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ABSTRACT This paper presents a novel nonlinear behavioral modeling methodology based on long-short-
term memory (LSTM) networks for gallium nitride (GaN) high-electron-mobility transistors (HEMTs).
There are both theoretical foundations and practical implementations of the modeling procedure provided in
this paper. To determine the most appropriate optimizer algorithm for the model presented in this work, four
different optimization algorithms are examined. The results of both simulation and experimental validation
are provided based on a 10-W GaN HEMT device. According to the developed investigation, the model
is capable of extrapolating and interpolating over multiple input power levels and frequencies, including
linear, weakly nonlinear, and strongly nonlinear areas. The analysis of the simulated and measured results
shows that the developed model has superior performance also when considering the DC drain current (Ids.).
Compared with the existing support vector regression (SVR) based model and the Bayesian based model,
the proposed approach shows a significantly improved extrapolation capability.

INDEX TERMS Behavioral modeling, black box model, gallium nitride (GaN), high-electron-mobility
transistor (HEMT), long-short term memory (LSTM), microwave frequency, power transistor.

I. INTRODUCTION
GaNHEMTs have recently emerged as one of the most popu-
lar devices for front-end applications in radio frequency (RF).
In contrast to conventional semiconductor materials, e.g., gal-
lium arsenide (GaAs), GaN devices are capable of operating
at higher critical electric fields, exhibit broader band gaps,
and achieve higher electron mobility [1], [2], resulting in a
substantial increase in the magnitude of power density [3].
Thus, it has become the dominant power transistor used in
the design of power amplifiers (PAs) [4], [5], [6], [7], [8],
[9], allowing outstanding performance to be achieved.

In spite of these significant advantages, further research
is necessary to understand the inner nonlinear electrical
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characteristics of GaN HEMT devices, particularly their
strong nonlinear effects and severe dispersive effects [10],
[11], [12], [13]. It has been reported that these phenomena
can negatively affect the efficiency and output power of the
device. This can lead to a degradation of performance for
the whole circuit, or even for the entire system [14]. In this
regard, the development of an accuratemodel for GaNHEMT
devices is urgently needed, but also a very challenging task.

As a result, various modeling approaches have been devel-
oped in recent years [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], including physical base models [15],
equivalent circuit models [16], [17], [18], behavioral mod-
els [19], [20], [21], [22], [23] and combinatorial models
[24], [25], [26]. The present work focuses on modeling
GaN HEMT technology using a behavior-based approach.
The advantage of this choice is that, firstly, the behavioral
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modeling method, as an alternative to the other approaches,
provides a more accurate prediction of the working regions
used for extraction. Furthermore, as a complete ‘‘black
box’’ model, it takes into account only the input and out-
put information of the device under test (DUT) [19], [20],
[21], [22], [23].

Numerous studies have been conducted on the behavioral
modeling of RF power devices. In addition, several books
have been published that summarize the main contributions
to this challenging and stimulating field of research [27],
[28]. Behavioral modeling techniques for power devices have
been briefly reviewed in [29], which provides an overview
of this active area of research. Behavioral models based
on traditional approximations [19], [21], [30], [31], such as
polynomials, produce reasonable predictions, however these
models are not able to interpolate and extrapolate well for
strong nonlinear cases. In comparison to traditional behav-
ioral modeling methods, artificial neural network (ANN)
modeling techniques offer an effective alternative [32], [33],
[34], [35]. Machine learning (ML) techniques, which are a
core component of artificial intelligence, have been shown
to provide superior results in comparison to neural networks
[36], [37], [38]. In [37], a device modeling algorithm based
on Bayesian inference was developed that can predict the fun-
damental scattered waves of power transistors at a variety of
input power levels. The model is capable of excellent interpo-
lation. Small-signal and large-signal behavioral models based
on support vector regression (SVR)were implemented in [26]
and [38], and both showed accurate prediction performance.

While all of these models, whether they are traditional
approximation models or machine learning models, are capa-
ble of providing accurate local and interpolated predictions,
they are limited in their ability to extrapolate beyond the
measurement range. It is critical to note that extrapolation
is one of the most significant generalization capabilities of
a behavioral model, particularly when dealing with nonlinear
operating regions. Models with strong extrapolation capabili-
ties reduce the complexity of measurement significantly, and
this is particularly helpful for nonlinear behavioral modeling
of GaN HEMT transistors, as it is more likely for the device
to burn when tested under large mismatch conditions dur-
ing load-pull measurements. In this work, an extrapolation-
enhanced nonlinear behavioral model for GaN HEMT
technology is proposed and validated.

