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ABSTRACT With Predictive Current Controllers, system behavior or current reference is predicted. In this
way, it is aimed to prevent hardware and software related delays. In this study, newArtificial Neural Network
(ANN) based Predictive Current Controllers are designed using four different methods for voltage source
inverters. The training of the networks is done offline using the data obtained from the simulation results for
different parameters in the Matlab environment. In the first proposed method, a static ANN based current
controller is designed and trained using the data obtained from the Finite Control Set Model Predictive
Control (FCS-MPC)method. Then, a feed-forward reference current predictor ANN (PRefNN) is designed to
make sinusoidal reference current prediction in the other three methods. The other proposed predictive ANN
methods are trained by taking the data offline from the inverter system in which PRefNN and the classical
current controllers (Hysteresis, PR, and PI) are used. In this way, three different predictive current controllers
named as Hysteresis based predictive ANN (Hist-PNN), PR based predictive ANN (PR-PNN), and PI
based predictive ANN (PI-PNN) are designed. Classical current control methods have been given predictive
properties with these three different network structures. And also, it is improved the performance of classical
methods against parameter changes and noises. A three phase 5kVA inverter circuit with a 7MBP50RJ120
IPM module in the power stage and STM32f407 as a controller is designed for the experimental setup. The
methods are tested in simulation and validated in the experimental setup.

INDEX TERMS Artificial neural networks, current controller, model predictive control, predictive current
controller, three phase inverters.

I. INTRODUCTION
Artificial Neural Network (ANN) is one of the popular
control methods used recently. It is an approximation model
used for systems where the model is unknown or nonlin-
ear. Thanks to its function approximation capability, it is
useful for controlling nonlinear, discrete-time, and complex
systems [1], [2]. ANN-based controllers and estimators are
widely used in the identification and control of power
converters andmotor drives [3], [4]. ANN generally improves
the performance of the system. It can be designed with
previously obtained data without needing a system or facility
model. It can also reduce high hardware and software
requirements in some cases [4], [5]. Model Predictive
Control (MPC) is an accepted control strategy in both
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academic research and industrial applications. Academic
studies on MPC have increased significantly in recent
years [6], [7], [8], [9]. Especially with the contribution of
the developments in control elements, the use of MPC in
converters and drivers in power electronics has become an
attractive solution [8], [9], [10]. MPC is relatively easy to
implement in multivariate systems and offers a fast dynamic
response. It also allows nonlinear systems and constraints to
be conveniently incorporated into the controller. It has several
advantages, such as combining multiple control parameters
in one loop [10], [11]. The disadvantages are modelling
difficulties, sensitivity to load parameter variation and high
computational burden [12], [13], [14].

MPC uses the system model to predict the future value
of the controlled variables. According to the optimization
equation created, these estimated values are used to obtain
the desired optimal activation. MPC techniques used in
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Power Electronics are classified into two main categories:
Continuous Control Set MPC (CCS-MPC) and Finite Control
Set MPC (FCS-MPC). CCS-MPC uses a modulator that
produces output with a fixed switching frequency. FCS-MPC
generates the switching signals directly, and no modulator
is needed. It uses a limited number of possible switching
states for optimization. System behavior is predicted for
all switching positions using a discrete model. The most
appropriate switching position is determined and applied by
evaluating these estimates in a weighting function. The main
advantage of FCS-MPC is that it is used directly to the
converter without a modulation stage [10], [15], [16].

In a conventional MPC controller, the mathematical
model parameters of a variable load system need to be
controlled during operation. System efficiency decreases as
the weighting function must also be evaluated online at
each sampling interval. Therefore, the optimal control law
is obtained under various load conditions by applying the
MPC based ANN (MPC-ANN) control method with offline
training [17]. The high horizon length in the FCS-MPC
method increases the algorithm’s complexity. Since the data
from the FCS-MPC method is used to train the system using
the MPC-ANN method, a similar prediction horizon length
is obtained. However, there is no additional complexity in the
computational burden of the MPC-ANN structure.

