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ABSTRACT The precise identification of corn and weeds plays an important role in precise spraying. This
paper proposed a lightweight model based on the improved yolov5s and built a precision spraying robot.
Firstly, we used a data augmentation method based on category balance and agronomic characteristics to
solve the data imbalance problem. Then, compared with yolov5s, yolov5l, yolov5m, and yolov5x, we found
that yolov5s has both real-time and accuracy and is easier to deploy the model on edge devices. Through
the feature map visualization experiment, we found that the feature extraction network can’t pay close
attention to the important feature of the target and suppress the feature of the noise. Therefore, we added
the attention mechanism. In order to improve the real-time performance of the model, we designed the C3-
Ghost-bottleneck module. Finally, we built a precision spraying robot. Compared with the original model,
the value of map@0.5 is increased by 3.2%, the model file is reduced by 3.6 MB, the AP value for corn
is increased from 93.2% to 96.3%, and the AP value for weeds is increased from 85.6% to 88.9%. Finally,
the precision spraying experiment of weeds was carried out. The recognition accuracy of weeds is 83%,
the probability of the spraying robot correctly identifying weeds and accurately spraying is 81%, and the
detection speed is 30ms/f. The experimental results verify the feasibility of precision spraying weeding and
the effectiveness of the improved model, which can provide a reference for the engineering application of
precision weeding.

INDEX TERMS Data balance, object detection, precision spraying robot, SENet, yolov5s.

I. INTRODUCTION
In China, corn is one of the most significant food crops. Its
planting area makes up 33.6% of the entire area used for
food crops, while its production makes up 36.1% of the total
grain yield [1]. Field weeds are one of the common disasters
in corn production. They make corn less productive by
competing with it for light, water, and minerals in the soil [2].
At present, the weeding methods for corn mainly include
chemical pesticide weeding and physical weeding. Manual
weeding requires a lot of labor, increasing costs, and low
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weeding efficiency; Although mechanical weeding is more
effective, it cannot effectively remove the weeds between the
plants, which makes it easy to harm crops. Spraying weeding
operations mostly adopts continuous spraying methods.
Although it has a good weeding effect, a large number of
spraying pesticides not only pollute the environment but also
affect the growth and development of crops, and is easy
to produce pesticide residues [3].Precision spraying is an
effective way to improve the utilization rate of pesticides,
and the accurate identification and location of the target
is the premise to achieve precision pesticide application
technology. At themoment, machine learning [4], [5], [6], [7],
ultrasonic sensor [8], [9], [10], laser radar [11], spectrum
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analysis [12], [13], [14], and spectral imaging [15], [16], [17]
are the most widely utilized target accurate identification
and location technologies. Spectral analysis technology is
susceptible to outdoor light and has the disadvantages of a
large amount of spatial data and difficult analysis. Machine
vision technology has been widely used in the identification
of crops and weeds due to its low cost and complete
information [6], [18].

In the early stage, many scholars at home and abroad
used the shape features, texture features, color features, and
location space features of plant leaves to identify crops and
weeds. Strand et al. [19] classified weeds using a Bayesian
classifier based on characteristics of the plant’s morphology,
and their success rate was 76.5%. Li et al. [20] used the
color features of plants and land to segment them, and
then used the area features of crops and weeds to classify
them by constructing a pixel histogram. The experimental
results show that the recognition rate of corn is higher
than 95 %. Lanlan et al. [21] used four shape parameters
of corn and weeds to realize the recognition of corn and
weeds by SVM, and the recognition accuracy reached 96.5%.
Wu et al. [22] used texture features to accurately identify
corn and weeds, and SVM classifier identification accuracy
is between 92.31% -100%. Due to the similarity in color
between corn and weeds, the ease with which corn leaves
can obscure the weeds’ leaves, and the complexity of the
background, it is challenging to distinguish between crops
and weeds using a single attribute. Therefore, a multi-feature
fusion strategy for target recognition has been suggested by
several researchers. Mao et al. [23] achieved the recognition
of crops and weeds using color, location, texture, and
form features. The spectral imager method was utilized by
Lin et al. [24] to merge the texture and form data of the
leaves, and the model’s recognition accuracy reached 95%.
Chen et al. [25] used the Otsu threshold method to distinguish
plants from the background. According to the leaf shape of
corn and weeds, a probabilistic neural network method was
used to distinguish corn and weeds. The recognition rates of
corn and weeds were 92.5 % and 95 %, respectively.

