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ABSTRACT Improving the characteristics of digital signal processing devices is an important task in many
practical problems. The paper proposes the architecture of a two-dimensional digital filter with a 5×5 mask,
in which calculations are performed according to the Winograd method in the Residue Number System
(RNS) with moduli of a special type. Theoretical analysis and hardware Field-Programmable Gate Array
simulation are presented. The results show that the fragment throughput fr/s (number of fragments per
second) of the device is 29.6% – 724.7% higher than state-of-the-art solutions. This is achieved by the
combination of theWinogradmethod, which reduces the number ofmultiplications, with the RNS arithmetic,
which performs addition and multiplication under smaller operands in parallel. However, our experiments
showed that the proposed method requires up to 2.54% – 11.01%more Look-Up Tables and 3.58% – 19.83%
higher power consumption compared to known analogues.

INDEX TERMS Residue number system, winograd method, field-programmable gate array, digital filter,
digital signal processing.

I. INTRODUCTION
Digital filters are widely used as components of complex
digital signal processing and analysis systems. These systems
are used in practical tasks such as medicine [1], [2], [3], [4],
geolocation [5], [6], video surveillance systems [7],
product quality control in production [8], and many
other areas. In these practical problems, performance
plays a main role. Therefore, development of high-
speed digital signal processing devices is an important
problem [9], [10].

Operations parallelization is a common approach to
increase the performance of a device. However, in many cases
this method leads to an increase in hardware resources [11].
One of the approaches to reduce hardware resources is

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

the Common subexpression elimination (CSE) technique
to minimize logical operators and reduce the logical
depth [12], [13].

Although the calculation of the filter coefficients according
to the given parameters within the device is making the filter
more versatile, it requires additional hardware resources [14].
Therefore, it is advisable to calculate the filter coefficients
in advance and store them in the device memory. Moreover,
when the form of the filter coefficients is known in advance,
this allows to optimize device architecture [15].

The main computational load during filtering is the
repeated execution of the multiplication operation. It is
to reduce the number of multiplications to increase the
performance. In [16], the Winograd filtering method was
proposed, which reduces the number of multiplications in
the filtering process by increasing the number of additions.
Another approach is parallel computations. The Residue
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Number System (RNS) is a non-positional number system
where numbers are represented are represented as set of
reminders by independent co-prime moduli and arithmetic
operations can be performed in parallel [17]. The authors
of [18] propose a method of constructing digital filters in
RNS to automate the device design process and provide an
effective ratio of performance and energy efficiency. The
article [19] presents a digital filter architecture based on
the Winograd method and RNS for a 2 × 2 filter mask.
Unfortunately, the case of a 2 × 2 mask considered in the
article is rarely used in practice.

Using RNS in real applications faces the problem of
implementing computationally complex operations, such as
forward and inverse conversion to RNS from positional
representation, sign detection, comparison of numbers, and
division. Despite the listed problematic operations, RNS
allows to increase the speed of calculations, for example,
as it shown for convolutional neural networks in [20]. To use
advantage of non-positional nature of RNS the Winograd
method should be modified accordingly. In this paper,
we propose a new approach to the design of the device
of digital filters based on RNS and modified Winograd
method. Our contribution is summarized in the following
list:

• A new modified Winograd method is proposed to
increase the performance of two-dimensional digital
filters with a 5×5 mask.

• Winograd method 3-modulus RNS with moduli of a
special form 2α and 2α

− 1 has been merged to increase
the performance of the digital filter.

• The architecture of a digital filter device with a
5 × 5 mask has been developed based on the proposed
modified Winograd method.

• Performance of the digital filter is theoretically eval-
uated based on the unit-gate model [21] was made.
Theoretical evaluation showed the performance advan-
tage of the proposed architecture compared to known
analogues.

• The results of our FPGA simulation show that the
proposed filter architecture has a higher fragment
throughput by 29.6% - 724.7% compared to analogues.

The proposed device is designed to filter a 2D signal
depending on the filter mask being used. It can per-
form various functions, such as smoothing, noise removal
(impulse, Gaussian), sharpening, and edge detection. The
main target application of the proposed filter is the hard-
ware accelerators design of convolutional neural networks
(CNN), since the 5 × 5 mask is often used in CNN
architectures [22], [23].