There are various studies in whichMPC and ANN are used
together. These studies are on controlling a system parameter
or the whole system. In the study with reference [18], the
weighting function parameters used in FCS-MPC (λDC and
λSW, DC bus balance and switching frequency, respectively)
are produced from an ANN output trained for this task
and controlled. In another study given by [19], PI control
parameters are continuously adjusted using a predictive
neural network controller (PNNC) in a grid-connected
PV inverter controller. The PNNC estimates the control
parameters by monitoring the errors of the grid currents
and the DC-bus voltage. In [20], an MPC based neural
network controller is proposed for a three-phase four-level
flying capacitor inverter. Offline MPC simulation data were
obtained, and ANN was trained using these data. Two studies
that take advantage of the flexibility of MPC at training time
in [4] and [17] propose a feed-forward ANN based controller
for a three-phase inverter with output LC filter for UPS
applications. It is aimed to achieve lower THD and improve
dynamic performance for different load types. ANN is trained
offline using the data from the simulation results of FCS-
MPC. Filter current(if), output current(i0), output voltage
(VC), and output reference voltage (VC∗) are used as ANN
input. Voltage vector (Xopt) is obtained from ANN output,
and inverter output voltage control is performed. In [21],
an algorithm with less computational burden is obtained by
training the ANN from the FS-MPC algorithm in a UPS
application. In [22] and [23], firstly, the simulation of a grid
connected VSC system, including CCS-MPC and classical
PI controllers was carried out for training data collection.

In training the designed PI-based ANN andMPC-based ANN
networks, the data were obtained by simulation in a Matlab
environment and the supervisor learning technique was used.

Inverters are usually digitally controlled, so software and
hardware delays occur. These delays affect the performance
of the inverters. In particular, the output frequency character-
istics of inverters are affected, and phase shifts may occur,
making them unstable. Predictive approaches can be used to
compensate for these delays [24], [25].

This study aims to design Predictive based ANN current
controllers to control the inverter output current. As a result of
the studies carried out using 4 different methods, 4 different
Predictive based ANN current controllers are designed and
presented. In the first proposed method, ANN was trained
offline using the data obtained from the FCS-MPC simulation
and used as current controller (CC) in the inverter. Unlike
those in the literature, the input of the network is the current
reference iref(k), the current error ie(k) and the previous value
of the current error ie(k-1), the output of the network is the
switching states.

A feed-forward ANN reference current predictor
(PRefNN) network has been designed to make sinusoidal
reference current prediction in the other three methods. With
this block, it is aimed to generate the reference current
iref(k+2) value belonging to the next two sampling time
steps. In the design phase of the second Predictive ANN
CC structure realized, the training data is taken off-line
from the simulation, where Hysteresis CC follows the
predicted reference inverter current generated with PRefNN.
Using these data, a feedforward static ANN block with
3 neurons in the hidden layer was created. The inputs of
the designed Hysteresis-based Predictive ANN (Hist-PNN)
current controller are a reference and actual currents in
the abc-axes. The network outputs are the switching states
(Sa, Sb, Sc). In the third method, the training data for the
network training was obtained from the simulation using
the PRefNN reference current predictor and the Proportional
Resonant (PR) current controller. The proposed PR based
Predictive ANN (PR-PNN) current controller consists of a
dynamic feed-forward ANN with 2 neurons in the hidden
layer. The PR-PNN inputs are the current error, the previous
value of the current error, and the previous value of the output
in the αβ-axes. The network’s output is the inverter reference
voltages in the αβ-axes. Similarly, training data was obtained
from a system containing PRefNN and PI current controllers
in the fourth ANN-based predictive current controller. The
inputs of the trained PI-based predictive ANN (PI-PNN)
network are the inverter reference currents in the dq-axes
and the previous value of the network’s output. Its output is
the inverter reference voltages in the dq-axes. PI-PNN is a
dynamic feed-forward network structure with 2 neurons in
the hidden layer.

A three-phase 5 kVA inverter circuit was designed
in a laboratory environment for the experimental work.
The control card was created using the STM32f407
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FIGURE 1. Three-phase VSI inverter structure.

microcontroller. The inverter control software was prepared
using MikroC language for the 4 different methods designed,
and experimental verificationwas carried out by loading them
into the inverter system.

Section II presents the voltage source inverter (VSI)
structure used in the study and the mathematical model of
FCS-MPC created for this inverter structure. In Section III,
the proposed and designed predictive ANN models are
explained in detail and compared structurally. The obtained
simulation and experimental application results are given
in Section IV. The conclusions obtained are presented in
Section V.