Although the traditional machine learning method can
also have a good recognition effect, due to the complex
field environment, a wide variety of weeds, and the light
intensity changing at any time, the traditional method lacks
strong feature extraction and generalization ability, resulting
in poor adaptability of traditional methods to changes in
environment and weed species. Compared with traditional
machine learning, deep learning uses a convolutional neural
network to extract multi-scale and multi-dimensional spatial
semantic feature information of weeds and independently
obtains useful features of the target, which solves the
disadvantages of traditional methods to extract weeds and
crop features and effectively improves the recognition and
detection accuracy of crops and weeds. In recent years, deep
learning methods have been widely used in the identification
and location of crops and weeds [26]. Jiang et al. [27]
used a graph convolutional neural network to identify corn

and weeds, and the recognition accuracy reached 97.8%.
Andrea et al. [28] used cNET to distinguish corn and weeds in
real time and used the data set generated in the segmentation
stage to train the convolutional neural network to realize
the recognition of corn and weeds. Pei et al. [29] built an
intelligent weeding robot system based on the yolov4 network
model. When the robot moving platform moves forward at a
speed of 1.2 km /h, the recognition rates of corn seedlings and
weeds are 96.04% and 92.57%, respectively. Cheng et al. [30]
proposed an improved YOLOv4 model by replacing the
CSPDarknet53 network with MobileNetv3 and then using
transfer learning to accelerate model training. Experiments
show that the average recognition accuracy of corn and
weeds is 89.98 %, and the detection speed is 69.76 f/s.
Quan et al. [31]used VGG19 as a pre-training network based
on the Faster-R-CNN network model, and the accuracy of
recognizing corn seedlings reached 97.71%.

In this paper, corn at the 3-5 leaf stage and weeds growing
simultaneously with corn were used as identification targets.
This paper presents an improved target detection model for
yolov5s. The SENet attention mechanism was introduced at
the feature extraction stage to direct themodel to pay attention
to target information, improving the model’s performance for
target recognition. By utilizing the lightweight benefit of the
Ghost module, which decreases the model’s parameters and
calculations, the C3-Ghost-Bottleneck module was created to
address the issue of a large number of model parameters and
calculations. The trainedmodel was embedded into NVIDIA-
AGX, and an intelligent spraying robot was built. This study
provides a reference for precision weeding.

II. MATERIALS AND METHODS
A. IMAGE AND DATA ACQUISITION
The experimental collection site is located in an eco-
logical unmanned farm of the Shandong University of
Technology(36◦58’48’’N, 118◦15’36’’ E) in Linzi District,
Zibo City, Shandong Province, China.The geographical
location of the image acquisition is shown in Figure 1.The
sampling device in this study is a high-resolutionSony A7
camera with a Sony full-frame standard zoom lens. the
exposure parameter is automatic,and the objective focus
system is set to autofocus mode, the shutter speed is
automatic mode,and the ISO parameter is automatic mode;
The researchers simulated the image acquisition module of
the spraying robot, and the handheld camera continuously
changed the shooting angle andshooting distance to obtain
corn and weed data under different environmental conditions.

The best wedding period for corn is the three-to-five-
leaf stage, therefore, according to the characteristics of the
weeding period of corn, we collected images of corn at
the three-to-five-leaf stage and weed images during the
synchronous growth period of corn, because the first weeding
has been done before the corn emerges, so the weeds at
this time are mostly at the seedling stage, the weeds species
we collected were horse common crabgrass, and green
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FIGURE 1. Location of images acquisition site.

TABLE 1. The time of image acquisition.

bristlegrass. The photographs were taken on July 6-10, 2020,
and July 8-12, 2021, images were acquired at different times
of the day and under sunny, cloudy, and drizzly weather
conditions, respectively, so we obtained RGB images with
different light intensities, colors, poses, sizes, backgrounds,
densities, etc. The detailed time of image acquisition is shown
in Table 1. 15,000 images of different scenes were collected,
and 13,000 images were left after data screening.

B. DATA ENHANCEMENT METHODS BASED ON
CATEGORY BALANCE AND AGRONOMIC
CHARACTERISTICS
According to the number of corn and weeds in 13,000 labeled
images, there are 9,000 corn and 4,000 weeds labels. The
proportion between the two is close to 2.25:1. It can be found
that there is a larger data imbalance between the number
of corn and weeds. If this data is used directly for data
enhancement, it will increase the imbalance between the data,
resulting in a reduced ability of the model to detect weeds.

Aiming at the problem of data imbalance, this paper
proposed a data balancing method based on the category to
optimize the dataset, which makes the detection performance
of the model improved [5]. This method needs to obtain
the quantitative values of all categories first, determine the
number of the dataset after enhancement, and then amplify
the data for each category. The specific steps are as follows:

1) Input: Suppose there is a dataset, D = [S1, S2, S3, . . .
Si][N1,N2,N3, . . ..Ni]T, where Sidenotes the number of

types of samples in the dataset, and Ni denotes the
number of samples in each category;

2) Determine the total number of datasets after data
enhancement, and C denotes the total number of
datasets. Suppose the number of sample types is t, use
C to divide by t, and then division M is obtained, the M
denotes the number of samples after amplification for
each category.