The rest of the paper is organized as follows. The second
section presents the features of digital filtering in RNS. The
third section consists of the knownWinogradmethod for two-
dimensional filtering. Forth section proposes modification of
Winograd method using RNS with moduli 2α and 2α

− 1
for design digital filters. Fifth section contains results of
theoretical analysis and simulation. Analysis of the research
results are presented in the sixth section. The conclusions are
presented in the seventh section.

FIGURE 1. Circuit of the α-bit FIR device of order P .

FIGURE 2. Circuit of the α- bit MAC device.

FIGURE 3. Circuit α−bit MOA device.

II. APPLICATION OF RNS FOR DIGITAL FILTERING
The tool for implementing digital signal filtering are digital
filters, which are usually divided into filters with a finite
impulse response (FIR) and filters with an infinite impulse
response (IIR). Based on a sequence of signal samples X (n)
a signal Y (n) is formed at the output of the FIR filter defined
by the formula:

Y (n) =

P−1∑
i=0

fiX (n− 1) , (1)

where fi are filter coefficients and P is a filter order.
Figure 1 shows the FIR filter architecture. The device

input receives a sequence of signal samples X (n) and
filter coefficients fi, and the output is a signal Y (n). The
multiplication with accumulation operation according to the
equation (1) is performed using multiply-accumulate units
(MAC) shown in Figure 2. The MAC device consists of a
partial product generator (PPG) unit, which is formed from an
array of AND gates [24] and a multi-operand adder (MOA).

MOA units can be implemented using a tree of various
adders. In this paper we use carry-save adder (CSA) [24],
which convert the addition operation of three numbers to
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FIGURE 4. Digital filtering in RNS.

addition of two numbers. The result of the CSA-tree is added
using a Kogge-Stone parallel-prefix adder (KSA) [25].

The MOA device architecture is shown in Figure 3.
A sequence of terms {Pi} is fed to the input of the device,
where 0 ≤ i ≤ n and the output is the sum S.

We use RNS as one of the ways to accelerate computations
using parallelism. Any integer 0 ≤ A < P can be
uniquely represented in RNS as residues from division into
system modules A = {a1, a2, . . . , an}, where P – is the
RNS dynamic range equal to the multiplication of coprime
modules {p1, p2, . . . , pn}.
Digital filtering according to formula (1) in RNS is

performed in several stages (Figure 4). First, it is necessary
to convert data from the positional number system (PNS)
to RNS. Then, filtering is performed in parallel on several
computational channels, which correspond to the RNS
moduli. Next, the inverse conversion from RNS to PNS is
performed.

The type of RNS moduli affects the performance of
calculations. Therefore, their choice is an important problem
when designing application systems that use RNS arithmetic.
On the one hand, the moduli set must provide a sufficient
dynamic range of the system for unambiguous numbers
representation in RNS. On the other hand, the moduli must
be balanced in such a way that the execution time for each
channel is approximately the same and doesn’t cause long
system downtime for any computing channel. Finally, the
RNS moduli of the special form 2α and 2α

−1, α ∈ N, where
N stands for the set of natural numbers, make it possible to
avoid the resource-consuming operation of modulo division.

We propose to use the modified Winograd method with
calculations in RNS with modules of a special form 2α and
2α

− 1 to implement digital filtering.

III. WINOGRAD FILTERING METHOD F
(
2 × 2, 5 × 5

)
One-dimensional filtering by the Winograd method can be
represented in matrix form as:

z = AT
(
(Gw) ⊙

(
BT d

))
, (2)

where operator ⊙ denotes element-wise matrix multiplica-
tion, A, G and B are transformation matrices, w is one-
dimensional filter mask, d is data vector, z is filtering
result [26]. The algorithm of one-dimensional filtering
according to the Winograd method is usually denoted

F (n, k), where n is a vector’sz size, and k is filter mask w
size.