In [39], a modified recurrent neural network (RNN)
technique based on long-short term memory (LSTM) was
proposed for the analysis of GaN HEMT small-signal behav-
ior. According to [39], the model can accurately predict the
small-signal behavior of the DUT. Further, the proposed
LSTM technique is capable of representing both linear and
nonlinear relationships between complex inputs and outputs,
not only for single-input and single-output (SISO) prob-
lems but also for multiple-input and multiple-output (MIMO)
problems. As a result of the properties of the LSTM architec-
ture, it can overcome the issue of long-term dependencies,
such as vanishing or exploding gradients [40].

FIGURE 1. General structure of the LSTM networks and internal
architecture of a single memory cell. The symbols of ‘‘

⊕
’’ and ‘‘

⊕
’’

represent the operation of addition and element-wise multiplication,
while σ and tanh denote the activation function.

As a follow-up to [39], this paper employs the LSTM
network to build a nonlinear behavioral model for GaN
devices, including both RF and DC parts. To determine the
optimal core function of themodel for a given DUT, extensive
tests were conducted. This model is shown to be capable of
extrapolating and interpolating for three different input power
regions and operating frequencies.

The paper is structured as follows. Section II describes the
theory behind LSTM neural networks, along with the dif-
ferent optimizer algorithms, different topologies, and extrac-
tion details. Furthermore, the application of the LSTM
method to model the behavior of a 10-W GaN HEMT
device is described in detail. In Section III, both simulation
and experimental verification are presented and discussed.
In Section IV, the conclusions are summarized.

II. BASIC THEORY OF MODELING METHODOLOGY
A. THEORY OF LSTM NEURAL NETWORKS
LSTM is a widely used machine learning technique that
originated from RNN and was first developed by Hochreiter
and Schmidhuber [40]. According to [40], [41], and [42],
RNN is not capable of capturing future information and is
likely to encounter exploding or disappearing gradients when
modeling large series of data, usually resulting in poor quality
models. Additionally, the RNN gradient is dominated by the
near-range gradient, making it difficult for the model to learn
long-range relationships. By incorporating multiple gate con-
trollers into memory cells, LSTM networks demonstrate a
valuable and promising capability of solving these issues.
Multiplying and adding the elements enables the network to
store large amounts of previous data, allowing for long-term
modeling, leading to a strong capability for extrapolation and
interpolation.

The cell state of the LSTM networks is illustrated in Fig. 1,
where the green diagram represents a basic LSTM memory
cell. A complete LSTM neural network consists of several
repeating unit modules, which can be represented as a chain
structure. This structure shows the LSTM in the form of
a time expansion. As can be seen in Fig. 1, there is one
input xt and the corresponding output yt . The sequence-based
model presents the specific connectivity of each LSTM unit,
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which is able to establish the temporal association between
the previous cell state Ct−1 and the current cell state Ct ,
while transferring the output ht−1. Similarly, the next cell
information can be transferred in the same way.

Each cell consists of three gates, which are input, forget,
and output gates. The LSTM updates the memory states, i.e.,
long-term state Ct and short-term state ht , through the gate
controllers [43]. First, the current input xt and the previous
short-term state ht−1 are used to produce the four gate param-
eters, ft , it , gt , and ot . The cell output at the previous moment
and the input at the current moment are used to determine
which vectors of the internal state should be updated or
maintained. The signal of the forget gate controls how much
of the previous state information should be forgotten, while
the input gate reacts to the effect of input xt in the current
cell state, and finally, the output gate controls yt or ht as the
output of the LSTM, where the output yt is equal to ht .
The three gates in a memory cell are given by the following

set of formulations. The first forget gate contains a sigmoid
control layer and it can be expressed as:

ft = σ (wTxf · xt + wThf · ht−1 + bf ) (1)

where ft is the output of the forget gate, whf and wxf are
denoted as the weight matrices for the previous short-term
state ht−1 and input xt , respectively, and bf is the bias terms.
The second gate is the input gate. They can be expressed