3) Observe the sample quantity values of all categories
in the dataset SiNi,use M to divide by SiNi,and then
division N is obtained, the N denotes the multiple to be
amplified for each type of sample. The calculation is
given in Equation (1):

M =
C
t
,

Ni =
M
SiNi

,

N = [{N1,N2,N3, . . . ,Ni}], (1)

4) Determine the types of data amplification methods as
n, use N to divide by n, and then division T’ is obtained,
T’ is a multiple of each data enhancement method.

5) Each type of sample in the dataset is enhanced in a
different way so that the amount of sample data for each
class reaches M.

6) Output: The final output is the expanded dataset,
D’ = [S1,S2,S3,. . . .Si][N’1,N’2,N’3,. . . .N’i]T
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To prevent overfitting or non-convergence phenomena
caused by too little training data, this study performed data
augmentation processing on the dataset. The environmental
factors that affect the recognition effect when carrying out
precision recognition operations in the field are mainly: the
variation of light intensity, the obstruction of the target by
field debris, and the different sizes of weeds. To avoid the
image producing too many redundant features and reduce
the recognition performance of the model, according to
the field agronomic characteristics of corn and weeds, data
enhancement mainly adopts five methods: Random rotation,
random cropping, random brightness adjustment, random
scaling, and random occlusion. The data enhancement by
the above method expands the number of pictures to 38,000
and makes the ratio of the number of corn to weeds close
to 1:1, so the number of corn is expanded 2 times to 18,000
and the number of weeds is expanded 5 times to 20,000,
the proportion of mature and immature plums in the training
set has changed from 2.25:1 to 0.9:1 so that the number of
different categories of the dataset is similar.

C. DATASET PRODUCTION
The LabelImg, an image annotation tool, was used for manual
annotation to obtain the ground truth for subsequent training.
The annotation information was saved in the format of the
YOLO dataset and marked as two types corn and weed. For
occluded corn and weeds, only the exposed parts of the image
are marked. The unmarked processing was performed when
the degree of occluded weeds wasmore than 70%. For several
corn or weeds growing together, mark the targets one by one.

For the marked 38,000 images, the dataset was divided into
the training set, validation set, and test set, where the ratio of
the three is 8: 1: 1, and there is no intersection between the
data of the three.

D. YOLOV5 MODLE
YOLO series is one of the commonly used algorithms in the
field of target detection. The yolov5 algorithm combines the
features of the yolov1-yolov4 versions and has been improved
in terms of detection speed and accuracy, and it is widely used
in the field of target detection with its excellent performance.
We divide yolov5 into four parts: input, backbone, Neck, and
prediction.

The input end of yolov5 mainly resizes the input image
to the size required by the network. The main operations
include Mosaic data augmentation, adaptive anchor frame
calculation, and adaptive image scaling, which enables the
model to perform image reading and training.

The Backbone structure uses deep convolution operation
to extract the target high, medium, and low-level feature
information, mainly including the C3 module and SPP
module. The C3 Module is the main structure for residual
feature learning. The SPP module is called spatial pyramid
pooling and it consists of 4 parallel branches, which are
1×1 skip connection, 5×5.9×9,13×13 maximum pooling.
The maximum pooling method of k = {1 × 1, 5 × 5, 9 × 9,

13 × 13} is used, where 1 ×1 represents no processing, and
then the feature maps of different scales are stacked.

The Neck network is mainly FPN + PAN structure.
The structure is based on the feature pyramid network and
adds a path aggregation network to improve the detection
performance of the model for targets of different sizes. The
FPN structure uses upsampling to pass down the strong
semantic features of the higher layers so that the model
can detect multiple different scales and enhance the entire
pyramid. The PAN structure integrates the feature maps of
high and low layers so that each feature map has rich semantic
information and strong localization features.

The Prediction section generates the class probability and
location information of the predicted targets, including three
detection branches, to detect targets of different sizes. The
loss function of yolov5 consists of three parts: classification
loss function, regression loss function, and confidence loss
function. In the post-processing process of target detection,
a target will have multiple candidate marker frames, and
to filter the most suitable target frame, the yolov5 model
chooses the NMS method to suppress the non-maximal
elements and search for local maximal values, and the
specific process is as follows.

1) Firstly, the confidence scores of candidate boxes with
scores below the threshold are reduced to zero.