Two-dimensional filtering by the Winograd method in
matrix form is [26]:

Z = AT
((
GWGT

)
⊙

(
BTDB

))
A, (3)

where W is a two-dimensional filter mask, D is a two-
dimensional data array, and Z is a two-dimensional array
of filter result. The two-dimensional filtering algorithm
according to the Winograd method is usually denoted
F (n× n, k × k).
Consider one-dimensional filtering by the Winograd

method using the example of the case F (2, 5). We represent
the vectors w, d and z as polynomials

z (x) = z1x + z0,

w (x) = w4x4 + w3x3 + w2x2 + w1x + w0,

d (x) = d5x5 + d4x4 + d3x3 + d2x2 + d1x + d0. (4)

Then the filtering can be represented as a product of
polynomials

d(x) = w(x)z(x), (5)

Let us introduce a polynomial m(x) of degree 6, and
represent d(x) as the remainder modulo m(x)

d (x) = w (x) z (x)modm(x), (6)

If we replace m(x) of degree 6 with a polynomial of
degree 5, then

d (x) = w (x) z (x)modm(x) + Rm(x)[d(x)], (7)

where Rm(x)[d(x)] is remainder of the division d(x) by m(x).
Let’s choose a polynomial m (x) = m(0) (x) · m(1) (x) ·

m(2) (x) · m(3) (x) · m(4) (x) · m(5) (x) · m(6) (x) =

x(x−1)(x+1)(x−2)(x+2)(x −
1
2 )(x−∞), where (x−∞)

corresponds Rm(x)[d(x)]. Then the remainder after division
w(x) by m(i)(x) are

w(0) (x) = w0,

w(1) (x) = w0 + w1 + w2 + w3 + w4,

w(2) (x) = w0 − w1 + w2 − w3 + w4,

w(3) (x) = w0 + 2w1 + 4w2 + 8w3 + 16w4,

w(4) (x) = w0 − 2w1 + 4w2 − 8w3 + 16w4,

w(5) (x) = w4. (8)

And the remainder from division z(x) by m(i)(x) are

z(0) (x) = z0,

z(1) (x) = z0 + z1,

z(2) (x) = z0 − z1,

z(3) (x) = z0 + 2z1,

z(4) (x) = z0 − 2z1,

z(5) (x) = z1. (9)
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The transformation matrix A is composed of coefficients with
remainders after division z(x) bym(i)(x) and has the following
form

A =


1 0
1 1
1 −1
1 2
1 −2
0 1

 . (10)

Let M (i)(x) =
m(x)
m(i)(x)

, then

m (x) = x5 − 5x3+4x,
M(0) (x) = x4 − 5x2+4,
M(1) (x) = x4 + x3 − 4x2−4x,
M(2) (x) = x4 − x3 − 4x2+4x,
M(3) (x) = x4 + 2x3 − x2−2x,
M(4) (x) = x4 − 2x3 − x2+2x. (11)

The transformation matrix B is composed of the coefficients
of the polynomialsM (i)(x) and m(x), and coefficientsM (i)(x)
correspond to the i-th column of the matrix B

B =


4 0 0 0 0 0
0 −4 4 −2 2 4

−5 −4 −4 −1 −1 0
0 1 −1 2 −2 −5
1 1 1 1 1 0
0 0 0 0 0 1

 . (12)

Using the extended Euclidean algorithm, we compute
h(i)(x) and H (i)(x) such that h(i) (x)m(i) (x) + H (i) (x)
M (i) (x) = 1 [16]:

h(0) (x) = −
1
4
x3 +

5
4
x, H(0) (x) =

1
4
;

h(1) (x) =
1
6
x3 +

1
3
x2 −

1
3
x − 1, H(1) (x) = −

1
6
;

h(2) (x) =
1
6
x3 −

1
3
x2 −

1
3
x + 1, H(2) (x) = −

1
6
;

h(3) (x) = −
1
24

x3 −
1
6
x2 −

7
24

x−
1
2
, H(3) (x) =

1
24

;

h(4) (x) = −
1
24

x3 +
1
6
x2 −

7
24

x+
1
2
, H(4) (x) =

1
24

.

(13)

The transformation matrix G is composed of the coefficients
of the division residues w(i)(x) (x) multiplied by H (i)(x)

G =



1
4 0 0 0 0

−
1
6 −

1
6 −

1
6

1
6 −

1
6

−
1
6 −

1
6 −

1
6

1
6 −

1
6

1
24

1
12

1
6

1
3

2
3

1
24 −

1
12

1
6 −

1
3

2
3

0 0 0 0 1


. (14)

For two-dimensional filtering F (2 × 2, 5 × 5) calculations
are made according to formula (3). Next, the device architec-
tures of two-dimensional filtering by the Winograd method
F (2 × 2, 5 × 5) with calculations in RNS are presented.