as:

it = σ (wTxi · xt + wThi · ht−1 + bi) (2)

gt = tanh(wTxg · xt + wThg · ht−1 + bg) (3)

where it is the output of the input gate, gt is candidate
status, whi and whg are denoted as the weight matrices for
the previous short-term state ht−1, wxi, wxg are weight matri-
ces for input xt , and, similarly, the bias terms are given
by bi and bg.
Thirdly, the output gate function is given as:

ot = σ (wTxo · xt + wTho · ht−1 + bo) (4)

where ot is the output of the output gate. Similarly, each of the
other coefficients in the equation indicates the same meaning
as in the gate above (see eq. (3)).

Finally, after completing the calculation within the intra-
cell, the information of the memory states is updated. This
can be described as follows:

Ct = ft ⊗ Ct−1 + it ⊗ gt (5)

yt = ht = ot ⊗ tanh(Ct ) (6)

The sigmoid layer of the input gate determines which infor-
mation has to be updated, the tanh layer is used to create a
new candidate value that might be added to the states of the
cell. In this way, the LSTM networks can store large amounts
of previous information, thus making it simple to learn long-
term relationships.

B. BEHAVIORAL MODELING FOR RF TRANSISTORS
For the nonlinear behavioral modeling of a power transistor,
the behavior of the DUT can be described by the incident
and scattered waves Aqn and Bpm. Typically, the scattered
wave response is obtained by apply excitation, i.e., Aqn, to the
device. Mathematically, these waves can be expressed as
follows:

Aqn =
Vqn + Z0Iqn

2
√
Z0

(7a)

Bpm =
Vpm − Z0Ipm

2
√
Z0

(7b)

where Z0 is the characteristic impedance taken here to be real-
valued, and, for this article, taken as 50 �, q and p represent
the respective incident and scattered wave ports, and n and
m range from zero (DC) to the highest harmonic index at the
incident and scattered ports, respectively.

For a given DUT, the describing function fpm, as given in
eq. (8), can associate all of the relevant incident waves Aqn
with the scattered waves Bpm:

Bpm = fpm (A11,A12, . . . ,A1N ,A21,A22, . . . ,A2M ) (8)

where A11,A12,. . . ,A21,A22,. . . represent all of the incident
waves. The independent variable of the describing function
fpm is the incident wave phasors Aqn at both the input and
output ports at the fundamental frequency f0, and the cor-
responding output is the scattered wave phasors Bpm. The
aim of modeling the DUT becomes replacing the describing
function, fpm, by a proposed large-signal model equation.

Refer to eq. (8), the inputs of the descriptive function
are complex-valued, whereas the proposed LSTM modeling
technique is suited for real-valued cases. Thus, a modification
of the standard LSTM method is required. In [44], a real-
valued time-domain ANN modeling technique is presented
and, in [35], it was well adapted to the frequency-domain
modeling methods. Thus, a similar decompose technique is
employed for the LSTM modeling method. The description
formulation of the scattered wave is split and expressed as a
function of both the real and imaginary parts of the incident
waves and, then, the specific equation is rewritten as follows:

BRpm = f Rpm

(︷︸︸︷
ARqn ,

︷︸︸︷
AIqn

)
(9a)

BIpm = f Ipm

(︷︸︸︷
ARqn ,

︷︸︸︷
AIqn

)
(9b)

where BRpm and ARqn denote the real parts of the incident and
scattered wave phasor, and BIpm and AIqn are the imaginary
parts of the incident and scattered wave phasor, respectively.
The superscript in the marker represents the set of all real or
imaginary parts of the wave, for each harmonic index.

C. LSTM TECHNIQUE BASED BEHAVIORAL MODEL
Based on the characteristics of the LSTM modeling tech-
nique, the complete process of behavioral modeling of GaN
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device is implemented in TensorFlow using the LSTM neural
networks. The detailed steps of the modeling procedure are
given below:

1) Initialize the design variables, set the iteration number
of epochs and batch sizes, and import the training data.

2) Build the LSTM neural networks. One layer of the
LSTM network, with several layers of Dense layers,
was applied in this work.

3) Select the mean square error (MSE) as the loss func-
tion.

4) Specify global optimizers with a learning rate. Several
mainstream optimizers have been selected and exam-
ined in this work and a detailed discussion will be given
later.