2) And then the candidate boxes with the highest scores
are retained by ranking them according to their
confidence scores.

3) Traverse the remaining candidate boxes, calculate the
IoU value of the candidate boxes retained in the
previous operation, and remove the candidate boxes
whose IoU value is greater than the threshold.

4) Repeat the above operation until all the reserved
candidate boxes are found.

5) According to the reserved candidate box, mark the
target box in the image.

The Yolov5 project has four models, they are yolov5s,
yolov5m, yolov5l, and yolov5x. Among them, the yolov5s
network model is the one with the smallest layer depth as
well as width. When the yolov5 model does not change the
depth and width of the network, the network model is shown
in Table 2.
In table 2, - 1 in the source represents the upper layer. In the

four deepening network models, the width of the model is
changed by modifying the number of convolution kernels in
the Conv structure, and the depth of the model is changed by
changing the number of C3 structures, to realize the selection
of models with different widths and depths according to
project requirements.

E. THE PROPOSED ALGORITHM
1) ATTENTION MECHANISM
To obtain more detailed information about the target that
needs attention and suppress other useless information from
different channels, we introduced the Attention network,
SE layer. SENet mainly focuses on the feature fusion among
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TABLE 2. Network structure of yolo5.

channels of the convolution operation in the backbone net-
work. The network can automatically learn the importance of
different channel characteristics by focusing on relationships
between channels.

The SENet model compresses each feature map to
establish dependencies between channels. The structure of
the SENet model is shown in Figure 2.

Where C’, H’ and W’ represent the number of channels,
height, and width of the input feature map, X represents the
input feature map, U represents the feature map obtained
after a series of convolution and pooling operations, W and
H represent the width and height of the feature map,
C represents the number of channels of the feature map and
∼

X represents the output feature map.
As can be seen from Figure 2.5, SENet consists of three

parts: Squeeze, Excitation, and Scale.

a: SQUEEZE
The global average pooling operation is performed on the
feature map of CxHxW to compress the features in the
spatial dimension, and the feature map vector is changed into
1 ∗ 1 ∗C so that it has a global receptive field. The calculation
method is as follows:

Zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (2)

where Z is generated by compression operation, Zcis the
cth element in Z,ucis the cth two-dimensional matrix in U,
anduc(i, j)is the ( i, j )th element in uc.

b: EXCITATION
After the Squeeze operation obtains the channel information,
it uses two fully connected layers to form a gate mechanism
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FIGURE 2. The structure of the SENet.

and activates it with Sigmod. The Excitation operation
uses weight values to characterize the dependency between
channels, and the weights for channels are obtained by
learning through two fully connected layers. The calculation
method is as follows

s = Fex(z,W ) = σ (g(z,W )) = σ (W2δ(W1z)) (3)

where A represents the weights of the two fully connected
layers, which can limit the model complexity and assist in the
role of model generalization, and δ represents the activation
function.

c: SCALE
The output weights after the Excitation operation are used
as the importance of each feature channel, and then the
output weights are multiplied onto the input features of the
corresponding channels using the multiplicative weighting
method to obtain the important features and suppress the
unimportant features.The calculation method is as follows:

∼

Xc = Fscale(uc, sc) = sc · uc (4)

2) IMPROVEMENT BASED ON C3 MODULE
The application environment of corn and weed identification
is complex, and the hardware performance is relatively low.
Therefore, under the premise of ensuring accuracy, the size of
the model should be minimized, and fewer parameters should
be used to generate more features to improve the calculation
speed.

In the convolution operation, many feature maps are
generated, and the comparison of a large number of feature
maps reveals that some of them have similar features in
the channel direction. However, the Ghost module uses
relatively simple and less computational operations instead
of convolution operations to generate feature maps, thereby
accelerating the inference speed. The structure of the Ghost
module is shown in Figure 3.
As seen in Figure 3, compared with the ordinary convolu-

tion operation, the Ghost structure obtains feature maps with
fewer channels by convolution operation and then obtains
richer feature maps by the cheap operation, and finally
stitches the obtained feature maps together. The principle
of reducing model computation for the ghost module is
described below.

FIGURE 3. The structure of the Ghost module.

The calculation formula for FLOPs of traditional convolu-
tion is shown in (5):

Fconv = K · K · C_in · C_out · H ·W (5)

Among them, K·K represents the size of the convolution
kernel, C_in and C_out represent the number of input and
output channels, and H·W represents the size of the output
feature map.