IV. THE FILTER ARCHITECTURE ACCORDING TO THE
MODIFIED WINOGRAD METHOD F

(
2 × 2, 5 × 5

)
IN THE

RESIDUE NUMBER SYSTEM
A new filtering method based on the Winograd method
based on RNS with moduli of a special form 2α and
2α

− 1 is proposed to increase the performance of digital
filtering.

Let’s divide a two-dimensional signal into fragments D
with sizem×m,m > k . Each fragment is processed by a k×k
filter w using the Winograd method F (n× n, k × k) with
step n for each dimension. In the case of F (2 × 2, 5 × 5) the
two-dimensional signal is divided into 6×6 fragments and the
processing is performed with a step of 2, the result of filtering
one fragment D is a filtered 2×2 fragment Z. Figure 5a shows
filtering process of a 256 × 256 2D signal with a 5×5 filter
mask using Winograd method F (2 × 2, 5 × 5).

Performing filtering with k × k mask in traditional way
requires k2 multiplications. Then n2k2 multiplications are
required to form an n×n filtered fragment. Winograd method
F (n× n, k × k) requires (n+ k − 1)2 multiplications [26].
Then to filter a 6×6 signal fragment with a 5×5 filter mask it
is necessary to perform 900 multiplication operations. Using
Winograd method F (2 × 2, 5 × 5) allows to reduce number
of multiplications to 36, that is, the computational complexity
is reduced by 25 times.

The procedure of two-dimensional filtering according to
theWinograd method described by formula (3), processes the
signal in several stages. Let’s denote the result of the filter
mask transformation is denoted as U = GWGT . Since the
filter coefficients are constants, this transformation can be
performed once in advance, which means it does not carry
a computational load. Let’s designate the transformation
result of input data D as V = BTDB, and the result of
element-wise matrix multiplication as M = U ⊙ V . Then,
considering the introduced notations, formula (3) becomes
Z = ATMA. Figure 5b shows filtering process of signal
fragment D according to theWinograd method using the case
F (2 × 2, 5 × 5) as an example.

The addition of several numbers modulo 2α and 2α
− 1 is

proposed to be performed using a multi-operand modulo
adder, denote them asMOMA2α andMOMA2α−1 respectively
(Figure 6). These devices consist of a CSA tree and a
KSA. The vector P =

{
P0,P1, . . . ,Pβ

}
, comes to the input

of the devices and the sum S is formed at the output.
For calculations modulo 2α

− 1 End-Around-Carry (EAC)
technique is used [27].

Data transformations modulo 2α are performed using the
devicesDTE2α (data transform element), shown in Figure 7a.
The device input is the vector {Pi}, where 0 ≤ i < l.
Since negative numbers modulo 2α are represented in a two’s
complement code, a correction constant C , is introduced,
equal to the number of vector {Pi} negative elements. SL (shift
left) blocks perform a left shift by n bits, which corresponds to
a multiplication by 2n. Next, addition is performed using the
CSA adder tree. Data conversion modulo 2α

−1 is performed
using the device DTE2α−1 (Figure 7b) differs in that the
technique of cyclic transfer of EAC high bits is used, and
SLA devices (shift left around) perform cyclic shift by n bits.
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FIGURE 5. Filtering scheme according to the Winograd method F
(
2×2, 5×5

)
of a 256 × 256 2D signal (a) a

scheme for dividing a 256 × 256 2D signal into 6 × 6 fragments D with a step of 2; (b) filtering scheme of 6 × 6
fragment D according to the Winograd F

(
2×2, 5×5

)
method.

Since negative numbers modulo 2α
−1 are represented in the

one’s complement code, then adding a correcting constant is
not required.

