
these locations is by PV (except for a small amount of GHG
emissions due to the share of Gas CC at bus 113). Buses
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121 and 122 have the largest share of the generation mix with
zero emissions as the energy sources are totally renewable
(wind, hydro) and nuclear.

Region 3 has the lowest GHG emissions contribution over
the system, and the significant amount of GHG emissions
comes from Gas CC generation units. The highest level of
emission occurs at bus 323, equal to 1.042 Mt/year. The
GHG emissions at buses 313, 316, and 321 vary between
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0.306 and 0.607 Mt/year, and the main contributor is also
Gas CC generation units. GHG emissions at the remaining
buses in region 3 equal 0. Although region 3 has the most
prominent energy share, it has the lowest GHG emissions
over the system (see Fig. 7 and Fig. 8). This is due to the high
share of renewable generation units such as PV, wind, and
hydro, almost equal to half of the generation mix at region
3 and the lowest percentage contribution of coal generation
units.

In Fig. 9, the total annual and intensity of COze emissions
at each bus are annotated with geographical locations to show
marginal variations in the environmental impact over the
entire system. As shown in Fig. 9, there are two significant
contrasts between the geographical variations of total and
intensity values of GHG emissions. First, COze intensity
at buses 207, 301, 302, and 307 have large values ranging
between 761 kg/MWh and 976 kg/MWh. In contrast, the
total annual CO;e emissions are small (12.5E-5 and 5.55E-3
Mt/year), and the primary source of generation is Gas CC
which has an emission intensity equal to 761 kg.

In contrast, the total COse emissions at buses 313 and
323 are significant (0.607 Mt/year and 1.042 Mt/year), while
the CO;e intensities are relatively small (222 kg/MWh and
433.7 kg/MWh). The main reasons for the first state are:
the energy sources at these buses are from fossil fuel, and
installed capacity is minimal. This means dividing small
values of total emissions by relatively smaller values of gener-
ation mix leads to relatively high emissions intensity. Another
reason is the start-up emissions contributions at buses 207,
301, and 307 are equal to 215 kg/MWh, 77.6 kg/MWh, and
202.6 kg/MWh, respectively. These large amounts of start
emissions lead to a considerable rise in emissions intensity.
Two reasons for decreasing the emissions intensity at buses
313 and 323, although they have a considerable number of
emissions. First, at bus 323, Gas CC’s primary energy source
has lower emission intensity equal to 426.2 kg/MWh, and the
share of start-up emission is meagre. Second, the generation
share at bus 313 is a mix of fossil fuel with low emission
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intensity (Gas CC) and PV generation with zero emissions.
So, for accurate marginal environmental impact assessment,
it is not enough to assess only emission or emission intensity,
and it is recommended to evaluate both.

C. TOTAL EMISSIONS

This section presents the different sources of GHG emissions
and how the amount of GHG emissions is affected by consid-
ering start-up emissions of generation units. Since different
generation technologies have other efficiencies, the gener-
ated electricity from 1 MMBtu of the primary energy source
differs for each generation technology. Fig. 10 shows the
total annual CO,e emission and generation share from each
generation technology. The emissions for each generation
unit include emissions due to fuel combustion at start-up and
normal operating conditions. As shown in Fig. 10 although
the generation share of coal power plants is smaller than the
share of other fossil fuel power plants, coal power plants
have the highest amount of GHG emissions. Electricity share
by coal power plants presents 18.5% of the total generation
mix, while Gas CC power plants have the highest generation
share, equivalent to 32.3%. As a result, the coal power plant
emissions represent more than 55% of total emissions while
Gas CC’s share equals 44%.

GHG emission is a combination of three pollutants, CO,,
CHy, and N> O, generated with different percentages depend-
ing on the type of primary energy source. Table 1 and Fig. 11
compare CO,, CHy, and N> O from other generation technol-
ogy at start-up and normal operating conditions. In typical
operation conditions, coal generation units have significantly
larger CO, and N;O emissions than gas generation units,
CT or CC. At the same time, Gas CT generation units pro-
duce a more significant amount of CH, than coal and Gas
CC generation units. This is expected since coal’s carbon
and nitrogen contents are much higher than those of other
fuels. Gas CC generation units have a considerable amount
of CO;y and N>O emissions compared to coal and Gas CT
generation units with start conditions. Gas CC generation
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TABLE 1. Summary of annual start-up, operational, and total CO2E emissions categorized by gas contributor and operating power plants (million tonnes).