In the ghost module, the feature map is first obtained by
convolution operation, which has C_out/s channels, and the
calculation formula for FLOPs is shown in Formula (6):

Fghost = K · K · C_in ·
C_out
s

· H ·W (6)

Each feature map uses the convolution kernel of d·d to
generate s-1 feature maps, where s is the number of linear
transformations, and the calculation formula for FLOPs is
shown in formula (7):

Fghost1 = d · d · (s− 1) ·
C_out
s

· H ·W (7)

The compression amount of the model is quantitatively cal-
culated, and the compression ratio is used as the calculation
index. The calculation formula is shown in (8):

Rc =
C_in · C_out · K · K

C_in ·
C_out
s · K · K +

C_out
s · (s− 1) · d · d

≈
s · C

s+ C + 1
≈ s (8)

Finally, the acceleration ratio is used to approximately replace
the computing speed. The calculation formula is shown in (9):

Rs =
K · K · C_in · C_out · H ·W

C_in · H ·W · K · K + H ·W · (s− 1) · d · d

≈
s · C_in

s+ C_in− 1
≈ s (9)
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FIGURE 4. The structure diagram of the Ghost-bottleneck.

Assuming that K is approximately equal to d, and s is
much smaller than C_in, through the above formula we can
find that the ghost module reduces the amount of calculation,
the amount of calculation is about 1/s of the traditional
convolution. It shows the superiority of the Ghost module in
theory. Therefore, in this paper, the Ghost-bottleneckmodule,
referred to as Gb, is designed by using the ghost module
and bottleneck structure. There are two Ghost-bottleneck
structures, as shown in Figure 4. One of them is a structure
with a step size of 1, which is shown in Figure 4(a).
It mainly consists of two Ghost modules. The first Ghost
module is mainly used as an extension layer to increase the
number of channels. The main function of the second ghost
module is to reduce the number of channels. The other is
a structure with a step size of 2, as shown in Figure 4(b).
The difference between the two structures can be seen in the
graph. In Figure 4(b), a convolution is added between the two
Ghost structures, which is mainly used for downsampling.

The ghost-bottleneck structure was merged with the C3
structure to design the C3-Ghost-bottleneck module, referred
to as C3_Gb. The C3 module in the yolov5s model was
replaced by the C3_Gb module, and its structure is shown
in Figure 5.
By adding the SENet module to the feature extraction

network, the model can pay more attention to important
features, suppress the extraction of unimportant features, and
improve the recognition performance of the model for weeds.
The Focus module in the backbone was replaced by the
Conv module to facilitate the embedding and exporting of the
model. Finally, the C3 module was replaced by the C3_Gb
module to reduce the number of parameters and calculations
of the model, so that the model reduces the performance
requirements of the hardware and makes the model easy to
deploy on the edge. The improved yolov5s structure is shown
in Figure 6.

F. PRECISION SPRAYING ROBOT CONSTRUCTION
To verify the reliability of the improved algorithm and the
feasibility of precision spraying in the field, a precision
spraying robot was built. The precision spraying robot is
shown in Figure 7.

It primarily consists of two components: a multipurpose
farm cart with four wheels and a precision spraying system.
The precision spraying system is mainly divided into four
parts: image acquisition unit, a target detection unit, spraying
control unit, and spraying unit.

The image acquisition unit uses a USB 4K HD distortion-
less camera, and the video images captured by the camera
are transmitted to the target detection system using USB. The
improved yolov5s algorithm is embedded into the NVIDIA
Jetson AGX Xavier to form a target detection unit, and the
collected image video is transmitted to the target detection
unit. After the model detection, the target information of
corn and weeds is generated, and then the target information
is transmitted to the spraying control unit. The hardware
used for the spraying control unit is the Arduino UNO R3
(CH340G). The Arduino UNO R3 receives a signal from the
AGX when the target detection system identifies a weed, and
the Arduino UNO R3 then sends a spray signal to regulate
the pump for accurate application. The spraying unit consists
of a high-pressure brushless water pump, a pressure nozzle,
and a 22-liter medicine box. The main function of this unit is
to receive signals from the Arduino UNO R3. When a weed
target is detected, the Arduino UNO R3 will immediately
send a signal to the pump to control the pump to spray.

III. RESULT AND DISCUSSION
A. EVALUATION INDICATORS
In the field of target detection, the commonly used evaluation
indicators are precision (P), recall rate (R), average precision
(AP), and mean Average Precision (mAP). Their calculation
formulas are as follows.

Pr ecision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

AP =

∫ 1

0
P(R)d(R) (12)

mAP =

∑n
1
∫ 1
0 P(R)dR

n
(13)

Among them, TP represents the number of correctly
detected corn and weeds; FP represents the number of mis-
classified corn and weeds; FN represents the number of
missed corn and weeds; AP represents the area composed of
the PR curve and the coordinate axis. The higher the AP value
is, the better the performance of the target detection algorithm
is. ThemAP represents the AP average ofmultiple categories,
and its value represents the general detection performance of
the algorithm for different categories.

