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ABSTRACT Drone-based Multi-scope Object Detection (DroMOD) system targets an efficient detection
of different kinds of objects using drones. DroMOD relies on a cross-platform framework where objects’
detection tasks are shared between the drone and the server. The drone stores a set of reference images about
the supervised zone. Each time an image is captured with a well-defined spatial frequency, it is compared
to its reference image and only ‘trigger images’ showing a change from the reference image are sent to
the server. A Big Data streaming platform is deployed on server-side for scalable and efficient real-time
object detection processing based on Deep Learning (DL) models. DroMOD system architecture allows
for dynamically upgrading the DL models so that newly considered objects to detect can be added to the
drone mission on the fly without modifying the drone embedded software. When compared to existing
alternatives, DroMOD presents the best compromise between 1) object detection accuracy, 2) real-time
processing, and 3) resource efficiency. Since only lightweight processing is performed on the drone-side,
memory and computation are highly optimised on drones. Furthermore, the drone-side image filtering is
independent of the objects to detect and the object detection programs are deployed and updated only on the
server-side which allows for multi-target detection with minimal engineering efforts and expertise.

INDEX TERMS Big data, deep learning, drone and server-side processing collaboration, image comparison,
key frame selection, multi-scope object detection.

I. INTRODUCTION

Multi-scope object detection is about automatically detecting
multiple objects from different categories. It is used in several
domains, such as video surveillance [1], military zones and
public facilities security. For example, in restricted military
zones, the surveillance can be about detecting different kinds
of intrusions (persons, vehicles, drones, etc.) or different
kinds of natural disasters (flood, fire, etc.). Each zone has spe-
cific properties to be identified for building accurate object
detection surveillance system. Indeed, the nature of the zone
(jungle, mountains, city, desert...), acquisition time (night,
day) and camera sensor (thermal, RGB, etc.) guide the selec-
tion of an object-detection technique. Besides, the system
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needs permanent updates to adapt to the required changing
surveillance tasks and objects to detect.

In this context, drone-based object detection is adopted
thanks to embedded drone cameras and resources. Never-
theless, as an embedded system and a flying engine, the
drone has limited resources (CPU, memory and energy).
This prevents the use of heavy-algorithms such as real time
DL algorithms for multi-object detection [2] and complex
and convolutional neural network models [3]. In addition,
the deployment and the setup of surveillance applications
in drones raises the problem of versatility and hardware
compatibility. Moreover, it is challenging to update and to
extend such systems when adding new targets to detect. This
is mainly due to constraints of autonomy, limited resources
and to the aeronautical constraints.

To tackle those challenges, server-side processing is
adopted. Nevertheless, having the processing exclusively
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deployed on server-side requires extensive bandwidth usage
for the server-drone communication. To countermeasure this
issue, hybrid solutions are adopted where image processing
is both performed on drone-side and on server-side. Such
solutions reach the good compromise between the usage of
server resources and the optimisation of the drone-server
communication bandwidth [4].

In this work, we build DroMOD, a cross-platform frame-
work that relies on a hybrid solution. Objects’ detection tasks
are shared between the drone and the server. The drone stores
a set of reference images about the supervised zone. Each
time an image is captured, it is compared to its reference
image and only ‘trigger images’ showing a change from the
reference image are sent to the server. A Big Data streaming
platform is deployed on server-side for scalable and efficient
real-time object detection processing based on DL models.
DroMOD system architecture allows for dynamically upgrad-
ing the DL models so that newly considered objects to detect
can be added to the drone mission on the fly without modify-
ing the drone embedded software. When compared to existing
alternatives, DroMOD presents the best compromise between
(i) object detection accuracy, (ii) real-time processing and
(iii) resource efficiency. Indeed, Big Data platforms allow
for the execution of accurate and resource-consuming DL
programs. Since only lightweight processing is performed on
the drone-side, memory consumption and computation are
reduced on drones while complex model development and
deployment are performed on the server-side. Furthermore,
the drone-side image filtering is independent of the objects
to detect since the object detection programs are deployed
and updated only on the server-side. This allows for a simple
update of objects to detect without modifying the embedded
software.

We evaluate DroMOD by comparing it to both drone-side
and server-side solutions as well as to recent hybrid solutions.
For performance evaluation, we consider processing latency,
object detection’s model accuracy and resource consumption.
The results show that DroMOD presents the lowest process-
ing latency and an optimal resource consumption without
degrading detection accuracy.

Our main contributions are:

« An efficient embedded image filtering method using a

lightweight DL model.

o Anovel drone-based IoT system that allows for fulfilling
three constraints at the same time: (i) real-time object
detection, (ii) optimised resource consumption and
(iii) high detection accuracy.

o A Big Data system for real-time image processing.
We mainly justify the technology choices and propose
an integration solution to a scalable Big Data stream
technology with an accurate DL processing engine.

The paper is structured into five parts. First, we present
the related work on real-time processing in drone-based
applications. The second, third and fourth section illustrate
respectively DroMOD system presentation, used algorithms
and implementation.Then, the evaluation section compares
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DroMOD with recent state-of-the-art solutions. Finally,
we conclude the paper and outline the major works to come.

Il. RELATED WORK

Building drone-based real-time applications is a challenging
task. Several solutions are proposed to tackle those chal-
lenges. Based on data processing location, we can classify
those solutions to embedded drone-side processing, server-
side processing and hybrid solutions. We end the section
with a presentation of image filtering methods for anomaly
detection.