The calculation of one matrix V row elements modulo 2α

is performed by the DTR2α device (Figure 8). This device
performs data transformation from matrix D and generates
elements Vi,j, 0 ≤ i ≤ 5, 0 ≤ j ≤ 5. To calculate
the elements of the i-th row of the matrix V modulo 2α ,
the input DTR2α is supplied with the data vector Di ={
Di0,D

i
1, . . . ,D

i
23

}
, correction coefficient C = 2 and shift

vector N i
=

{
N i
0,N

i
1,N

i
2

}
. For example, to calculate the

elements of the row V0,j, data vector is supplied to the input
D0

= {d0,0, d2,0, d2,0, d4,0, d0,1, d2,1, d2,1, d4,1, d0,2, d2,2,
d2,2, d4,2, d0,3, d2,3, d4,3, d0,4, d2,4, d2,4, d4,4, d0,5, d2,5, d2,5,
d4,5}, correction coefficient C = 2 shift vector N 0

=

{1, 2, 2}. The input data goes to the DTE2α data conversion
devices, the result is added usingMOMA2α adders. Thus, the
data conversion device modulo 2α (let’s denote it as DT2α )
consists of 6 DTR2α devices.

Calculation of the matrix V elements modulo 2α
− 1

requires the representation of negative numbers in the one’s
complement code, that is, the inversion of the number,
therefore, the correction constants are not involved in the
calculations. Therefore, the device for data transformation
modulo 2α

− 1 (let’s denote it as DT2α−1) consists of 6
DTR2α−1 devices (shown in Figure 8) the inputs of which are
vectors Di and N i.
Element-wise multiplication of matrices U and V is

performed using devices EWM2α and EWM2α−1, consisting
of 36 parallel multipliers of two numbers MUL2α and
MUL2α−1 respectively, and shown in Figure 10. Elements of
the matrices U and V are supplied to the input of the device.
The multiplierMUL2α consists of a partial product generator
modulo 2α PPG2α , which is formed from an array of AND
gates [21] and MOMA2α . The MUL2α−1 device consists of a
partial product generator modulo 2α

− 1 PPG2α−1, using the
EAC technique, and MOMA2α−1. Thus, a 6 × 6 matrix M is
formed.
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FIGURE 6. Circuit of multi-operand modulo adder MOMA: (a) modulo 2α

(MOMA2α ); (b) modulo 2α−1 (MOMA2α−1).

FIGURE 7. DTE data conversion device: (a) modulo 2α ; (b) modulo 2α−1.

The calculation of the matrix Z one row elements modulo
2α is performed by the FTR2α deivce (Figure 11). This device
performs the final data transformation from the matrixM and
generates elements Zi,j, 0 ≤ i ≤ 1, 0 ≤ j ≤ 1. To calculate
the elements of the i-th row of the matrix Z modulo 2α , to the
input of FTR2α supplied data vector Ri =

{
Ri0,R

i
1, . . . ,R

i
29

}
,

correction coefficients C i
=

{
C i
0,C

i
1,C

i
2

}
and offset vector

N i
=

{
N i
0,N

i
1,N

i
2

}
. For example, to calculate the elements

of the row Z0,j, to the input supplied data vector R0 =

{M0,0,M1,0,M2,0,M3,0,M4,0,M0,1,M1,3,M1,1,M2,1,M3,1,

M4,1,M0,2,M1,2,M2,2,M3,2,M4,2, M0,3, M2,3, M3,3,M4,3,

M0,4,M1,4,M2,4,M3,4,M4,4,M0,5,M1,5,M2,5,M3,5,M4,5},
correction coefficients C0

= {0, 0, 2} and offset vector
N 0

= {1, 0, 0}. The input data goes to the DTE2α data
conversion devices, the result is added using MOMA2α

adders. Thus, the device for data transformation modulo 2α

(let’s denote it as FT2α ) consists of 2 FTR2α devices.
Calculation of the matrix Z elements modulo 2α

− 1
requires the representation of negative numbers in the inverse
code, therefore, the correction constants do not participate in
the calculations. Therefore, the device for data transformation
modulo 2α

− 1 (let’s denote it as FT2α−1) consists of
2 FTR2α−1 devices (shown in Figure 8) the inputs of which
are vectors Ri and N i.

Figure 13 shows the proposed filtering device
F (2 × 2, 5 × 5)2α modulo 2α . The U = GWGT filter mask
transformation is done preliminarily, and the result is stored in
the device memory. Since operations with negative numbers
require their presentation in two’s complement code, the
correction constants are also stored in the device memory.
Figure 14 shows a circuit of the proposed filtering device
F (2 × 2, 5 × 5)2α−1 by modulo 2α

− 1. Only the converted
filter mask is stored in the memory of this device.