B. TRAINING ENVIRONMENT AND PARAMETERS
SETTINGS
For model training, the hardware and software platform con-
figuration was as follows: CPU is AMD Ryzen Threadripper
3970×32-Core Processor 3.69Ghz,memory is 64GB, storage
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FIGURE 5. The structure diagram of C3_Gb.

FIGURE 6. The structure diagram of improved yolov5s.

FIGURE 7. Pesticide spraying robot.

SSD is 4TB, display card is Nvidia TITAN RTX, display
memory is 24GB, the operating system is windows10, the
Cuda version is 10.2, the python version is 3.7, the PyTorch
version is 1.10

In the experiment, the incipient learning rate was set to
0.01, the final learning rate was set to 0.2. The momentum
parameter was set to 0.937. The weight decay parameter was
set to 0.0005. To reduce the overfitting phenomena of the
model in the beginning stage for small batches of data and
to prevent model oscillation to maintain the deep stability of
the model, a warmup strategy was used during training. The

input image was uniformly adjusted to 640 × 640 pixels, the
epoch was set to 300, and batch size was set to 64 during
training.

C. yolov5 MODEL RESULT ANALYSIS
To compare the recognition performance of the four network
models, yolov5s, yolov5m, yolov5l, and yolov5x for corn
and weeds and choose the more appropriate algorithm to be
embedded into the precision spraying robot. In this study,
the model was trained based on the constructed dataset, the
comparison of the results is shown in Table 3.
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TABLE 3. Comparison of the structure and performance of different versions of yolov5.

All models were trained on Nvidia TITAN RTX graphics
cards. According to the table, the width of themodel increases
from 0.5 to 1.25, the depth of themodel increases from 0.33 to
1.33, and the value of mAP@0.5 gradually increases from
89.4% to 96.5%. The detection performance of the model
is improving, but the detection speed increases from 6ms to
19ms, and the speed is slowing down. Yolov5x was found to
have the highestmAP@0.5 value in the comparison, however,
the detection time for a single image is 3 times slower
than that of the yolov5s model, and the training generated
model file is 13 times larger than that of the yolov5s,
but the mAP@0.5 value of the two models differed by
only 7.1%.

Therefore, yolov5s has both real-time performance and
detection performance, which is easy to deploy on the mobile
terminal and edge terminal, and easy to test the landing of
products. The yolov5s model was chosen as the corn and
weed identification model in this paper.

D. FEATURE MAP VISUALIZATION EXPERIMENT
In the field of target detection, the goodness of feature extrac-
tion often determines the performance of target detection.
Thus, we visualized the feature map in the feature extraction
network of yolov5, to find the problem of the feature
extraction network and provide improvement direction for
the model. The characteristic diagram of corn is shown in
Figure 8, and the characteristic diagram of weeds is shown
in Figure 9.

As seen in Figures 8 and 9, the Focus module processes
the image, and a 64-dimensional feature map is produced
as a result. It can be seen from the output feature map
that some data in the picture is lost, but the contours of
corn and weeds can be seen. After the Focus module,
it continues to go through Conv, C3-1, Conv, C3-3 and
other modules, the information in the image continues to

be lost and the detectability of the image becomes less and
less, and the features of corn and weeds become more and
more blurred, indicating that the model first extracts shallow
feature information such as color and shape, and then extracts
semantic features of higher level and higher dimension. and
the information of the backgroundmap is gradually hidden by
the network layer, and the target information to be detected is
finally extracted.

From the feature map visualization experiments, it can be
seen that the yolov5s model does not focus on extracting
features of corn and weeds and cannot give different weights
to irrelevant and important features. From Figure 8 and
Figure 9, it can be seen that the model extracts the feature
information of noise such as straw many times, while the
feature information of weeds is not fully extracted, if the
feature information extraction of irrelevant noise can be
reduced, it will be more favorable for the model to extract the
features of the target. In the feature information extraction
process, the feature information is mainly extracted by a
convolution operation. The feature information lacks the
correlation between different dimensions such as channel
and space, and cannot increase the weight of key feature
information, with the deepening of the convolution layers,
the feature information is gradually lost, which eventually
leads to inadequate feature extraction of weeds by the model.
Therefore, in the feature extraction network of yolov5s,
the correlation of key feature information between channels
should be strengthened and the extraction of unimportant
features should be suppressed to enhance the recognition
performance of the model for the target.