A. EMBEDDED DRONE-SIDE PROCESSING

Drone-side embedded processing is efficient for real-
time surveillance applications. In recent works, DL pro-
grams are intensively used for embedded image process-
ing. Researchers focus mainly at counter-measuring lim-
ited resources on drones while increasing their DL models’
accuracy. For example, in [5], authors present a drone-
embedded DL-based object detection system to detect faults
in power line components. To tackle the drone’s limited on-
board resources, the model inference is done on an embedded
GPU-based platform (e.g., Nvidia Jetson AGX Xavier) to
accelerate the execution. The experimental results show the
effectiveness and efficiency of the method for fully automatic
and real-time on-board visual power line inspection. Never-
theless, the use of the GPU platforms induces a high battery
consumption so a decrease of drone autonomy. Besides, the
deployment the model inference is highly complex.

In [6], authors use the YOLOvV3 [7] model trained on
multiple eye-sky dataset. To decrease processing latency on
embedded hardware, they apply optimisation steps, fusing
layers, quantizing calculations to 16-bit floats and 8-bit inte-
gers. In addition to the problem of high energy consumption,
this solution is not extensible and not really scalable. Further-
more, the object detection models have to be adapted to the
specific embedded hardware.

Other solutions consist in designing optimal object
detection models for drone on-board implementation.
Y. Bazi et al. [8] introduce a novel convolutional support
vector machine (CSVM) network for object detection in
drone imagery. Compared with others, this model is light and
requires a small amount of training data but it is not used
of multi-object detection. In [9], authors propose ShuffleDet
neural network for real-time vehicle detection to be used
on-board by mobile platforms such as UAVs. ShuffleDet
network is composed of ShuffleNet [10] and a modified
variant of SSD [11] based on channel shuffling and grouped
convolution. This model is tested on GPU platform nano
Jetson TX2. The results show that this model has a low
latency but a low accuracy. In addition, this model is not
adapted for multi-target object detection.

B. SERVER-SIDE PROCESSING

All dataflow processing in executed on the server/the cloud.
A communication system between drones and servers/clouds
are intensively used to transmit data.
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In [12], authors propose a cloud implementation of gait
human recognition system from drones. The Cloud server
uses the input drone continuous streaming video to detect
the gait. It uses Single Shot Multibox Detector (SSD) for
detecting human and Inception-V3 [13] based transferred
learning convolutional neural networks (CNNs) to extract
spatial features that are inserted into Long Short-Term Mem-
ory (LSTM) [14] deep architecture for action recognition.
Dick et al. [15] use an intermediate server at the edge to
optimise processing capability and reduce latency for real-
time applications. This solution does not solve the problem of
limited bandwidth of the server-drone network and the large
amount of data over an extended period of time increases
system latency.

C. HYBRID SOLUTIONS
Hybrid processing is an interesting solution for drone-based
real-time applications. It provides a compromise between
resource consumption and processing delay thanks to a two-
part processing on the drone-side and on the server-side.
Wang et al. [16] present the EdgeDuet framework that
allows for a collaboration between the drone and the
edge/cloud to detect objects. Locally, the drone detects large
objects using low-resolution images, while on the edge/cloud,
the detection is done for small objects via high-resolution
uploaded images. EdgeDuet optimises the object detection in
tiles with adapted resolution by only keeping the pixel blocks
containing small objects in high quality while compressing
the rest of the frame to low quality. This avoids delivering the
complete frame, resulting in high accuracy and low latency.
This framework results in a highly complex embedded devel-
opment and deployment. In addition, it causes high embedded
processing for creating tiles and resolution adaptation, which
increases processing latency and resource consumption on the
drone-side that is usually resource constrained and has low
energy autonomy. Furthermore, in the case of adding another
object to detect, EdgeDuet requires an update in the drone
embedded code to be able to detect the “large version™ of
this object, which induces a high deployment complexity.
DroMOD overcomes these points by a lightweight drone-
side algorithm which is independent of the object to detect.
In more recent work, Liu et al. [17] present AdaMask,
a stream video framework to remote deep neural network
(DNN) inference. They propose a frame masking as an
effective mechanism to reduce the network consumption of
video streams, which keep only regions that potentially con-
tain objects of interest. Additionally, AdaMask controls the
resolution, frame rate and quantization rate to reduce the
sending data size. This framework is tested for dash cam-
eras, traffic surveillance and drones. The results show an
optimisation of network bandwidth which decreases latency
and an increase of the accuracy. In the case of drones,
AdaMask presents a highly embedded complex algorithm
that causes a high resource consumption. In addition, the
server-side processing is not treated for multiple object
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detection and distributed computing. In DroMOD, the
embedded code in the drone is the same regardless of the
used-for application since it is about detecting a change in
terms of an intrusive object (e.g., fire, person, flood, etc.).
Alam et al. [18] use a hybrid based solution for real-time
abnormal event detection from drones. They propose the use
of one stage object detection (tiny YOLO [19]) on the drone-
side to detect the presence of a person on the frame. If a person
is detected during 3s, the sequence is sent to the server. The
detection of abnormal events is done on the server-side. This
method is highly sensitive to the accuracy of on-board object
detection models which in this case present a low accuracy
compared with other models. The DroMOD drone-embedded
filtering method has a high accuracy to detect an intrusive
object, which avoids the ‘““False Positives”.