II. THREE PHASE INVERTER STRUCTURE AND
FCS-MODEL PREDICTIVE CONTROLLER
A. TWO LEVEL VOLTAGE SOURCE INVERTER TOPOLOGY
In this study, a two-level VSI is used, which is the
most preferred DC/AC converter in industrial applications.
In addition, it has a structure and working principle that can
be easily extended to other topologies. The three-phase two-
level VSI structure is shown in Fig.1. For each phase output,
there is a phase leg and two switches that provide positive
(P) and negative (N) busbar connections. These two switches
work as complements of each other to avoid short circuits
in DC source. There is a desired state for the control of
each phase leg, and two switches are controlled according
to this situation [15], [26], [27]. A total of 6 semiconductor
switches (S1, S2, S3, S4, S5 and S6) are controlled as three
states (Sa, Sb, and Sc) and their complements (Sa’, Sb’,
and Sc’).

B. FINITE CONTROL SET -MODEL PREDICTIVE
CONTROLLER (FCS-MPC)
FCS-MPC is preferred because it is simpler than other
MPC in terms of ease of understanding and implementation.
FCS-MPC is an MPC method that emerged in power
electronics with its discrete structure. FCS-MPC does not
require a modulator due to its structure and switching
positions are produced directly after calculations. A state
output selection is made for controlling semiconductors.
These are one of the 8 possible switching states for DC/AC
inverter control with 3 main control signals (Sa, Sb, Sc).

FIGURE 2. Voltage vector representation of eight possible switching
states and all switching states.

FIGURE 3. Network structure of the PRefNN block.

When only one voltage vector (Fig.2) is used for each
control period, the drive output ripple is large. Also, when
FCS-MPC is used at the variable switching frequency,
filter design becomes more complex as output voltage and
current harmonics spread over a wide frequency range. The
fixed frequency output is recommended to reduce output
harmonics [8], [28], [29].

According to Fig.1, if the inverter output voltages are
written as Vdc based on the N point, the following (1) is
obtained. UaN

UbN
UcN

 =

 Sa
Sb
Sc

 ∗ Vdc (1)

where, Vdc is the DC-link voltage, and UaN , UbN , and UcN
are the inverter output voltages. According to Fig.1, when
the branch currents are followed, the following equations are
obtained when KVL is applied.

L
dia
dt

= Uan − Ria

L
dib
dt

= Ubn − Rib

L
dic
dt

= Ucn − Ric

(2)

where, L is the filter inductance, R is the load resistance, ia,
ib, and ic are the inverter output currents.

dix
dt

=
ix (k + 1) − ix (k)

TS
(3)
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If we substitute the Forward Euler method equation given
in (3) for each phase in (2), (4) is obtained.

ia (k + 1) =
Ts
L

[Uan (k) − Ria (k)] + ia (k)

ib (k + 1) =
Ts
L

[Ubn (k) − Rib (k)] + ib (k)

ic (k + 1) =
Ts
L

[Ucn (k) − Ric(k)] + ic(k)

(4)

The above equations are obtained for the abc-axes. These
equations are converted to αβ-axes with the help of Clarke
transform and the inverter model equation given by (5) is
obtained [28].

iα (k + 1) =
Ts
L

[Uαn (k) − Riα (k)] + iα (k)

iβ (k + 1) =
Ts
L

[
Uβn (k) − Riβ (k)

]
+ iβ (k)

(5)

Here, iα and iβ are the real and imaginary values of the
inverter output currents, Ts is the sampling time.

The weighting function is used for the optimization stage.
Using the weighting function in (6), valid values for all
subsequent possible switching states are obtained. As a result
of these functions, the switching state with the lowest g value
is selected. Weighting function [30] for VSI current control:

g =
∣∣I∗α − Ipα

∣∣ +

∣∣∣I∗β − Ipβ

∣∣∣ (6)

Here, Ipα = iα(k+1) and Ipβ = iβ (k+1) are obtained
from (5). I∗α and I∗β are inverter current references. With this
structure, the three-phase inverter output current is controlled
by predicting a one-step prediction horizon.

III. PROPOSED PREDICTIVE ANN CONTROLLERS
In this study, four different ANN-based current controller
models with predictive features are proposed. In the first
model, ANN was trained using the data obtained from the
MPC structure and used as a current controller (MPC-ANN).
To make sinusoidal reference current prediction, which is
common to the other three methods, a current reference
predictive ANN network (PRefNN) has been designed.