E. RESULTS ANALYSIS OF IMPROVED yolov5s MODEL
1) TRAINING RESULT ANALYSIS OF MODEL
Using the corn and weed photos from the complicated field
environment as the training set, the improved yolov5s model
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FIGURE 8. Feature map visualization of corn in the feature extraction stage.

FIGURE 9. Feature map visualization of weeds in the feature extraction stage.

was compared to the yolov5s model. The superiority of the
improved yolov5s model on the training set was confirmed.
In Figure 10, the change in the value of mAP@0.5 through
time is depicted and the improved yolov5s model’s loss value
curves for the training set and validation set are shown in
Figure 11.

It can be seen from Figure 10 and the training log that
after 160 training iterations, the value of mAP@0.5 of the
improved model reaches more than 0.9. After 300 training
iterations, the value of mAP@0.5 reaches 92.6%, and the
value of mAP@0.5 of the yolov5s model is 89.4%. The
value of mAP@0.5 of the improved model is 3.2% higher
than that of the original model. The overall detection

performance of the improved model is improved, indicating
that the model can correctly identify corn and weeds, as well
as achieve accurate identification standards for corn and
weeds.

The detailed performance comparison results compared to
the yolov5s model are shown in Table 4.
As can be seen from the table, the mAP@0.5 value of

the improved yolov5s model reaches 92.6%, which is 3.2%
higher than the original model. The AP value for corn
recognition increases from 93.2% to 96.3%, and its AP value
increases by 3.1%. The AP value for weeds increases from
85.6% to 88.9% and its AP value increases by 3.3 %. It can
be seen from the above data that the mAP@0.5 value of the
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FIGURE 10. Comparison of training results.

FIGURE 11. Loss curve during the training process.

TABLE 4. Comparison of the results of training set before and after yolov5s improvement.

TABLE 5. Evaluation results of test set under different conditions.

TABLE 6. Test results of field precision spraying operation.
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FIGURE 12. The detection effect pictures under different conditions.

model is improved, indicating that the overall recognition
performance of the model is improved. The AP value of
corn and weeds was improved. And the model file exported
by the improved model training is only 10.8 MB, which
is 3.6 MB smaller than the original model. It shows that
the improved model maintains high recognition accuracy

of corn and weeds, while the model file size is effectively
reduced, making the model easier to embed. In conclusion,
the improved model in this study demonstrates optimal
performance in the detection of corn and weeds and meets the
standards for precise identification, while also accomplishing
the anticipated improvement goals.
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FIGURE 13. Placing the water-sensitive Paper. Divided into three situations, (a) Put water-sensitive paper near corn, (b) Put
water-sensitive Paper in a place without corn and weeds, (c) Put water-sensitive paper near weeds.

FIGURE 14. Effect Diagram of Precision Spraying Experiment. (a) Precision spraying effect, (b) Recognition effect of corn,
(c) Recognition effect of weed.

2) TEST RESULTS ANALYSIS OF MODEL
To further evaluate the detection performance of improved
yolov5s, test work was performed on the test set after the
training was completed. There are 3800 pictures in the test
set, and the photos in the test set were fed into the model for
testing. The detection results are shown in Table 5.

From Table 5, it can be seen that the improved yolov5s
algorithm has better test results on the test set. The
mAP@0.5 value of the model reaches 93.4%, which is 1.7%
higher than that of the original model. The AP values for
corn and weeds are 97% and 89.8%, respectively. Compared
with the original model, the AP value for weeds increased
by 2.4%, and the recognition accuracy for corn increased by
1%. The improved yolov5s model takes 3.2 ms to detect each
image, which is 2.8 ms less than the original model. As can be
observed from the data above, the improved yolov5s model
performs better than the original model in both recognition
effect and detection speed. Since the images in the test set
were all from images in the field, the improved yolov5smodel
had a breakthrough in corn and weed identification detection
applications. It showed high recognition accuracy during the
testing process, which laid the foundation for the accurate
identification of corn weeds and accurate spraying.

Due to the complex field operation environment, the
recognition system is easily affected by the environment such
as light, noise, and occlusion when the precision spraying
robot is operating in the field, causing the recognition
performance of the model to be reduced. Therefore, the
images of the test set were processed by using random
brightness adjustment, random noise addition, and random

occlusion. The detection effect graph is shown in Figure 12.
As can be seen from the figure, the improved model can still
recognize corn and weeds in more complex scenes, indicating
that the model has good generalization performance.

F. RESULTS ANALYSIS OF FIELD PRECISION SPRAYING
EXPERIMENT
To evaluate the feasibility of a precision spraying robot,
this study carried out precision spraying experiments on
ecological unmanned farms. The planting row gap of the corn
test field in the unmanned farm is 60cm, and the plant spacing
is 25cm. The water-sensitive paper is placed as shown in
Figure 13. In the spray application system, the USB camera
is placed perpendicular to the ground, about 50cm from the
ground, and the camera is placed in front of the nozzle, with
the distance between the camera and the nozzle at 10 cm.
In the experiment, the speed of the precision spraying robot
is 0.2m/s.