D. IMAGE FILTERING FOR ANOMALY DETECTION

In DroMOD, we propose to perform drone-side image fil-
tering based on a comparison of images taken from the
same place at different times. We try to detect intrusions
and changes in the same scene, but at different points in the
same scene. We propose to use techniques known as visual
place recognition. In the literature, we distinguish two main
categories of visual place recognition techniques. They differ
in the representation of the image. First, appearance-based
methods, called handcrafted, have been applied for a long
time. Then, more recent works have exploited advances in
the field of machine learning and neural networks. The hand-
crafted techniques use local or global descriptors to model an
image from a location. Local descriptors such as SURF, SIFT
or FAST are used to build Bags of Visual Words. Each image
is modeled by a vector (or histogram) of dimension n, where
n is the number of words in the visual vocabulary. Each com-
ponent of the vector is equal to the number of occurrences of a
specific word of the previously constructed vocabulary. Thus,
the similarity of two images is given by the scalar product of
their respective normalized vectors. Global descriptors like
GIST are also used to compact all the information of a scene
into a vector. In Murillo and Kosecka et al. [20], the authors
applied this descriptor to a set of panoramic set of panoramic
images for a large scale localisation. However, recent works,
such as [21], show that features generated by CNNs are
more robust and discriminative. Thus, the performance of
neural network-based visual location recognition methods is
superior to that of handcrafted methods.

Currently, Convolutional Neural Networks (CNN) are used as
robust feature extractors for location recognition, including
for environments. They are able to generate generic and
abstract representations of places. They contain more seman-
tic information. In [22], authors introduced an original model.
It allows to give a similarity score between two images. It is
a Siamese CNN, made of two branches. Each branch is based
on YOLOVS architecture [23]. Authors proposed to keep the
YOLOVS5 backbone and replace its head by a 3-layers block.
Namely, an adaptive average pool layer which down samples
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the feature map from [512 x 7 x 7] to [512 x 1 x 1], followed
by a flattening layer to get a 1-d feature map which under-
goes a linear transformation, and finally a sigmoid activation
function layer to bound the output. Each branch output shape
is [1000 x 1]. Then, in order to measure the similarity, the
contrastive loss [24] between the branches output vectors is
computed. The smaller the distance is, the more similar the
images are [22] showed that this model is lightweight and
fast. Thus, it is suitable to be embedded on drone. Therefore,
we decided to use this model in this work.

lll. DroMOD SYSTEM DESCRIPTION

Drone Multi-scope Object Detection (DroMOD) architecture
is based on three main components in three different envi-
ronments (Drone, Server, Third-party services) (see figure 1).
The drone-recorded data is sent to an on-board Receiver
(step 1) which is responsible for raw-data pre-processing.
The Receiver sends data to a Controller (step 2) which
detects intrusions thanks to image comparison with an on-
board-drone reference memory constructed using a Refer-
ence Builder module (step 3). In case of intrusion detection,
the Controller sends data via a Gateway (step 4) that in
turn publishes data to a Publisher/Subscriber broker (step 5),
specifically, to a frame processing topic. A Stream process-
ing engine combined with DL models for object detection
consumes data from the frame processing topic (step 6).
It analyses the frame for fine-grained object detection. In case
of an object detection, it publishes a message to the corre-
spondent ‘object detection topic’ (step 7). The third-party
services registered to the ‘object detection topic’ receive the
notification (step 8) and a permanent Storage component
stores all the historical data(step 9).

A. DRONE COMPONENTS

The drone is composed of three modules to deal with the
drone data stream in order to assure efficient data filtering by
sending data when there is a change. The drone components
are the following:

1) RECEIVER

The Receiver receives the data flow from on-board-drone
captures. It is responsible for raw data pre-processing. It is
used in order to ensure the adequate data form for the achieve-
ment of next tasks like stream discretization, normalization,
verification of empty data, reshap, etc.

2) REFERENCE BUILDER

Reference builder is in charge of creating the reference mem-
ory. It identifies and stores a set of key frames representing
the no-intrusion case images. This key frames set is used
to compare the acquired drone data with the corresponding
reference data.

3) CONTROLLER
The drone gets the pre-processed data from the receiver
and compares it with the corresponding in-memory
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reference data. We divide the controller’s work into two
phases: (i) finding the reference image corresponding to the
captured image to analyse and (ii) making a comparison
between the two images for intrusion detection using a DL
model. The details of the controller algorithm are covered in
the next section.

B. SERVER COMPONENTS

The server components are based on Big Data technologies.
The technologies are required for the storage and for the
processing of the huge volume data of drone images generally
sent with high velocity. Furthermore, to fulfil the real-time
surveillance applications’ requirements, streaming engines
allows for the image processing on the fly with short latency.
Compared to classic technologies, Big Data solutions are
more efficient in optimized distributed computing, high fault
tolerance, horizontal scalability and load balancing. Server
components are the following:

1) PUBLISHER/SUBSCRIBER BROKER

The Publish/Subscribe broker is a core compound of the
Big Data architecture. It is a set of brokers that allows for
the transmission of dataflow between different parts of the
architecture using connectors. We define a ‘frame processing’
topic that receives all data sent by the gateway. This data is
consumed by the stream processing engine. The broker has
other topics related to the events of interest (like fire detec-
tion, person detection, etc.). The stream processing engine
publishes data on these topics following the detected objects.
The subscribers are third-party services. Storage component
is a special subscriber for all topics to provide a permanent
storage of all data flow and event alerts.

2) STREAM PROCESSING ENGINE WITH DL MODELS

The stream processing engine is the processing server com-
ponent that enables real-time, low-latency treatment of drone
streams. This engine is both a consumer and a producer for the
Publish/Subscribe broker. It consumes data from processing
topics and uses DL models to analyse and identify objects
of interest (fire, person intrusion, etc.). When an event is
detected, a message is sent to the corresponding topic in order
to notify third-party services.

C. THIRD PARTY SERVICES

As a multi-scope surveillance system, variant services can
be concerned about detected events. It is important that each
service gets notified about the event occurrence as soon
as possible. Thanks to the Publish/Subscribe broker, each
service can subscribe to the topic of interest. For example,
emergency services can register to ‘flood topic’ and to ‘fire
topic’. Necessary actions are then scheduled and executed.