5) Feed the training data into the network architecture.
Depending on the characteristics of the data, a multi-
dimensional to one-dimensional input-output model is
used.

6) When the iteration number is reached, the behavioral
model can be obtained and used to predict new output.

In order to choose the optimal optimizer in the proposed
model, four different popular optimizers have been selected
and compared, which are the stochastic gradient descent
(SGD) method, the root mean square prop (RMSprop)
method, the adaptive moment estimation (Adam) method,
and the Nesterov Adam (Nadam) method.

SGDwas shown to be an effective optimization method for
minimizing the cost function J (θ ) by updating the parameters
in the opposite direction of the cost function gradient with
model parameter θ [45] and it has been successfully used
in many machine learning modeling cases [41], [45], [46].
RMSprop was proposed by Tieleman and Hinton [47], which
is an adaptive learning rate method. Adam is an algorithm
for first-order gradient-based optimization of stochastic func-
tions, based on adaptive estimates of lower-order moments
[48]. It is a versatile algorithm that can scale to large-
scale high-dimensional machine learning problems. Nadam
was proposed by Dozat [49]. It combines Adam with Nes-
terov momentum, which has a strong constraint on the
learning rate and has a more direct impact on the gradient
update [50].

After introducing four different optimizers, the LSTM
technique is employed for device modeling. The detailed
topology, for nonlinear behavioral modeling, is given in
Fig. 2. The incident and scattered waves used for training
are divided into real and imaginary parts and then imported
into the model. Both machines get the same input, but the
outputs of the first and second machines are the real and
imaginary parts of the scattered waves, Bpm, respectively. It is
critical to note that the data used for training and testing are
different.

III. MODEL VALIDATION
In this section, model verification is carried out by using
both simulations and experimental tests. All the LSTM based
models are extracted using Python programing language.

FIGURE 2. Block diagram of large-signal behavioral model based on LSTM
networks, which consists of two LSTM machines. All wave phasor has
been divided into real and imaginary parts, respectively.

TABLE 1. Performance comparison of LSTM model with different
optimizers.

A. SIMULATIONS
A 10-W GaN packaged transistor (CGH40010F) from Wolf-
speed was used in the simulation tests and an equivalent-
circuit model from the same manufacturer was employed for
data collection.

In the first step of the validation, the four different optimiz-
ers mentioned before of the LSTM are tested, the modeling
performance is compared to fix the optimal optimizer for
the proposed modeling method. The LSTM model used in
the simulation is extracted with the device biased at 28 V
for VDS and −3 V for VGS, with the operating frequency
set at 1 GHz. Totally 80 load-pull sample points, uniformly
distributed over the Smith chart, are used for training, when
input power was set at +25 dBm. The second- and third-
harmonic load impedances are fixed at 50�, which ensures
that the second and third harmonic incident waves at port 2,
A22 and A23, are zero.

In the test, a one-layer LSTM network is used, with a batch
size of 32 for the input data, and two layers of Dense for trans-
forming the dimensionality of the data are employed, while,
the output dimensionalities of the first- and second-Dense
layer are fixed at 25 and 1, respectively. Four different
optimizer algorithms: SGD, RMSprop, Adam, Nadam are
employed, in turn, in the LSTMmodel. The prediction results
of the four different LSTMmodels, compared to the reference
circuit model, are provided in Fig. 3. As shown in this figure,
the SGD optimizer has the worst prediction in this case, since
the predicted points deviate significantly from the circuit
data, while all the other three optimizers give an excellent
prediction. A detailed comparison is shown in Tab. 1. All
extraction and simulation times are for a PC with Intel Core
i5-10500 Dual CPU 3.10 GHz and 24.00 GB of RAM, same
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FIGURE 3. Performance test for LSTM behavioral model using four
different optimizers, with +25 dBm available input power at 1 GHz.

for the rest of the content in this work. The model with SGD
optimizer has a lower prediction accuracy, despite its model
extraction time is much shorter than the other models. The
remaining three models demonstrate excellent accuracy with
an average relative error much less than 1%. The expression
of relative and average errors is show at the bottom of the next
page. The models with Adam and Nadam optimizers have
even better accuracy than themodel with RMSprop optimizer,
with the average errors here less than 0.2%. Compared with
the Nadam, the Adam optimizer requires less time for extrac-
tion and provides better accuracy at the same time.