PRefNN generates the reference current iref(k+2) infor-
mation belonging two sampling time steps later. In the second
Predictive ANN CC (Hist-PNN) method implemented, the
simulation inwhich the reference inverter current is generated
with PRefNN, and this reference current is followed using the
Hysteresis current controller, was used to collect the training
data offline. Similarly, In the third method, PRefNN and
PR current controller were used, and in the fourth method,
PRefNN and PI current controller was used to obtain training
data, and network designs were carried out (PR-PNN and
PI-PNN). Reference generater PRefNN and designed four
different ANN-based current controller models are presented
below.

A. ANN-BASED SINUSOIDAL REFERENCE CURRENT
PREDICTOR (PREFNN)
In the design phase, a structure was needed to estimate the
two sampling time steps later value of a sinusoidal signal.
Thus, the next values of the generated reference currents
(abc or αβ) can be predicted. The data were taken over the
unit sine signal in the training phase. The input data are the
unit sine signals current and past five samples. The output
is determined as the value of the unit sine two sampling
times after the current sample. This way, data were obtained
by shifting the sampling time, and a feedforward ANN
structure was trained with these data. The created reference
predictive neural network (PRefNN) structure has six inputs,
one hidden layer, and one output. The hidden layer consists
of ten neurons and the hyperbolic tangent sigmoid (tansig)
activation function. The output layer consists of a neuron
and a pure-line activation function. Levenberg-Marquardt
backpropagation method was used in PRefNN training. Fig.3
shows the network structure, inputs, and outputs of PRefNN.

The sampling time in the training was determined as 50µs.
Using this block, Iref(k+2)will be obtained by predicting two
sampling time steps after the reference current value (100µs).
It can be used for a single phase. The required number should
be added for each phase (abc or αβ).

B. MODEL-1: MPC BASED ANN CURRENT CONTROLLER
(MPC-ANN)
Firstly, an MPC-based ANN (MPC-ANN) current controller
is proposed to control the inverter output current. For training
the MPC-ANN current controller, an inverter simulation
using FCS-MPC as the current controller is created in the
Matlab/Simulink simulation environment. In the inverter
simulation, there are eight different switching states for the
output of FCS-MPC. For these cases, using the discrete-time
model in (5), the inverter output current for one step ahead
is predicted. In the weighting function in (6) evaluates these
predicted current values, and the best switching states are
selected. Using this switching state information, all switching
signals are generated and applied to the inverter switches
during a sample time of Ts. Since the load parameter (L and
R) values are entered as model constants in FCS-MPC, the
inverter operates at a constant load. To operate at different
loads, the load constants used in the model need to be
changed. The inverter simulation was run by adjusting the
parameters for different load conditions, and the training data
were obtained offline separately. The collected training data
consists of 2400 data series for each input or output variable.
The scaled Conjugate Gradient Backpropagation method was
used to train the MPC-ANN current controller. The training
was completed after 81 iterations, and as a result of the
training, the cross entropy (CE) was 0.065829, and the error
output rate (E) was 18.98809.

The network created for MPC-ANN is a feed-forward
static network structure with six inputs, one hidden layer,
and seven outputs (Fig.5). The inputs of the network are the
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FIGURE 4. Block diagram of the simulation of VSI used to train and run the Hist-PNN current controller.

FIGURE 5. Network structure of MPC-ANN current controller.

FIGURE 6. Network structure of Hist-PNN current controller.

reference current Iref(k), the current error Ierr(k), and the
previous value of the current error Ierr(k-1) in the αβ axes.
Three neurons are in the hidden layer, and the sigmoid is
used as the activation function. Each of the network outputs
represents a switching position in the space vector. The
softmax function is used as the output activation function.

The proposedMPC-ANN current controller takes the input
values at every k sampling time and calculates the outputs

using these values in the ANN structure. The outputs of
the MPC-ANN are obtained as values representing seven
possible positions of the space vector. At any sampling step,
only one of these seven outputs produces output one, and
the others output zero. The output with a value of one is the
index value of the space vector to be generated. For this index
value, switching states information is obtained from the space
vector, and switching functions (Sa, Sb, Sc) are generated.