IV. DroMOD ALGORITHMS

In this section, the main algorithms executed at drone-side
components are presented, namely the reference memory
builder algorithm and the controller’s algorithm.
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FIGURE 1. DroMOD architecture.

A. REFERENCE MEMORY BUILDER

The generated data by a flying drone in a defined fixed
closed trajectory (7) and for a mission range time 7 can be
represented by the set (D) defined in (1).

D = {data(M;, t;) M € (T), t; € T} (1

where data(M;, t;) is the captured data in the position M; and
at the time #;. D is a discrete set since the captured images are
measured within an fixed time period which is defined by the
camera frame rate (a characteristic of the used Camera).

The reference memory builder allows the detection of ‘trig-
ger’ image to be sent to the server. A dedicated flight in the
area of interest allows to capture reference images and storing
them on board. The flight trajectory (7) is split according
to a fixed distance step “‘a” (figure 2) that defines (T,).
(T,) is obtained by a partitioning of (T) with a fixed spatial
frequency. It is defined recursively in (2).

My € (T,),
M; e (Ty), if||M;,M;;, ||=aand My ¢ M;, M, ;.
(2)

M, the initial point which is the beginning of image cap-
ture. M;,M;; C (7) is a continuous part of the drone
trajectory between the point M; and M, and || M;, M, ||
is the arc length of M;, M; .

The distance ‘““a’ is chosen to obtain an optimal reference

data representation (figure 3). “a” is defined as a function of
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flight and camera parameters (3).
o N
a=2(1 —r)htan 5= (1- r)T,,h]T 3)

h: Average flight altitude

a: Camera aperture angle

N: Number of image pixels

T),: Photo-site size of camera

f: Lens focal length of embedded camera

r: Overlap factor between two successive shots (factor to be
fixed for our case we propose to be 0.5)

This trajectory partitioning method allows a reduction of
acquired data to D, = {data(M;, t;) € D/M; € (T,)} C D.
Let T; be the time range that expresses the time to finish
the i loop by the drone. T, T, ... Ty, define a partition of T
n

ie, T;NT; =@, Vi,je [l nl/i#jand \JTi = T. The

=1
reference memory is released in the first drone loop. Itis a
subset D! of D, defined in eq(4).

D! = {data(M;, t;) € Dy /t; € Ty} 4)

As an example of a real drone mission using a camera (with
f =50mm, T, = 8 um, and N = 6000) at a height of 50m
and ar of 50%. The step is 24 meters long. A higher value of
r = 75% results in a step (12 m), which increases the acquisi-
tion rate and thus the amount of data sent (|ID>}1| increase).
Algorithmically, the memory has the structure of a dictio-
nary where the keys are the shot positions and the values are
the corresponding images. The visual memory is set up using
an algorithm inspired from a recent work of Sedrine et al. [25]
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FIGURE 2. UAV trajectory sampling.

Image i Image i+1

r*L=r/(1-r)*a
L

FIGURE 3. Optimal sampling distance.

which builds visual memory using a fixed travel distance for
UAV visual odometry application.

B. CONTROLLER ALGORITHM

The controller is about controlling the drone’s data flow.
It consists of filtering the acquired data and sending it only
if it presents a change (that can be caused by an intrusion
object). This is done by a comparison between the cur-
rent captured image (d.) and its corresponding image. Our
approach is to use a DL model g that measures the similarity
between images. An image is sent to the server side only if
the similarity is less than a threshold s, which defines the
sensibility to detect a change. The filtering of the data is done
via a controlling function y (5).

y: Dy — {0, 1}

4me=rim%%bs s

1 Otherwise

where djy € ]D); the corespondent reference image of d..
The sended data to the server can be mathematically rep-
resented as the set D}, (6):

D? = {data(M;, ;) € Do/ y(data(M;, 1;)) = 1} (6)

Our filtering method enables the optimization of the volume
of data being transmitted, since:

ID}| < |Dg| < |D] (N
where |[.| is the cardinality of a set.
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The controller’s algorithm has two main steps. First, the
system searches the stored reference image representing the
same geographic area under supervision. In our case, the use
of a dictionary simplifies the task. The position represents the
key to find the closest reference image. Once the closer ref-
erence image is recovered from drone local disk, the second
step starts and consists in a comparison between the reference
image and the captured one.

In this work, a deep CNN is used for image silimarity
calculation [22]. The controller’s algorithm is depicted in
Algorithm 1. The function getDronePosition() retrieves the
UAV position from its navigation system. The function find-
Referencelmage( ) finds the reference frame located at the
current position. If it exits, then it is compared to the current
image. For that, the CNN-based program is called and returns
a similarity score. When the latter is under a defined thresh-
old, the processed image is considered interesting to sent to
the server for further analysis. Sending only ‘trigger images’
reduces considerably the bandwidth consumption and the
lightweight CNN-based algorithm reduces the drone energy
consumption compared to an object detection algorithm. The
performance evaluation section confirms these observations.

Algorithm 1 General Controller Algorithm

onMission < True;
while OnMission is True do
currentPosition < getDronePosition();
referenceEXxist, referencelmage <
findReferencelmage(currentPosition);
if referenceExist is True then
currentlmage <— getDronelmage();
similarity <— compare(referencelmage,
currentlmage);
if similarity < thershold then

| sendToServer(currentlmage)

end
onMission < getMissionState();

end
end

V. DroMOD IMPLEMENTATION

In this section, we present the implementation details in
DroMOD. The Big Data technologies deployed on the server-
side are described as well as the parameters of DL models
used for object detection and for image comparison. A demo
illustrating DroMOD usage is also provided [26].