Loss functions of all the four training models are also
illustrated in Fig. 4. Obviously, the performance of the SGD
optimizer for the real and imaginary parts varies dramati-
cally, and theNadam converges slightly faster than RMSprop.
Adam, on the other hand, consistently performs well and
converges faster than the other three optimizers. Thus, in this
work, the Adam algorithm is chosen and employed as the
optimizer for the LSTM behavioral model of the DUT in the
remaining tests of this paper.

In the second simulation test, the same DUT was stim-
ulated by +20 dBm input at 2.5 GHz, with the same bias.
The same 80 sample points were used for model extraction.
The second- and third-harmonic load reflection coefficients
are fixed at 022 = 0.2/100 and 023 = 0.7/200, respectively.
To cover the whole Smith chart, validation is performed at
all 720 load points. In the test, the performance of the pro-
posed LSTMmodel is comparedwith the existing SVR-based
model [51], the Bayesian inference-based model [37], and
a multi-layer perception (MLP) based feed-forward neural
network (FNN) model. The radio basis function (RBF) is
employed as the kernel for the SVR model, and the grid
search method is utilized to optimize the parameters. In the
Bayesian model, the Gaussian function is used as the kernel
function. While for the ANN-based model, a two-layer MLP
with 30 neurons is used. The performance of the four models
is shown in Fig. 5. It is observed that the fundamental scat-
tered wave of the first three models matches the circuit model

FIGURE 4. (a) Real part training loss and (b) imaginary part training loss
of different optimizers on the LSTM model.

TABLE 2. Performances comparison of different models.

fairly well throughout the Smith chart. This demonstrates
the excellent model interpolation capabilities of A21. The
MLP model gives accurate predictions for most of the points,
however, there are large errors in the strong nonlinear area.
A detailed comparison of all models is given in Tab. 2. The
first three models provide excellent prediction accuracy, and
their relative errors are much less than 1%. The SVR model
requires much more model extraction time than the other
three models, mainly due to that it takes time to find the
optimal hyperparameters. The MLP model has the shortest
extraction time, but the lowest model accuracy.

The fundamental output power contour prediction perfor-
mance of the proposed model is given in Fig. 6. The LSTM
model is able to determine the maximum output power region
in the Smith chart precisely, which is of the utmost impor-
tance to assist in circuit design. In addition, power added

VOLUME 11, 2023 27271



M. Geng et al.: Accurate and Effective Nonlinear Behavioral Modeling of a 10-W GaN HEMT

FIGURE 5. Simulation results from the circuit model, the SVR model, the
Bayesian model, the MLP model, and the LSTM model, with +20 dBm
available input power at 2.5 GHz. The second- and third-harmonic load
reflection coefficients are fixed at 0 22=0.2/100 and 0 23=0.7/200,
respectively.

FIGURE 6. Fundamental output power contour with +20 dBm available
input power at 2.5 GHz.

efficiency (PAE), an imperative factor for PA design, is also
presented in Fig. 7. The proposed model can also accurately
predict the PAE contour.

In the third simulation test, the extrapolation capability of
the proposed LSTM model for fundamental scattered wave
prediction is validated. The detailed test details are given
below.

Fig. 8 gives a wide range of gain curves, with the input
power varying from −20 dBm to +30 dBm and the operating

FIGURE 7. Power added efficiency contour with +20 dBm available input
power at 2.5 GHz.

FIGURE 8. Gain curve versus input power (blue line), showing three
different regions: linear, weakly nonlinear, and strongly nonlinear
regions. Illustration of the samples used for model extraction (black
crosses) and for the proposed model testing (red circles).

frequency set at 1 GHz. The device bias and load samples
used for model extraction are the same as in the previous
test cases. Three different LSTM models were extracted at
the following input power levels: -10 dBm, +10 dBm, and
+23 dBm, which are located in three different regions of the
device: the linear region, the weakly nonlinear region, and the
strongly nonlinear region, as described in Fig. 8 with black
crosses. Once model extraction is complete, the ability of the
model to extrapolate between different input available power
levels, for both A11 and A21, can be verified. The test input
power points are shown in Fig. 8 as well, in red circles.