V. EVALUATION
For a theoretical assessment of the delay and area of a digital
device, we use the ‘‘unit-gate’’ model [21]. The proposed
filters based on the Winograd method F (2 × 2, 5 × 5) and
RNS with moduli of a special type consist of the DTR,
MUL and FTR devices described above. The DTR device
consists of DTE and MOMA blocks. Device parameters
DTE2α (Figure 7a) are calculated by the formula:

Udelay (DTE2α ) = 6, 8log2 (l + 1) ,

Uarea (DTE2α ) = 7αl − 7α, (15)

and device DTE2α−1 (Figure 7b) by the formula:
Udelay (DTE2α−1) = 6, 8log2l,

Uarea (DTE2α−1) = 7αl − 14α (16)

The parameters of the adder MOMA2α have the form, where
N – is the number of terms [28]:

Udelay (MOMA2α ) = 6, 8log2N + 2log2α + 4,

Uarea (MOMA2α ) = 3αlog2α + 7αN − 11α + 1. (17)

Similarly, the parameters of the adder MOMA2α−1 can be
represented as [28]:

Udelay (MOMA2α−1) = 6, 8log2N + 2log2α + 4,

Uarea (MOMA2α−1) = 3αlog2α + 7αN − 8α. (18)

The MUL multiplier consists of a partial product generator
PPG and a MOMA block with α inputs. The partial
product generator PPG2α has the following delay and area
parameters:

Udelay (PPG2α ) = 0, 5α2
+0, 5α,

Uarea (PPG2α ) = 0, 5α2
+ 0, 5α. (19)
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FIGURE 8. DTR2α device for calculating the elements of the i -th row of the matrix V modulo2α .

The partial product generator PPG2α−1 has the following
parameters:

Udelay (PPG2α−1) = α2,

Uarea (PPG2α−1) = α2. (20)

Then, considering (17) and (19), the multiplier MUL2α has
the following parameters:

Udelay (MUL2α ) = 8, 8log2α + 0, 5α2
+ 0, 5α + 4,

Uarea (MUL2α ) = 3αlog2α + 7, 5α2
− 10, 5α + 1. (21)

And the multiplier MUL2α−1, based on (18) and (20) has the
following parameters:

Udelay (MUL2α−1) = 8, 8log2α + α2
+ 4,

Uarea (MUL2α−1) = 3αlog2α + 8α2
− 8α. (22)

The DTR2α device parameters (Figure 8) can be calculated
using the formulas:

Udelay (DTR2α ) = 2Udelay (DTE2α )

+ Udelay (MOMA2α )

= 2log2α + 58, 4,

Uarea (DTR2α ) = 18Uarea (DTE2α )

+ 6Uarea (MOMA2α )

= 18α log2 α + 480α + 6, (23)

and device DTR2α−1 by formulas

Udelay (DTR2α−1) = 2Udelay (DTE2α−1)

+ Udelay (MOMA2α−1) = 2log2α + 44, 8,

Uarea (DTR2α−1) = 18Uarea (DTE2α−1)

+ 6Uarea (MOMA2α−1)

= 18α log2 α + 372α. (24)

The parameters of the MUL device for numbers multiplica-
tion are calculated using formulas (21) and (22). FTR device
parameters modulo 2α are

Udelay (FTR2α ) = 2Udelay (DTE2α )

+ Udelay (MOMA2α )

= 2log2α + 58, 4,

Uarea (FTR2α ) = 10Uarea (DTE2α )

+ 2Uarea (MOMA2α )

= 6α log2 α + 297α + 2, (25)
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FIGURE 9. DTR2α−1 device for calculating the elements of the i -th row of the matrix V modulo 2α−1.

and modulo 2α
− 1 are

Udelay (FTR2α−1) = 2Udelay (DTE2α−1)

+ Udelay (MOMA2α−1)

= 2log2α + 58, 4,

Uarea (FTR2α−1) = 10Uarea (DTE2α−1)

+ 2Uarea (MOMA2α−1)

= 6α log2 α + 250α. (26)