A. SERVER-SIDE BIG DATA SYSTEM

1) THE PUBLISH/SUBSCRIBE BROKER

Apache Kafka [27] is a defacto standard in IoT systems.
It provides a publisher/subscribe broker for collecting data
from drones and dispatching them to the system components
and to third-party services. The choice of Kafka is based on
several comparative studies [28], [29], [30] between different
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Publish/Subscribe message systems that show that Kafka pro-
vides the highest throughput and lowest latency. In addition,
Kafka provides several strength points: scalability, reliability
and data injection capabilities.

2) STREAM PROCESSING ENGINE

For real-time data processing, the server-side system is
based on Big Data streaming technologies. For that, Apache
Flink [31] which is a power-full framework for stateful
computations over unbounded and bounded data streams,
is adopted. Flink is designed to run in all common cluster
environments such as Hadoop YARN, Apache Mesos, and
Kubernetes or in stand-alone clusters. Flink’s batch pro-
cessing is a special case of streaming processing, which
corresponds to a bounded stream of data (stream with a
defined start and end). In our implementation, we employ
Flink instead of the more well-known, more established and
open-source software Apache Spark. Indeed, several works
[32], [33], [34] confirm that Flink is more adapted and effi-
cient for stream applications and allows several automated
optimisations.

3) STORAGE

For storage, Apache HBase database [35], [36] is used in
DroMOD. HBase is a distributed NoSQL database built on
top of the Hadoop Distributed File System (HDFS) with a
column-oriented data structure. The data transfer from Kafka
to HBase is done using the Apache HBase Sink Connector.
It consumes data from a specified Kafka topic to the corre-
sponding table automatically. This allows permanent storage
of data (drone data and detection results) that is mandatory
for historical data analysis.

B. IMAGE MODELS LIFE CYCLE

Integration, monitoring and updating tasks are the three main
concerns when deploying DL models [37]. In this section,
we describe the image models’ life cycle: deployment, exe-
cution and update.

1) MODELS' DEPLOYMENT

For drone data, object detection is a challenging task because
of the mobile nature of drones. The perspective of objects in
images is extremely affected by flight parameters (altitude,
shot angles, speed...). Several studies attempted to perform
object detection to deal with those challenges.

Indeed, for drone-side solution, there are a number of
engineering issues that arise during the integration phase
to adapt the model to the drone’s on-board resources for
model deployment. Besides, a DL-model update may require
a system scaling capacity, which is not the case for drones
(limited energy, aeronautic constraints, etc.) and for non-
distributed systems (limited computing resources). For these
reasons, DroMOD relies on a server-side Big Data platform
for models’ detection and update.
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2) MODELS' EXECUTION

For the DL-model integration in Flink, the Java DataStream
API and the Deep Java Library (DJL) [38] are mutually used.
Java DataStream API is a Flink native API that allows the
definition of Job GraphFlow. DJL is an open-source, high-
level, engine-agnostic, native Java framework for DL. DJL
allows the use of DL models in the Java environment. It is
designed to use the DL models from different frameworks
(TensorFlow, PyTorch, MxNet, etc.) in Java by providing
relative DL engines.

Since DroMOD targets multi-scope object detection, sev-
eral DL models have to be deployed on server-side. For that,
TPH-YOLOVS5 [39] which is a powerful model that proves
good results compared to the baseline model (YOLOVS),
is adopted. In the Vis-Drone Challenge (drone object detec-
tion benchmark) 2021 [40], TPH-YOLOVS5 wins the 5th place
and achieves well-matched results with the 1st place model
(AP 39.43%). Compared to (YOLOVS), it improves by about
7% in AP. We use a trained PyTorch TPH-YOLOVS model
on the VisDrone dataset [41]. VisDrone is a drone image
dataset that provides a large-scale drone-captured images.
This dataset is used in four tasks: (i) image object detec-
tion; (ii) video object detection; (iii) single object tracking;
and (iv) multi-object tracking. Our model is trained on the
VisDrone dataset for object detection tasks with a color data
augmentation (contrast and brightness). The model detects
ten classes of objects: pedestrian, person, car, van, bus, truck,
motor, bicycle, awning-tricycle, and tricycle.

The inference of the trained TPH-YOLOvV5 models is
done using a serialisable and optimised model (TorchScript),
which is created using the PyTorch JIT Compiler. Then, the
serialisable model is integrated into the Java runtime using
the DJL library, which is used with the Java DataStream API
for the definition of the Flink job (see figure 4).

PyTorch Eager PyTorch JIT Script mode
mode
TorchScript
Java DataStream Java code

Deep Java Library

API

FIGURE 4. PyTorch model deployment in Flink: an integration solution for
data stream processing using DL models.

3) MODELS' UPDATE

To understand the need for models’ update, let us consider the
following use-case where the drone is used to detect disasters.
When a fire breaks out, it’s critical to find any potentially
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hazardous items nearby. DroMOD enables the extension,
on the fly, of the drone’s mission by adding other objects to
detect like humans, animals, automobiles, etc.. This feature
is very important for a preliminary assessment of the damage
and the evaluation of the emergency actions to take.

For dynamic models’ update, Flink hot deployment feature
is used in DroMOD. For that, several Flink jobs are created.
Each job aims at detecting a specific object category (person,
fire, flood, etc.) using a trained DL object detection model.
In our implementation, the submission of a job is done using a
web server that communicates with the DroMOD server-side
system. It uses the SSH protocol to connect to the concerned
system server via key-based or user/password authentication.
This allows the user to easily run the specific Flink jobs she/he
needs even when the drone is flying via a web interface and
in a secure manner without requiring technical expertise.