In the linear region, where the model is extracted at
−10 dBm, two input power points are tested, which

relative error =
|measured value− modeledvalue|

|measured value|
×100%.

average relative error =

∑
relative errorat each load point

number of load points
.
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FIGURE 9. Extrapolation simulation results from the SVR model, the
Bayesian model, and LSTM model with −20 dBm and −5 dBm input. All
models are extracted with −10 dBm input.

are −20 dBm and −5 dBm. The results are shown in
Fig. 9(a) and 9(b), respectively. The prediction performance
of the SVR model and the Bayesian model for the -5 dBm
case is also given in Fig. 9(b), by using black circles
and brown squares. As can be seen, the proposed LSTM
model can accurately match the fundamental scattered waves
load-pull results at both two different input power cases,
when the input power levels are far from the power used for
extraction. Both the Bayesian and SVR models’ predictions
have a big shift, indicating that the proposed model has a
much better extrapolation capability than the other two.

In the weakly nonlinear region, the model is extracted
when the input power is +10 dBm. Two test input power
levels are given, as shown in Fig. 8, with red circles. These test
points are located 1 dB (+11 dBm), and 2 dB (+8 dBm) away
from the model extraction points. The model extrapolation
performance is illustrated in Fig. 10, as can be seen, the
proposed model gives a prediction with high accuracy, for
both different cases. The reference prediction given by the
SVR model and the Bayesian model for the 11 dBm case
shows a big shift, the same as in the previous linear case.

In the last test case for extrapolation capability, the test
models were extracted at an input power of +23 dBm. This

FIGURE 10. Extrapolation simulation results from the SVR model, the
Bayesian model, and LSTM model with +8 dBm and +11 dBm input. All
models are extracted with +10 dBm input.

is located in the strongly nonlinear region, namely more than
3 dB compression, as shown in Fig. 8. The input power of
the two test cases are ±1 dB away from the extraction point,
which is +22 dBm and +24 dBm. The performance of all
three models is presented in Fig. 11. As illustrated in the
results, although the prediction of the LSTM model has a
slight shift from the circuit results, it can still give reasonably
accurate predictions for both input power levels. On the other
hand, the SVR model shows a much larger deviation than the
proposed one. In addition, the Bayesianmodel has the poorest
prediction, for the +24 dBm case in Fig. 11.

From the three extrapolation tests above, the proposed
model shows excellent extrapolation capability across all
linear, weakly nonlinear, and strong nonlinear regions. The
extrapolation performance of the LSTM model is also com-
pared with the existing SVR model and Bayesian model.
A big improvement was obtained for the proposed model in
all three different test cases.

In the fourth simulation example, the extrapolation capa-
bility of the proposed LSTM model for DC drain current
prediction at different input power levels is validated. The
model structure is shown in Fig. 12. The same DUT is used,
with the same bias, and the simulation data is identical to
that in the third test case. However, the difference is that the
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FIGURE 11. Extrapolation simulation results from the SVR model, the
Bayesian model, and LSTM model with +22 dBm and +24 dBm input. All
models are extracted with +23 dBm input.

FIGURE 12. Block diagram of DC model based on LSTM networks. All
wave phasor has been divided into real and imaginary parts, respectively.

model employs only a single LSTM machine to predict the
output of the drain current Ids. The 720 points used for test
validation cover the entire Smith chart. They sort these points
sequentially by indexing them from the inner part to the outer
part of the Smith chart.

Similar to the fundamental case, the DCmodel is extracted
at three different input power levels, −10 dBm, +10 dBm,
and +23 dBm, while the extrapolation ability is tested at
levels of −5 dBm, +8 dBm, +11 dBm, and +24 dBm. The

FIGURE 13. Comparison of the DC drain current results between the
circuit model and the LSTM model at −5 dBm, +8 dBm, +11 dBm, and
+24 dBm input with the operating frequency set at 1 GHz.

TABLE 3. Average relative error of LSTM DC current model for IDS.

FIGURE 14. The topology of LSTM model with frequency information.

extrapolation prediction results for DC current are given in
Fig. 13. As indicated in the figure, the proposed LSTMmodel
can accurately predict every DC drain current point over a
wide range of input powers. Further model details are shown
in Tab. 3. The average relative error of the model is less than
1% over the entire test input power range, which validates the
successful extrapolation performance of the proposed model
in DC current prediction.