C. MODEL-2: HYSTERESIS BASED PREDICTIVE ANN
CURRENT CONTROLLER (HIST-PNN)
In the second proposed model, a reference predictive
hysteresis-based ANN (Hist-PNN) is designed that controls
the inverter output current by predicting two sampling time
steps ahead of the reference current (100µs). First, an inverter
simulation was prepared using PRefNN and Hysteresis CC,
which predict two steps ahead of the reference current
value in Section III-A, to obtain training data from the
Matlab/Simulink environment. The simulation block diagram
used for training and testing is given in Fig.4. Since the
Hysteresis CC works in abc coordinate axes, a separate
PRefNN block is used for each phase. Obtained reference
currents (k+2)th values were followed by Hysteresis CC,
and of the network are the reference current and inverter
currents inverter switching information was produced. The
input data of the network are the reference current and inverter
currents in the abc coordinate axes. Its output is the switching
signals of each phase. ANN structure and input and output
information are shown in Fig.6.

In the simulation, the hysteresis band is 0.1 A, the control
algorithm operating frequency is 20 kHz, filter inductance
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FIGURE 7. Block diagram of the simulation of VSI used to train and run the PR-PNN current controller.

is 3mH and the simulation run step time is 1 µs. Training
data were obtained using 3A, 6A, and 8A reference currents
values. For each input-output, 1200 data series were obtained
offline. The Hist-PNN current controller is designed as a
feedforward static network structure and is trained with
these data. Levenberg-Marquardt backpropagation method
was used in training. The training was completed with aMean
Square Error (MSE) of 0.0214966 and a regression value of
0.95604. Hist-PNN is a network consisting of six inputs, three
outputs, and one hidden layer. The hidden layer consists of
three neurons, and the tansig activation function is used. In the
output layer, the pure-line function is used.

The Matlab/Simulink block diagram used for obtaining
training data and testing the designed network is given
in,Fig.4. In the application phase, simulation tests were
performed at different reference current values, and the
network was verified.

D. MODEL-3: PR BASED PREDICTIVE ANN CURRENT
CONTROLLER (PR-PNN)
In this model, a reference predictive PR-based ANN
(PR-PNN) is designed, which controls the inverter output
current by predicting two sampling time steps ahead (100µs)
of the reference current. First, an inverter simulation,
including PRefNN, which predicts the two sampling time
steps ahead of the reference current, and PRCC,was prepared
to obtain training data in Matlab/Simulink environment. The
simulation block diagram used for training and testing is
given in Fig.7. Since the training takes place in the α and
β coordinate axes, two PRefNN blocks were used. The
(k+2)th values of the generated αβ reference currents were
followed by two PR CCs and inverter reference voltage

FIGURE 8. Network structure of PR-PNN current controller.

information was created. In the simulation, PR CC outputs
references voltage in the αβ-axes are converted to the
abc-axes coordinate. The PWM generator block generates
the inverter switching signal by comparing it with the 20kHz
triangle signal.

The training data were obtained in the simulation using 3A,
6A, and 8A reference current values for the filter inductance
of 3mH. Random noise was added to the received data in
order to increase the performance of the network. The training
was completed with an MSE of 0.00206879 and a regression
value of 0.99999. The training was not possible with ANN
structures in the static structure designed using the data
obtained with this method. For this reason, different network
designs have been studied.

As a result, a dynamic network structure has been
developed, including the input-output information seen in
Fig.8, and the outputs are also fed back as the network’s
input. The designed PR-PNN current controller structure
consists of six inputs, two outputs, and one hidden layer.
There are two neurons in the hidden layer. ANN inputs
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FIGURE 9. Block diagram of the simulation of VSI used to train and run the PI-PNN current controller.

are current errors and previous values of current errors for
the αβ-axes [Ialpha_err(k), Ialpha _err(k-1), Ibeta_err(k)
and Ibeta_err(k-1)]. In addition, the other two inputs are
the previous values of the αβ reference voltages, which
are also outputs [Valpha_ref(k-1) and Vbeta_ref(k-1)]. ANN
outputs are reference voltages in the αβ-axes [Valpha_ref(k)
and Vbeta_ref(k)]. The pure-line function in the hidden
layer and the tansig function in the input layer is used
as the activation function. The training was carried out
using the Levenberg-Marquardt backpropagation method.
Wcut=2.5 and w=314.1593 were used for the PR current
controller parameters during the training phase.

In Fig.7, the Matlab/Simulink block diagram is given for
receiving training data and testing the designed network.
In the application phase, the network was verified by
performing simulations for different reference current values.