Figure 5 shows the web graphic user interface that is used
to update the object detection models. This interface displays
the drone’s current location above a background map com-
posed of high-resolution satellite images and additional geo-
graphic data of the surveillance zone such as roads, buildings,
vegetation, etc. A menu shows the existing trained object
detection models. It allows the user to activate or deactivate
the object to detect and submit the request with a simple
click (with the “submit button”). We provide a demo that
demonstrates the DroMOD system in action [26].

C. IMAGE COMPARISON MODEL

As we mentioned above, we use in this work the CNN intro-
duced in [22]. In fact, it is a Siamese CNN, made of two
similar branches of modified YOLOVS5. Each branch consists
of a CSPDarknet, to which we concatenate an adptive average
pool layer, a flattening layer and a sigmoid activation function
layer, as it is shown in figure 6.

This network was implemented using Pytorch framework.
The training was performed on Google Colaboratory plat-
form, using NVidia Tesla K80 GPU.

We used a custom dataset of pairs of images. Half of them
are positive, i.e representing the same place. In total, we used
7200 pairs for training, and 1800 for validation. The training
parameters are displayed in table 1.

TABLE 1. Reference image recognition CNN training parameters.

[ Parameter Values i
Training epochs 95
Batch size 11
Loss function Contrastive Loss
Optimizer Stochastic Gradient Descent
[ Lerning rate 10T |

Figure 7 presents the confusion matrix of the comparison
model. It shows that the model reaches an accuracy of 93%.
Its recall is 0.9488, its specificity is around 0.9053, its preci-
sion is 0.902 and its F1-score is 0.9246. The figure 8 shows
the ROC curve of the used model. Its area under curve is about
0.981, which is relatively high.
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VI. DroMOD EVALUATION

In this section, before presenting the performance evaluation,
we highlight the key features of DroMOD and contrast them
with those of current drone-based systems.

o Multi-scope object detection: DroMOD is based on shar-
ing the processing between the drone and the server. The
drone module is in charge of detecting a change in the
supervised zone, which is independent of the object’s
type to be detected. The same embedded algorithm is
used for detecting a change caused by fire, flood, person
intrusion, etc. Thanks to this feature, DroMOD allows
for a multi-scope object detection by using different
object detection models that can be dynamically updated
on the server-side. For drone-side solutions, it is really
hard to provide this feature because of the constrained
drone resources and the complexity of embedded soft-
ware implementation.

« Real-time processing: When compared to other systems,
DroMOD has a minimal processing latency. Indeed,
DroMOD filters the drone acquired data by a key frame
selection algorithm. The execution of heavy-algorithms
for object detection is done only on the selected images.
However, on exclusive drone-side and server-side solu-
tions, the processing is done on all drone-acquired
images. Additionally, the filtering algorithm decreases
the network latency, preventing communication channel
saturation, which is considered a limit for server-side
solutions.

« Stream and batch in one platform: DroMOD processes
captured ‘trigger images’ in real-time and also processes
stored data for historical data analysis.

o Optimised use of resources: The execution of object
detection models on the drone requires more comput-
ing power than image comparison. Usually, a GPU is
added to the drone to execute complex DL algorithms
which increases drone energy consumption and reduces
its autonomy. Consequently, thanks to the drone-side
light algorithm, DroMOD uses less energy and increases
drone autonomy compared to other systems.

« Low engineering cost: Image processing models’
updates take place at the server-side and drone-side
embedded programs are rarely modified in DroMOD.
Furthermore, models’ development and update rely on a
high-level API which is very practical and do not require
high engineering skills or specific expertise.

The performance evaluation confirms these features thanks
to a comparison of DroMOD with three state-of-the art solu-
tions: (i) embedded drone-side processing, (ii) server-side
processing and (iii) hybrid solutions.

For each comparison, the following metrics are considered:
the processing latency, the consumption of resources and the
drone-server communication bandwidth.

For the benchmark, Docker-based deployment [42] is
adopted which allows for a practical calculation of resource
usage and performance characteristics of each running con-
tainer. The performance metrics are calculated for different
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FIGURE 5. Graphic user interface.

architecture components relatively to a PC with the following
characteristics:

o CPU: Intel Core 17-1065G7 (1.3 GHz up to 3.9 GHz,
8 Mo Cache, 8 Cores)

« RAM: 8 Go DDR4

o Hard drive: 1 To HDD

o GPU: mx230

o OS: Ubuntu 20.04.1 LTS

o Swap: 16 Go SSD

To ensure reliable and significant tests, a variant range of
environments and events are required. For our evaluation,
three different environments (city, jungle and mountains) and
three kinds of objects to detect (persons, cars and fire) are
included in the RGB images’ dataset. The environments are
represented by 3D models that are generated using a drone
stereo photogrammetry process. The images are taken from
an altitude of 50m. The 3D models are integrated into a
simulation software, allowing for the simulation of real-world
environments, events, drones and on-board captures (camera,
positioning receiver). Captured images are processed and
‘trigger images’ are sent to the server with positing informa-
tion. The following results are calculated as an average of the
different obtained test evaluations of scenarios combining the
different environments and objects to detect.

A. LATENCY MEASUREMENT

Latency refers to the delay in transmitting (network latency)
and processing data (processing latency). In our case, end-
to-end latency is calculated from the event launch from the
visual field of the drone to a third-party notification.The
network latency is not considered because it depends on
the network technology and congestion and not on the sys-
tem’s performance. Consequently, the measure of latency is
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calculated as the sum of the drone-side processing time and
the server-side processing time.