The proposed Winograd filtering devices F (2 × 2, 5 × 5)
consist of 6 DTR devices, 36 MUL devices and 2 FTR
devices. Thus, the parameters of the proposed device
modulo 2α , based on (21), (23) and (25), are

Udelay (F (2 × 2, 5 × 5)2α ) = Udelay (DTR2α )

+ Udelay (MUL2α )

+ Udelay (FTR2α )

= 12, 8log2α + 0, 5α2

+ 0, 5α + 120, 8,

Uarea (F (2 × 2, 5 × 5)2α ) = 6Uarea (DTR2α )

+ 36Uarea (MUL2α )

+ 2Uarea (FTR2α )

= 228α log2 α + 270α2

+ 3096α + 76, (27)

and modulo 2α
− 1, based on (22), (24) and (26) are

Udelay
(
F (2 × 2, 5 × 5)2α−1

)
= Udelay (DTR2α−1)

+ Udelay (MUL2α−1)

+ Udelay (FTR2α−1)

= 12, 8log2α + α2
+ 107, 2,

Uarea
(
F (2 × 2, 5 × 5)2α−1

)
= 6Uarea (DTR2α−1)

+ 36Uarea (MUL2α−1)

+ 2Uarea (FTR2α−1)

= 228α log2 α

+ 288α2
+ 2552α. (28)
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FIGURE 10. MUL multiplier circuit: (a) modulo 2α (MUL2α ); (b) modulo
2α−1 (MUL2α−1).

TABLE 1. Units for magnetic properties.

The proposed signal filtering device was compared with a
device for filtering by the Winograd method without using
RNS [29]. In addition, a comparison was made with a
filtering device consisting of multiply-accumulation units
(MAC) [30], and a device consisting of truncated multiply-
accumulation units (TMAC)without RNS arithmetic [31] and
with RNS [28]. To implement calculations in RNS,moduli set
of a special type were used, presented in Table 1. We consider
only 3-modulus RNS cases, although the proposed method
can be applied to RNS with more modules. The choice of
RNS modules depends on the specific practical task, while
considering required dynamic range of the system and the fact
that bigger number of moduli leads to higher complexity of
the inverse conversion to PNS.

FIR filters based on MAC units [30] denotes as
FIR (MAC), then for a filter of order P, the device area and
delay parameters are calculated as follows:

Udelay (FIR (MAC)) = 8, 8Plog2α+8, 8log2α + 5P+5,

Uarea (FIR (MAC)) = 3αPlog2α + 3αlog2α

+ 8α2P+ 8α2
− 20αP− 4α + P+ 1.

(29)

For filters based on TMAC blocks FIR (TMAC), the filter of
order parameters P are calculated as follows:

Udelay (FIR (TMAC)) = 6, 8Plog2α+8, 8log2α + P+5,

Uarea (FIR (TMAC)) = 3αlog2α + 8α2P+ 8α2
+ 3α + 1.

(30)

The parameters of a device based on TMAC blocks in RNS
that performs calculations modulo 2α , are calculated by (30)
and for devices modulo 2α

− 1 as follows [28]:

Udelay
(
FIR (TMAC)2α−1

)
= 6, 8Plog2α

+ 8, 8log2α + P+ 5,

Uarea
(
FIR (TMAC)2α−1

)
= 3αlog2α + 8α2P

+ 8α2
+ 6α. (31)

Table 2 presents the results of the theoretical evaluation of the
area and delay parameters of the proposed and known filters
based on the ‘‘unit-gate’’ model. The processing time for a
frame sized 256 × 256 was also estimated.

Hardware simulation on FPGA was carried out in the
Xilinx Vivado 2018.3 CAD environment for the Virtex
UltraScale xcvu440-flgb2377-3-e target board with the
Flow_PerfOptimized_high optimization strategy. The pro-
posed architecture is not tied to a specific board and
can be synthesized on other target devices. Calculations
are made in fixed point format. 8-, 16-, and 32-bit
filters were considered. For devices with calculations in
RNS with modules of a special type, the capacity of
each computing channel corresponds to the degree of the
module.

The hardware simulation results are presented in Table 3.
To evaluate devices, parameters such as clock frequency,
number of LUTs, power consumption, and performance were
used, which were obtained as a result of simulation in the
design environment. Device fragment throughput refers to the
number of processed frames with size of 256×256 pixels per
second.