Operation (Mt) Startup (Mt) Total (Mt)
Type
Coal Gas CC Gas CT Total Coal Gas CC Gas CT Total
CO, 5.712 4.127 0.035 9.875 34 48E-3 72.75E-3 11.52E-3 120E-3 9.994
N,O (COse) 678E-6 0.000 0.00 1.878 4.88E-3 18.53E-3 5.87E-3 29.3E-3 1.907
CH4 (COse) 80.82E-2 1.051 1.88E-2 6.78E-4 4.1E-6 0.00 0.00 4.1E-6 6.82E-4
Total CO,e 6.521 5.176 0.056 11.754 39.36E-3 91.28E-3 17.39E-3 148E-3 11.902
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FIGURE 9. Distribution of total (Left) and intensity (Right) of GHG emissions at each bus in the system (see Appendix of the interactive

map).
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FIGURE 10. Total annual GHG emissions (left) and generation mix (right) categorized by generation

technology.

units are more flexible and can be started on and off more
easily compared to coal generation units or more cheaply
compared to gas CC generation units. Different pollutants
have a significant contribution during start-up conditions, so,
for a more accurate environmental assessment, this source
of emissions should not be ignored. Fig. 11 represents the
total annual emissions for electricity generated at start-up
and normal operating conditions. The start-up GHG emis-
sions represent 1.2% of total emissions, and this could be
higher if more intermittent sources of renewable generation
units are installed. The whole life cycle GHG emissions
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from all generation units in the system are calculated as
described in Section B-II. As described by Equations 10-14,
the annual generated energy by all types of generation units
is 37.65 TWh and each generated MWh produces 316.17 kg
of CO,e emissions: 4 kg at start-up conditions and 312.17 kg
during normal operating conditions.

D. COMPARATIVE STUDY

This section presents a comparison between the proposed
methodology and the state-of-the-art comparative study to
highlight the significance and precision of the proposed
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TABLE 2. Comparison of the proposed methodology with previously published methods.

Comparison factor Proposed Methodology Comparative study Ref [24]
Model accuracy
Included techno-economic parameters 1. ramping limits. 1. ramping limits.
2. min up and down time. operation & maintenance cost.
3. min output power.
4.  operation & maintenance cost.
5. startup and shutdown costs.
6.  grid capacity constrain.

Temporal variations of renewables and load . Included . included

demands

Geographical variations of renewables and load 50 load profiles . Single load profile.

demands Detailed profile for each renewable unit. e Wind and solar generations represented by
single profile for each.

Start-up and shutdown emissions e Included e  Ignored

Results and discussions

Marginal intensity (Mt/year at each bus) e  Presented e Unpresented

Marginal intensity (Mt/year at each bus) e Presented e Unpresented

Total intensity (kg/MWh) 265.487 kg/MWh 77 kg/MWh

Annual emissions 9.997 (Mt) 2.9 (Mt)

approach. As shown in TABLE 2, the proposed method-
ology and the comparative study have differences in their
approach and results. The proposed methodology includes
more techno-economic parameters such as ramping limits,
minimum up and down time, minimum output power, oper-
ation and maintenance cost, startup and shutdown costs, and
grid capacity constraints. The comparative study only consid-
ers ramping limits and operation and maintenance costs for
model accuracy.

In terms of considering variations in renewables and load
demands, the proposed methodology takes a more detailed
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approach with 50 load profiles and a detailed profile for each
renewable unit. The comparative study uses a single load
profile and represents wind and solar generation with a single
profile. The proposed methodology also includes start-up and
shutdown emissions, while the comparative study ignores
these emissions.