E. MODEL-4: PI BASED PREDICTIVE ANN CURRENT
CONTROLLER (PI-PNN)
The fourth model, a reference predictive PI-based ANN
(PI-PNN), is designed to control the inverter output current
by predicting two sampling time steps ahead (100µs) of the
reference current. To obtain training data in Matlab/Simulink
environment, an inverter simulation including PRefNN and
PI CC was prepared. The simulation block diagram used
for training and testing is given in Fig.9. While receiving
the training data, two PRefNN blocks operating in the α

and β coordinate axes were used to predict the reference
current. The generated αβ reference currents (k+2)th values

were then converted to dq coordinate axes. The theta value
required for this conversionwas generated using the predicted
reference currents with the help of a PLL circuit. Two PI
CCs followed the generated dq-axes reference currents, and
inverter reference voltage information was created. In the
simulation, dq-axes references voltage, which are PI CC
outputs, are converted to coordinate abc-axes, and the inverter
switching signal is produced by comparing the 20kHz
sawtooth signal by the PWM generator block.

The training data were collected from the simulation
results for the filter inductance of 3mH and the 3A, 8A values
of the reference currents. The random noise was added to the
received training data in order to increase the performance
of the network. The training was completed with an MSE
of 0.00177157 and a regression value of 0.99999. Different
static ANN structures operating in αβ-axes or dq-axes have
been studied but training these structures has not been
possible. For this reason, a dynamic neural network structure
with input-output variables seen in Fig.10 is designed.
The proposed PI-PNN current controller structure consists

of six inputs, two outputs, and one hidden layer. There are
two neurons in the hidden layer. ANN inputs are current
errors and previous values of current errors for the dq-axes
[Id_err(k) Id_err(k-1), Iq_err(k), and Iq_err(k-1)]. The other
two inputs are the previous values of the dq-axes reference
voltages, which are also the network’s output [Vd_ref(k-1)
and Vq_ref(k-1)]. ANN outputs are reference voltages in
the dq-axes [Vd_ref(k) and Vq_ref(k)]. As the activation
function, the pure-line function is used in the hidden layer,
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TABLE 1. Comparisons of the tasks and sizes of proposed ANN-CCs.

FIGURE 10. Network structure of PI-PNN current controller.

TABLE 2. Parameter of the simulation and experimental setup.

and the tansig function is used in the input layer. The
training was carried out using the Levenberg-Marquardt
backpropagation method.

In Fig.9, theMatlab/Simulink block diagram,which is used
for receiving training data and testing the designed network,
can be seen. During the application phase, the network
was verified by performing simulation tests for different
reference current values. The general specifications of the
four proposed controllers are given in Table 1.

IV. SIMULATIONS AND EXPERIMENTAL WORKS
A. SIMULATION RESULTS
In this section, simulation and experimental results with dif-
ferent reference current values for four models of predictive
ANN current controllers are presented. The parameters of the
simulation and experiment system are listed in Table 2.

The results obtained from the simulations of these four
different methods shown in Fig.4, Fig.7, and Fig.9 are
presented in Fig.11. In simulations, the inverter reference
current is determined as 2A up to t=0.03s, 5A between
t=0.03s– 0.06s and 10A after t=0.06s. When the simulation
results are examined, it is seen that a stable operation is
obtained for all methods.

In addition to the simulation results given in Fig.11,
harmonic distortions of the inverter current are also noted
in classical control structures (FCS-MPC, Hysteresis, PR,
and PI CC), where training data is taken for each method.
In simulations, the total harmonic distortion (THD) for
FCS-MPC CC is 2.35%, and THD for MPC-ANN CC is
2.74%. THD for classical Hysteresis CC is 3.73%, and THD
for Hist-PNN CC is 3.37%. In classical PR CC and PR-PNN
CC simulations, the THD value is 0.52% for both. Finally,
THD 0.54% for classic PI CC and THD 0.51% for PI-PNN
CC.