In the last simulation example, the interpolation ability
of the proposed model at different input available power
levels and operating frequencies was examined. For the power
interpolation case, the model topology is the same as in
Fig. 2, while for the frequency case, the operating frequency
information needs to be added, thus, the updated topology is
given in Fig. 14.

In the power interpolation test, the DUTwas biased at 28 V
for VDS and −3 V for VGS. The model was extracted when
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FIGURE 15. Input power interpolation test of the proposed LSTM model
(blue triangles) at +24 dBm, and model extracted with +23 dBm and
+25 dBm input at 1 GHz.

FIGURE 16. Frequency interpolation test of the proposed LSTM model
(blue triangles) at 5 GHz, and model extracted with +20 dBm input at
4.5 GHz and 5.5 GHz.

input power levels were +23 and +25 dBm, with the operat-
ing frequency set at 1 GHz. Tests were performed when the
input power was +24 dBm, and the prediction performance
is given in Fig. 15. As can be seen, the model provides
excellent predictions. Similarly, the frequency interpolation
of the model is also given here. It was extracted when the
input power was +20 dBm and the operating frequencies
were 4.5 GHz and 5.5 GHz. Tests were performed when the
operating frequency was set at 5 GHz with +20 dBm input,
and the prediction performance is shown in Fig. 16. From
this figure, we can see that the proposed model presents great
frequency interpolation capability as well. Detailed informa-
tion on the average relative errors of the model can be found
in Tab. 4. For both input power and frequency interpolation,
the results in the table show that the interpolation of the
model will decrease accuracy a little bit. However, it will still
maintain a high level of accuracy.

B. MEASUREMENT RESULTS
In the measurement validation part, LSTM-based test cases
for large-signal models are presented. The test was per-
formed on a test bench with a Keysight N5247B PNA-X
combined with a Focus Microwaves load-pull system [37]
(see Figure 17).

TABLE 4. Average relative error of LSTM model with different input
power and frequency.

FIGURE 17. Experimental test bench.

In the first measurement validation example, the 10-W
GaNHEMT,which is the same device that has been employed
in the simulation example, is employed in the test. In the
large-signal model validation test, firstly, the input power
interpolation capability of the model is tested. In the test,
the drain and gate are biased at 28 V and −3 V, respectively.
Three different input power levels: +20 dBm, +25 dBm, and
+30 dBm at 2 GHz, are used. 108 (9 × 12) sampling points
are used at each input power level, for model extraction.

After the model has been trained, it will be available for
use to predict the fundamental scattered wave behavior of the
DUT. For a given available input power level, 649 different
load points are used for testing, and the second- and third-
harmonic loads are set to 50. As illustrated in Fig. 18(a), the
LSTM model effectively predicts the response, i.e., scattered
wave B21, of the device under several excitations, i.e., A11
and A21. At these three different input power levels, the
newly developed model provides a high level of accuracy
throughout the whole Smith chart. Moreover, the capabil-
ity of predicting time-domain waveforms is also demon-
strated in Figures 19 and 20. As can be seen, the proposed
LSTM model can accurately model the time-domain behav-
ior, which includes both the fundamental and second har-
monic frequencies, where the fundamental and the second
harmonic reflection coefficients are fixed at 021 =0.8/130◦,
and 022 =0.95/280◦, respectively.

Furthermore, the model’s ability to interpolate frequencies
was also tested. In the test, the LSTMmodel was extracted at
1.5 GHz, 2 GHz, and 2.5 GHz. As shown in Fig. 21(a), the
model has shown outstanding predictive performance across
all three frequencies, with+30 dBm input power. In addition,
the extrapolation capability of the LSTM model at different
input power levels and operating frequencies is tested. The
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FIGURE 18. (a) Measured data and LSTM model simulations at +10 dBm,
+20 dBm, and +25 dBm input with the operating frequency set at 2 GHz.
(b) The extrapolation performance of the SVR model, the Bayesian model,
and the LSTM model at +10 dBm input by using models extracted with
data at +20 dBm input.