The proposed methodology presents the marginal intensity
of emissions at each bus, while the comparative study does
not. The total intensity of emissions in the proposed method-
ology is 262.3-265.487 kg/MWh with startup and shutdown
emissions considered, while the comparative study has a total
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intensity of 77 kg/MWh. The proposed methodology results
in a higher annual emission of 9.997 Mt, compared to the
comparative study’s annual emission of 2.9 Mt. In conclusion,
model parameters play a significant role in determining the
accuracy of the results obtained from a simulation model. It is
essential to carefully consider and set the model parameters to
ensure that the results are accurate and reflect the real-world
behavior of the system.

IV. CONCLUSION AND RECOMMENDATIONS

Estimates of GHG emissions for current and future electricity
network scenarios are lacking temporal and spatial resolution.
In this study, the accuracy of GHG emissions estimation
was improved by using a precise electricity model with high
spatial-temporal and techno-economic details. Moreover, the
GHG emissions during the start-up of generation units were
included for a more accurate assessment. The analysis shows
that the GHG emissions of generation can fluctuate over short
(daily) and medium (monthly) timeframes depending on the
type of generation mix. The results show that solar generation
leads to daily and seasonal variations in GHG emissions.
Other renewable generation such as wind and hydro, cause
seasonal variations in GHG emissions. The highest emis-
sion peak was observed during the summer months between
2:00 pm and 11:00 pm. It is recommended that a time-varying
GHG emissions assessment rather than an annual average
should be employed for both real-time load demand man-
agement systems for carbon emissions and also for long-term
decision-making about the future generation mix. Similarly,
GHG emissions vary geographically, over the system’s buses,
due to the location of different fossil fuel generation units
and the availability of renewable generation. Region 2 had the
highest annual CO,e emissions at 1.752 Mt/year at bus 223,
primarily from coal and gas CC generation units. The lowest
emission is 1.042 Mt/year, located at bus 323 in region 3, pri-
marily from gas CC generation units. On the other, the study
found that the highest emission intensities were observed at
buses 207, 301, 302, and 307, with values ranging between
761 kg/MWh and 976 kg/MWh. The comparison between
the total GHG emissions and GHG emissions intensity over
the buses in the system shows that the two factors can have
different distributions geographically. Therefore, both should
be considered for assessing GHG emissions. Furthermore,
GHG emissions assessment can be used to find the optimal
location for electrical vehicle integration and for new capacity
of renewable generation and energy storage.

V. DATA AVAILABILITY STATEMENT
The data supporting the study’s outcomes are publicly acces-
sible on Github and PyPSA.

APPENDIX A ALIST OF SYMBOLS AND ABBREVIATIONS

A. SETS
b Busnumber,b € {1, ...|B|}, where B is the number

of buses in the grid.

97490

g  Generator number, g € {1,...]G]|}, where G is the
number of generation unit.
T Simulation period, t € {1, ..., T}.

B. PARAMETERS
Ceb Cost of generation one MWh by a generation

unit g on bus b.

ERgpy Emission rate (Lbs./MMBTU) of generation
unit g on bus b.

HRs o Heat rate (BTU/kWh) of generation unit g on
bus b.

ﬁg’b Rating power of generation unit g on bus b.

RT, R~  Generation unit ramping up and down rates.

IR(J)“ , RT Generation unit ramping up and down rates at
startup and shutdown.

G;b(t), Generator g start-up and shut down costs on
bus.

G;b(t) B when the generator starts or shuts with unit
commitment at time ¢.

‘Tjn_in Minimum up-time of generation unit g.

I‘gin Minimum down-time of generation unit g.
At Time resolution (one hour ).

C. VARIABLES

P b(t)  Generated power by generation unit g on bus b
and time t.
‘jsg,b(t) Power availability of generation unit g on bus b
and time t as a per unit .
ﬁg,b(t) Power availability of generation unit g on bus b
due to generation unit de-rating as a per unit.
Ug n(t) Binary status of generation unit g on bus b and
time t.
D. ACRONYMS
Gas CC  Combined-Cycle gas power plant (CC)
Gas CT Combined-Turbine gas power plant (CT)
GWP Global Warming Potentials
PV Photovoltaics
APPENDIX B

APPENDIX BINTERACTIVE FIGURES
The html file contains the interactive plotting for Fig. 6 and
Fig. 9.
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