VI. DISCUSSION
The theoretical analysis of the parameters of the proposed
and known two-dimensional filters with a 5×5 mask showed
that the use of the proposed approach based on the Winograd
method and RNS with moduli of a special type reduces the
device delay by 15.3% – 81.3%, and the signal processing
time also decreases by 15.3% – 95.3%, compared with known
approaches. In addition, the device based on the proposed
method has a 9.66% – 46.76% smaller area compared to the
device based on the Winograd method [29]. Nevertheless,
the application of the proposed approach increases the area
of the device by 2.7% – 437% in comparison with other
considered known methods.

The results of hardware simulation showed that the
proposed method of constructing filters based on the
Winograd method and RNS allows to increase the clock
frequency of 16-bit and 32-bit devices by 29.63% and
38.24%, respectively, compared to the filter based on the
Winograd method [29] without using RNS arithmetic. But for
8-bit devices, the filter clock based on the proposed method is
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FIGURE 11. FT R2α device for calculating the elements of the i-th row of the matrix Z modulo 2α .

FIGURE 12. FT R2α−1 device for calculating the elements of the i-th row of the matrix Z modulo 2α−1.

3.23% lower. In addition, the proposed method increases the
clock frequency of the device by 7.14% - 105.88% compared
to methods based on FIR filters with MAC and TMAC
blocks [28], [30], [31].

The combined use of RNS and the Winograd method
allows to reduce the number of LUTs by 9.50% -
28.17%, and energy consumption by 0.49% - 4.14%,
compared with the Winograd method in the PNS. However,
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FIGURE 13. Two-dimensional filtering device F
(
2×2, 5×5

)
2α by the Winograd method with calculations by modulo 2α .

FIGURE 14. Two-dimensional filtering device F
(
2×2, 5×5

)
2α−1 by the Winograd method with calculations by modulo 2α−1.

TABLE 2. Theoretical parameters of two-dimensional filters with 5 × 5 mask.

devices designed according to the proposed method use
2.54% - 11.01% more LUTs and have 3.58% - 19.83%
higher power consumption compared to devices based on
methods [28], [30], [31].

Hardware simulation showed that the use of the proposed
method based on the Winograd and RNS method increases
the filter fragment throughput by 29.6% - 724.7% compared
to filters based on the considered known methods. However,

the 8-bit device based on the Winograd method and PNS
has a performance improvement of 3.22% compared to the
device based on the proposed method. The slight difference
between the results of theoretical analysis and the results of
hardware simulation is explained by the peculiarity of the
‘‘unit-gate’’ model, which does not consider the load capacity
of the device output, as well as the involved memory and the
time of accessing it.
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TABLE 3. Parameters of hardware simulation of two-dimensional filters with a 5 × 5 mask.

As the experiment results showed, the proposed filter
architecture can be applied in digital signal processing
systems where high performance is required. In systems
with limited hardware resources, it is better to use the
filter architecture proposed in [28], although this leads to
performance decrease.

The proposed filter architectures can be applied to digital
filters for edge detection [32], [33] and smoothing [34],
discrete wavelet transform [35], and to implement the
convolution operation in the convolutional layer of the
convolutional neural network [36].

VII. CONCLUSION
The paper proposes a digital filter architecture with 5×5mask
based on the modified Winograd method using RNS with
moduli of special type 2α and 2α

− 1. A theoretical analysis
and its hardware implementation on FPGA were performed.

Comparison with known digital filter architectures shows
that the proposed method allows to:

• increase the clock frequency of 16-bit and 32-bit devices
by

– 29.63%-38.24%, compared to the filter based on the
Winograd method without RNS [29],

– 7.14% - 105.88% compared to methods based
on FIR filters with MAC and TMAC blocks
[28], [30], [31].

• reduce the number of occupied LUTs by
9.50% - 28.17%, and power consumption by 0.49% -
4.14%, compared with the Winograd method without
RNS.

• increase filter fragment throughput (fr/s) by 29.6%
- 724.7% compared to filters based on the known
methods.

The research results can be efficiently used in the design
of digital signal processing systems, for example, neural
networks, machine vision, and many others.
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