In Fig.12, it is tested and presented whether they show the
prediction feature of the methods. For this purpose, the phase
currents obtained from the inverter output for the classical
Hysteresis and Hist-PNN current controllers are plotted on
the same graph and presented in Fig.12.a. The graph shows
that the inverter current zero volts (0V) transition is at 0.0899s
for Hist-PNN and at 0.09s for classical Hysteresis CC. This
indicates the ability to predict the intended 100µs ahead
before the training is acquired. Similarly, in Fig12.b, it is
seen that the phase current produced at the inverter output
using the PR- PNN current controller is 100µs ahead of
the current produced at the inverter output using the PR
current controller. In Fig.12.c, the inverter output current
controlled by PI-PNN is 100µs ahead of the inverter output
current controlled by PI CC. The results of the FCS-MPC
and MPC-ANN methods are not given since both methods
have predictive properties. According to the results obtained
in Fig.12, it has been observed that all methods can predict
successfully.

To understand the controller performances, the control
surface graphs of themethods are presented in Fig.13. Control
surface graphs could not be obtained for the MPC-ANN
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FIGURE 11. Simulation results of VSI; the inverter output currents for
(a) MPC-ANN, (b) His-PNN, (c) PR-PNN, and (d) PI-PNN.

FIGURE 12. Time difference graph of output currents (a) Histerisis and
Hist-PNN, (b) PR and PR-PNN, (c) PI and PI-PNN.

and Hist-PNN methods since the output is direct switching
signals. For other methods, since the number of network
entries is high, some of them were kept constant, and
the results were recorded according to the changes of
others. The surface graphs for the α-axis and β-axis voltage
reference outputs of the PR-PNN method are presented in
Fig.13a and 13b. PR- PNN has six inputs, and the inputs in
the β-axes [(Ibeta_err(k), Ibeta_err(k-1) and Vbeta_ref(k-1)]

FIGURE 13. Surface graphs of controllers for (a) α-axis output of PR-PNN,
(b) β-axis output of PR-PNN, (c) d-axis output of PI-PNN, and (d) q-axis
output of PI-PNN.

are taken as zero when plotting the Valpha_ref output graph.
The other inputs, the α-axis current error and its previous
value [alpha_err(k), Ialpha_err(k-1)], were changed in the
range of ±1 A. For the third entry, Valpha_ref(k-1), four
different surface graphs were obtained using constant values
of -1, -0.5,+0.5, and+1 (Fig.13.a). Similarly, while drawing
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FIGURE 14. Closed-loop bode diagram (a) PR-PNN, (b) PI-PNN.

the Vbeta_ref output graph, the inputs in the α-axis were
taken as zero. The β-axis current error and the previous value
were changed within the range of ±1 A, and the graphs in
Fig.13.b were created using the values of −1, −0.5, +0.5,
and +1 for Vbeta_ref (k−1).
The PI-PNNmethod works in dq-axes and has three inputs

for each axis: current error, the previous value of current
error, and the previous value of output reference voltage.
The graph of the d-axis reference voltage output control
surface graphs is given in Fig.13.c. Here, the graph was
prepared by taking the q-axis inputs as zero, the d-axis current
error and the previous value in the range of ±1 A, and the
Vd_ref(k-1) value as fixed values (−1, −0.5, +0.5 and +1).
With the same method, the surface graph of the q-axis was
obtained and presented in Fig.13.d. The most critical point in
these graphs is the relatively high nonlinearity of the control
operation performed with the layered structure (object) and
multi-surface due to the many inputs of these controllers.
In addition, the closed-loop bode diagram obtained for the
PR-PNN method is given in Fig.14.a, and the closed-loop
bode diagram obtained for the PI-PNN method is shown
in Fig.14.b. The controllers’ bode diagrams were obtained
using the ‘‘Bode Plot’’ block in Matlab/Simulink libraries.
When Fig.14 is examined, it is seen that the responses of
the predictive ANN controllers are similar to the responses
of the controllers (PI and PR) from which the data is
obtained.

FIGURE 15. Photograph of the experimental setup.

B. EXPERIMENTAL SETUP AND RESULTS
To carry out laboratory tests of the proposed models, a
5kVA three-phase inverter circuit was designed, and the
photograph of its assembly is given in Fig.15. 7MBP50RJ120
1200V 50A IPM module is used in the power stage of the
inverter. The current measurement is carried out with the
LEM LA55-P hall effect sensor. On the inverter control
card, there is a DC-DC converter circuit with four isolated
15V outputs feeding the power stage. Moreover, the control
card has an LCD, control buttons, USB communication
ports, a microcontroller, and signal conditioning circuits for
current-voltage measurements. In the inverter control card,
there is a 168 Mhz frequency STM32F407VGT6 ARM
microcontroller of ST company as the microcontroller. The
source code for the inverter was prepared using the MikroC
for ARM compiler. As a result of the software development
studies, the execution times of the algorithms were 32 µs for
the MPC-ANN method, 11.6 µs for the Hist-PNN method,
10.2 µs for the PR-PNN method, and 15 µs for the PI-PNN
method. In the experiments, a regulated DC source was
created with a rectifier fed by the variac to which the
three-phase ac grid is connected. This source was connected
to the DC bus of the inverter.