The precision spraying robot used a camera to obtain video
from between the corn rows and transmitted the video to
the target detection unit in real time. The improved yolov5s
model detected corn and weeds in the video and obtained
the target information in the video, the spraying control unit
controlled the opening and closing of the pump according
to the target information and finally carries out the precise
spraying operation of the weeds. There were 600 corn and
465 weeds during the experiment, and the test results are
shown in Table 6, and the Precision spraying effect is shown
in Figure 14.
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In the table, TP indicates corn detected as corn and weed
detected as a weed. FN indicates corn detected as weed or
weed detected as corn. FP indicates detected as corn and
weed when corn and weed were not present. Precise spraying
indicates the number of plants that were accurately identified
as weeds and successfully sprayed, and incorrect spraying
indicates the number of plants that were sprayed when the
target was not a weed.

It can be seen fromTable 6 that when the precision spraying
robot is working in the field, the accuracy of identifying
weeds in the field is 83%, the accuracy of identifying
corn is 92%, and the probability of corn being identified
as weeds is 7%. The probability of correctly identifying
weeds and accurately spraying is 81%. The time to detect
a single picture is 30ms. From the above data, it can be
seen that the application of precision spraying robots in
the field is feasible. The improved yolov5s model has a
better recognition effect on corn and weeds in the field
operation environment and still has a high recognition rate
in the environment of wind, occlusion, and weak light,
which proves that the improved yolov5s model is robust and
effective.

In precision spraying experiments, there are also cases of
mistakenly sprayed, unidentified, mistakenly identified, and
weeds that are successfully identified but not sprayed. The
reason for mistakenly sprayed and mistakenly identified is
that there are many wheat seedlings in the corn field, and
the model identified some wheat seedlings as weeds. The
reason why weeds are successfully identified but not sprayed
is that the precision spraying system did not open the pump in
time. The reason why the target is not identified may be that
the characteristics of corn and weeds cannot be accurately
captured by themodel due to thewind and the jolt of the robot,
resulting in the inability to identify them. There are still many
challenges in precision spraying weeding operations, but this
study verifies the feasibility of precision spraying operations
and provides data support for precision spraying robots.

IV. CONCLUSION
In this study, a lightweight model based on the improved
yolov5s was proposed to detect corn and weeds in complex
environments in the field, and a precision spraying robot
was designed. At first, the corn and weeds image data were
collected, and the dataset was built using data enhancement
methods based on category balance and agronomic character-
istics. Using feature map visualization experiments, we found
the problem of the yolov5s model in the feature extraction
stage, which can not emphasize the important feature
information and suppress irrelevant feature information.
Therefore, the SENet network was introduced in the feature
extraction network, which enables themodel to focusmore on
important features and suppress the extraction of unimportant
features to improve the recognition performance of the
model. In this study, the C3-Ghost-bottleneck module was
designed using the Ghost module and replaced the C3module
in the yolov5s structure, thereby reducing the number of

parameters and computation, making the yolov5smodelmore
lightweight and easier to deploy at the edge. The results
show that the overall performance of the improved yolov5 s
model was better than that of the original model. It had better
detection accuracy and detection speed. Compared with the
original model, the map@0.5 value is improved by 3.2%, and
the file size is reduced by 3.6MB. The AP value for corn
recognition increases from 93.2% to 96.3%, and the AP value
increases by 3.1%. The AP value for weeds increases from
85.6% to 88.9%, an increase of 3.3%. The time to detect
a single image is 3.2 ms. The robustness of the model is
demonstrated by detecting images with different brightness,
noise, and random occlusion. Based on the improved yolov5s
model, the improved model was deployed on Jetson AGX
Xavier, the precision spraying system was designed and a
precision spraying robot was built. The precision spraying
experiments of weeds were conducted in the field, the
accuracy of identifying weeds in the field is 83%, the
accuracy of identifying corn is 92%, and the probability of
corn being identified as weeds is 7%. The probability of
correctly identifying weeds and accurately spraying is 81%.
The time to detect a single picture is 30ms. The results show
that precision spraying operation is feasible and the precision
spraying robot can achieve precision spraying operation with
high accuracy, and it also verifies that the improved yolov5s
model has better recognition performance in the field.

In future work research, we intend to further improve the
detection ability for corn and weeds. Additionally, we will
continue to optimize the precision spraying robot.
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