Figure 9 shows that one-step drone-side solutions have the
highest processing latency with 3.4 s. This can be explained
by the DL object detection inference at drone-side. Besides,
the server-side solution reaching 2.4 s results of a high fps
of camera images compared to the needed processing time.
DroMOD presents the lowest latency which demonstrates
the efficiency of the two-step approach. Indeed, the image
mapping processing is much lighter than the object detection
processing. Furthermore, in DroMOD, server-side processing
latency is lower than the server-side solution due to the ‘trig-
ger image’ selection algorithm which reduces the amount of
images to process on the server.

B. RESOURCE CONSUMPTION

In this set of tests, we measure the average resources usage
(Server CPU RAM, Drone CPU RAM and drone-server
network Tx (transmission throughput) for three kind of envi-
ronments (mountains, city, jungle). In addition, we consider
two kinds of intrusion objects (persons and cars). Thanks to
the modular deployment of Docker and Docker compose [42]
that places each DroMOD component in a separate container,
the separate monitoring of each resource is possible and
efficient.

Figure 10 shows that DroMOD is a good compromise
between drone-side and server-side solutions in resource con-
sumption. DroMOD drone resource consumption is clearly
less important than the drone-side solution. Similarly, Dro-
MOD network usage is lower than the server-side solution.
These performance evaluation results confirm the relevance
of the collaborative processing approach that we adopted in
DroMOD.
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FIGURE 6. Comparison model architecture.

C. IMAGE COMPARISON VS OBJECT

DETECTION PROCESSING

The comparison between the two image processing algo-
rithms is based on two evaluations: the inference time and
the accuracy.

1) INFERENCE TIME

In this test, we measure the inference time of a classical
and recent object detection model (TPH-YOLOVS5 [39]) with
DroMOD image comparison model. The measure is an aver-
age of the inference time of 1000 frames (1000 pairs in
case of comparison) with various image sizes (256 x 256,
512 x 512 and 1024 x 1024 pixels). The frames are chosen
from different scenes (city, jungle, mountains).

Figure 11 shows that DroMOD comparison model is
lighter than the object detection model. Indeed, the inference
time for object detection is about 8 times bigger than the
comparison model which is inefficient for a real time appli-
cation. A comparison model is more adapted for a real-time
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application since it allows a lower processing latency. Indeed,
for 512 x 512 images, the maximum fps for one-step drone-
side solution the maximum fps is about 0.3 compared with
2.4 for a comparison model. The object detection model
inference time varies exponentially with image size, posing
several challenges and limits for high-resolution sensors.

2) ACCURACY

In this test, we measure the accuracy of detecting a change
(intrusion) in the image using the object detection model and
the comparison model. The object detection model detects a
change when it detects the intrusive object. The measurement
is performed on 1000 frames. The frames are obtained by
inserting an intrusion object (a car or a person) in a random
position using several scene images (city, jungle, and moun-
tains). The object has a specific area relatively to the total
area of the scene image (from 0.01% to 100%). Figure 12
presents the variation of accuracy as a function of object
relative area. Equation (8) is used to calculate the accuracy of
each model.

N
Accuracy = T * 100 ®)
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where:

o N: The total number of true change detection
o T: The total number of the test frames

We note that the detection model is efficient for a specific
scale (0.5%) with 98% accuracy but for a bigger or smaller
scale it has a low accuracy. In contrast, the comparison model
has an increased accuracy in function of object area. In gen-
eral, the accuracy comparison shows that the comparison
model is more accurate than the object detection model for
different object areas. In the case of drones, the scale of the
intrusion object (the changing), relative to the whole image’s
cover, is variable since it is a flying engine. From this test,
we conclude that the on-board comparison model is more
effective in identifying an object intrusion in the case of a
drone-based surveillance system.
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D. DroMOD VS EdgeDuet DRONE-SIDE PROCESSING

In this section, we compare DroMOD to a recent existent
work, namely EdgeDuet [16] that adopts, like DroMOD,
a hybrid solution. EdgeDuet performs large object detection
on board and small objects detection on server-side. Thus,
EdgeDuet sends frames continuously from the drone to the
server in order to detect small objects while our technique
sends data in case of suspicious events only. This leads to a
lower bandwidth consumption with DroMOD.

EdgeDuet [16] uses YOLOv3 (640 x 640) [7] as a
local detector. In our work, we use the siamese neural
network introduced in [22]. The two techniques are dif-
ferent. EdgeDuet is based on object detection whereas
DroMOD uses images comparison. A first observation is
that our model is significantly smaller than that of Edge-
Duet. In fact, Mseddi et al. model has a size of 18MB
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and YOLOv3 (640 x 640) used by EdgDuet is around
119MB. This is a first argument in favor of our method. For
processing latency calculation, both CPU and GPU execu-
tion environments are adopted. As dataset, VisDrone [41]
https://github.com/VisDrone/VisDrone-Dataset that is com-
posed of 548 images captured from a drone, is used. In order
to simulate EdgeDuet drone-side, we call YOLOv3 on each
image of the dataset, specifying the detection of cars, buses,
people, bicycles and motorcycles. Besides, we performed a
comparison on each image, using the siamese model. First,
we run the comparison on a GPU (Figure 13), then we use
the CPU (Figure 14). In both cases, DroMOD is faster than
EdgeDuet and the gap is wider on CPU.

On board filtering latencies using GPU

0.045 —— EdgeDuet filtering latency

—— DroMOD filtering latency
0.040
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FIGURE 13. EdgeDuet vs DroMOD drone-side processing latency on GPU.
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FIGURE 14. EdgeDuet vs DroMOD drone-side processing latency on CPU.

To sum up, our work outperforms EdgeDuet. DroMOD
embedded neural network is lighter and faster than the one
used by EdgeDuet. The model size is smaller which is prac-
tical to embed and its processing time is much faster. On the
other hand, EdgeDuet transmits more frames to the server for
processing which requires a higher bandwidth.