The oscilloscope images obtained from the experimental
setup for MPC-ANN, Hist-PNN, PR-PNN and PI-PNN
current controllers are given in Figure 16. In the study, the
current reference was started as 2A and then increased to 5A
and 10A, respectively. Here, the amplitude is set to 5A/div,
and the time is set to 10ms/div in the oscilloscope images.
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FIGURE 16. Oscilloscope images of the reference current change
experiments; for (a) MPC-ANN, (b) Hist-PNN, (c) PR-PNN, and (d) PI-PNN.

The experimental result of the MPC-ANN and Hist-
PNN methods presented in Fig.16.a and 16.b contains
noise at low reference currents, as seen in the simulation
results. The most important reason for this is that the
method’s output is direct switching states. To obtain a good
performance in this current controller type (MPC, Hysteresis,
MPC-ANN, Hist-PNN, etc.), the operating frequencies

FIGURE 17. Oscilloscope images of the load change experiments; for
(a) MPC-ANN, (b) Hist-PNN, (c) PR-PNN, and (d) PI-PNN.

should be around 60-80kHz. This can increase the process-
ing burden considerably and requires higher-performance
processors. Although the MPC-ANN method is trained for
different system parameters, it does not lose performance and
is not affected by parameter changes.

Experimental results for the proposed PR-PNN and
PI-PNN methods are given in Fig.16.c and 16.d. Both
current controllers successfully follow the reference current
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with low harmonic content. In addition, with the predictive
feature added to their structures, the reference current was
successfully followed without delay. In the training phase
of these two methods, constant controller gain values and
different system parameters were used. In addition, although
there were noises originating from measurement units in
experimental studies, they performed similarly to simulation
studies. Among the important reasons for this is the ANN
structure and training of data by adding random noise.

In experimental studies, THD measurements were per-
formed using the FLUKE 43B power quality analyzer.
In the measurements, total harmonic distortion (THD) for
FCS-MPC CC is 3.5%, and THD for MPC-ANN CC is
3.7%. The THD for Hysteresis CC is 4.8%, and the THD for
Hist-PNN CC is 2.9%. The THD value measured from the
PR-PNN CC application is 1.3%. THD for classic PI CC is
1.7%, and THD for PI-PNN CC is 1.1%.

Among all the methods examined, the best performance
(the lowest THD) is provided by PI-PNN CC. High
non-linearity provided by the multi-layered control surface,
high noise performance thanks to the dynamic ANN struc-
ture, and gained predictive ability are the most important
advantages of PI-PNN CC.

In addition, the response of the designed current controllers
to the load change during operation has been tested. In the
experiment, 20 � resistors are connected in parallel to three
phase 10 � resistive loads. The loads of 20 � are disabled
while the inverter is working at the steady state under
10A constant reference current. Oscilloscope images were
recorded for the load currents and voltages obtained during
the load change and are given in Fig.17. Here, channel 1
(blue) shows the load current and channel 2 (green) shows the
load voltage on the oscilloscope screen. It has been observed
that the proposed current controllers adapt immediately to the
new load in case of load change and successfully follow the
reference current.

V. CONCLUSION
In this study, predictive current controllers are studied,
and new ANN-based current controllers in four different
structures are designed. In the first developed method,
a network training defined as MPC-ANN CC was done with
the data from the inverter system containing FCS-MPC CC.
As MPC-ANN current controller, it is provided to operate at
different loads without setting any parameters.

With the developed Hist-PNN, PR-PNN, and PI-PNN
structures, predictive capability has been gained to clas-
sical current controllers. The ability of the developed
current controllers to produce flexible outputs and to have
a multi-layered control surface enables them to control
non-linear systems effectively, increase their efficiency
against load and parameter changes, and improve noise
performance. These four different predictive ANN structures
are simulated and experimentally tested under different test
conditions. It has been seen that all methods have predictive
properties and can be applied successfully.
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