FIGURE 19. Comparison between measurements and LSTM model
simulations of the time-domain output current waveform, including
fundamental and second harmonic frequencies with 021=0.8/130◦ and
022=0.95/280◦.

prediction performance of the SVR model and the Bayesian
model is also given as reference cases. In the power extrap-
olation case, the model was extracted with +20 dBm input
and tested when the input power was +10 dBm. Figure 18(b)
illustrates the prediction performance achieved. The results

FIGURE 20. Comparison between measurements and LSTM model
simulations of the time-domain output voltage waveform, including
fundamental and second harmonic frequencies with 021=0.8/130◦ and
022=0.95/280◦.

FIGURE 21. (a) Measured data and the LSTM model simulations at
1.5 GHz, 2.0 GHz, and 2.5 GHz with +30 dBm input power. (b) The
extrapolation performance of the SVR model, the Bayesian model, and the
LSTM model at 2.0 GHz by using models extracted with data at 1.5 GHz.

show that the LSTM model can accurately match the fun-
damental scattered waves at load-pull points, although the
input power is far from the power used for extraction. On the
other hand, the other two models, with their predictions
shifting significantly from the measured data, exhibit poor
extrapolation performance. For the frequency extrapolation
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FIGURE 22. Fundamental output power contour with +30 dBm available
input power at 2 GHz.

FIGURE 23. Power added efficiency contour with +30 dBm available
input power at 2 GHz.

test, it was extracted when the input signal was 1.5 GHz with
+30 dBm input power, and the model was tested at 2 GHz.
The results of the prediction are shown in Fig. 21(b). The
predictions from all three models have deviated from the
measured results, though the SVR and Bayesian models have
a much more pronounced deviation than the proposed model.
The fundamental output power and PAE contour prediction
of the proposed model is also presented in Figs. 22 and 23,
respectively, when the input power is +30 dBm at 2 GHz.
As can be seen from the reported results, the model can
accurately predict both the optimal output power and PAE
region in the Smith chart for the DUT.

The detailed average relative errors of the model are shown
in Tab. 5. The results in the table indicate that the interpolation
of input power and frequency has been maintained at a high
level. For the input power extrapolation test, the proposed
model still gives considerable accuracy when the input power
is far from the power point used for extraction. Despite not

FIGURE 24. (a) Measured data and the LSTM model simulations of Ids
versus load pull test points at +10 dBm, +20 dBm, and +25 dBm input
with the operating frequency set at 2 GHz. (b) The extrapolation
performance of the LSTM model at +10 dBm input by using the model
extracted with data at +20 dBm.

TABLE 5. Average relative error of different models (direct extracted and
extrapolated).

performing as well as the power extrapolation test results, the
frequency extrapolation results of the model showed reason-
able accuracy, less than 4%.

In the last experimental validation example, the per-
formance of the LSTM-based DC model is displayed in
Fig. 24(a). Each subplot represents a different input power
test case. The model shows acceptable prediction perfor-
mance in all three test cases. In addition, the extrapola-
tion capability of the proposed LSTM model for DC drain
current prediction with different input powers is also vali-
dated, as illustrated in Fig. 24(b). The model extracted with
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TABLE 6. Average relative error of LSTM DC current model for IDS.

+10 dBm input was used to predict the DC load-pull behavior
of the DUT with+20 dBm input. The proposed model makes
excellent predictions. Detailed information about the model
can be found in the Tab. 6. The results in the table show that
the prediction accuracy of the DC drain current decreases
slightly with the increase in the input power in the DC con-
dition. However, the average relative error is still less than
1%.Moreover, the DC current extrapolation test results of the
model indicate reasonable accuracy, which is less than 2%.

IV. CONCLUSION
This article presents and validates a novel nonlinear behav-
ioral modeling technique for GaN HEMT devices based on
LSTM neural networks. Tests and comparisons of different
optimization algorithms are conducted in order to identify the
optimal optimization algorithm for the model. An example of
a 10-watt GaN HEMT device is used to validate the nonlinear
behavioral model. As part of this study, several test examples
have been selected and the corresponding simulation and
measurement results have been presented for RF and DC
cases. In all tests, the model has demonstrated a strong capa-
bility to extrapolate and interpolate across input power levels
and operating frequencies, resulting in the most accurate pre-
dictions. Based on comparisons between the proposed model
and the two existing models, the proposed model shows supe-
rior prediction performance, especially when extrapolation is
taken into account.
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