E. MULTI-SCOPE OBJECT DETECTION

1) PROCESSING LATENCY WITH MULTIPLE MODELS

The multi-scope object detection is assured by the use of
several DL models in the server side that are parallel executed

in a distributed environment thanks to use of Big Data stream-
ing technologies (Apache Flink and Kafka) in DroMOD.
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For real-time critical applications, Latency is a key parametric
to think about. In this test, we calculate DroMOD’s server-
side processing latency as a function of the deployment object
detection model number.

For the test implementation, YOLOVS5s architecture is used
to create several models that each detect a single object
(e.g. car, person, bus..) which has about 7.22 M trained
parameters. The training is done using the MS COCO
dataset, which was created by collecting images of typical
scenes with common objects in their natural settings. It con-
tains 80 objects. The models are integrated with our Dro-
MOD platform implementation based on the method cited
in Subsection VI... We calculate latency by measuring the
average amount of time it takes the image to be processed by
the deployment models.

The results on figure 15 show that the latency increases
with the number of models. This increase isn’t linearly pro-
portional to the number of models (which is the case of
sequential computing). This is thanks to the scalability and
parallel computing of DroMOD, which are results of using
streaming big data technologies. From 4 models, the evolu-
tion of latency is determined by the saturation of our limited
resources of test hardware, which is why our system on the
server side balanced the load to assure efficient computing.

2) SINGLE MODEL FOR MULTIPLE OBJECT DETECTION VS.
MULTIPLE SINGLE-OBJECT-DETECTION MODELS
Multi-scope object detection can be performed using (meth.1)
one model that detects all target objects or (meth.2) differ-
ent models that each detect a single or a subset of scope
objects. DroMOD adopted the second solution. For evalua-
tion, we measure object detection accuracy of each approach,
the execution time and the model’s computing complexity.
The implementation of this test is done using the YOLOVS5
which is a scalable architecture. This model can be scaled
in depth and width. The depth of the model is about the
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number of layers and the width is about the number of chan-
nels in layers. The complexity of the model is increasing
(from YOLOvV5n (nano) to YOLOvSX (xlarge)) with the
increase of the number of the models’ parameters. Note that
the higher the complexity is (which improves the objects’
detection accuracy), the higher the computing cost and time
are. Indeed, the figure 16 shows that the average of mAP
on the COCO dataset of different classes (80) increases with
the complexity of the model. For the benchmark, we use the
large version (YOLOVS5]) as a single-model to detect multiple
objects (meth.1) and the nano version as single object detec-
tion models (meth.2).

The training, validation and test of our models are done
with the Microsoft COCO dataset with the native distribution
on the Google Colaboratory platform with a Tesla T4 GPU
and 16 Go of RAM. We use AP (the average precision) to
show the performance (in terms of accuracy of detection)
of object detection models since it is the most frequently
used. The AP measures the accuracy of detected objects
of the detector in terms of classification (attributed a label
to an object) and localisation (localisation of the object in
the image) of a specific class. The localisation accuracy is
measured by the intersect over union metric (IoU) which
is the ratio of intersection area of the predicted bounding
box (bbox) and the true bbox area by the area of their
union. We calculate the AP (mathematically, it is the area
under the Precision-Recall curve limited by the abscissa axis
relative to a specific class) of car and person with an IoU
threshold of 0.5 (a localisation of a detector is considered
true if IoU is bigger than 0.5). The deployment of models
is done on our DroMOD implementation to measure the
execution time.
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The results are presented in the figure 17. By dividing the
various comparison variables (x;) by their maximum values
(max(x;)), the variables are normalized since our goal is to
compare the two approaches. Based on figure 17, for a single-
object detection model (for cars and person), the AP and
the accuracy of detecting those objects are better compared
with the single object detection. This is a very important
point, especially in critical applications such as surveillance.
Compared to the execution time on our Big Data platform,
those models present a lower execution time compared to the
single model, which is important for real-time applications.
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We attribute the short execution time to the parallel process-
ing and the use of streaming Big Data technologies.

In addition, the second method ensures that the objects
to detect can be updated in a flexible manner. In fact,
we can address a specific object (or its subset objects) with-
out affecting the entire set of objects in order to improve,
add, or remove a scope object. Multiple models are also
well adapted for distributed computations. Furthermore, for
a unique model for multi-scope object detection, the tuning
of hyper-parameters and regularisation of models to increase
the accuracy of a particular object isn’t an obvious task.

As a conclusion, we confirm that DroMOD’s parallel exe-
cution of models allows not only faster execution but also
more accurate detection and more flexibility for object detec-
tion update.

VII. CONCLUSION

DroMOD is based on a collaboration between the drone and
the server processing. On the drone-side, a lightweight ‘image
trigger’ selection algorithm relies on a reference frame com-
parison. It allows the detection of a change in the observed
zone compared to a reference image. On the server-side, the
identification and analysis of the change is performed using
DL models in order to detect precisely an event or an object
of interest. Compared with existent object detection solu-
tions either embedded drone-based, server-based or hybrid
solutions, DroMOD shows the lowest processing latency and
optimal resource usage while ensuring a high detection accu-
racy. Furthermore, since the object detection is performed on
the server-side, the object detection models can be regularly
updated allowing for dynamic multi-scope detection. The
performance evaluation of DroMOD considering different
surveillance systems contexts and drone parameters confirm
the relevance of our approach.

As a future work, we target to test DroMOD on other real
use cases where the scope update is required and dynamic.
We are also interested in securing the different commu-
nication channels and measuring the security overhead on
DroMOD performance.
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