IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 19 January 2023, accepted 11 March 2023, date of publication 16 March 2023, date of current version 22 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3257887

== RESEARCH ARTICLE

Mining Top-k Frequent Patterns in Large
Geosocial Networks: A MNIE-Based
Extension Approach

CHANGBEN ZHOU -, JIAN XU, MING JIANG, DONGHANG TANG, AND SHENG WANG

School of Computer, Hangzhou Dianzi University, Hangzhou 310018, China
Corresponding author: Changben Zhou (201050060 @hdu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61572165.

ABSTRACT Frequent pattern mining (FPM) has played an important role in many graph domains, such as
bioinformatics and social networks. In this paper, we focus on geo-social graphs, a kind of social network
augmented by geographical information. However, in addition to the exponential time complexity of the
problem, we face the challenge of efficient subgraph retrieval since we are interested in patterns in a
specific region in such a network. For this reason, we formulate the top-k FPM problem in large geo-social
networks. Specifically, we devise a novel framework for subgraph retrieval and FPM mining with a series
of optimizations. First, we propose a neighboring-aware R-tree (NaR-Tree) index structure to alleviate the
challenge of retrieving subgraphs from a large graph. NaR-Tree is a variant of R-tree in which each nonleaf
tree node further maintains some edge statistics information for the rectangle related to it. Second, we define
the concept of minimum image-based support of edges (MNIE). With the help of the NaR-Tree and MNIE-
based pattern extension approach, a mining algorithm that addresses the problem of exponential candidate
patterns is proposed. We also present a lazy retrieval strategy to reduce the frequency of subgraph retrieval.
Finally, we adopt an edge sampling approach to further accelerate the mining process. Extensive experiments
on real-world and synthesized datasets are conducted to demonstrate the effectiveness and efficiency of our

solution.

INDEX TERMS Frequent pattern mining, geo-social network, NaR-tree, edge sampling.

I. INTRODUCTION

With the near-ubiquitous diffusion of location-aware mobile
devices and ubiquitous internet access, new applications such
as group-based activity planning [1], POI(Point of Interest)
recommendation [2], and geo-crowdsourcing [3] are emerg-
ing. These applications combine both location and social rela-
tions to generate valuable search results for either business or
social goods. However, to make these services more intelli-
gent, it is better to reveal patterns or fundamental relations
among users. To this end, we investigate frequent pattern
mining in this paper, a central problem that plays a critical role
in all graph-related applications since graphs are typically
used to model relations among users in a geo-social network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen

The goal of frequent subgraph mining is to find subgraphs
whose appearances are top-k frequent [4], [5] or exceed
a user-defined threshold [6], [7]. We argue that frequent
subgraph mining finds its real applications in tasks such as
activity planning or POI recommending.

Consider the collaboration graph G of Fig. 1 and a user
who is interested in mining collaborations among researchers
in a region to promote cooperative research among insti-
tutes in the area. Typically, the nodes in such graphs rep-
resent authors, and they are labeled as DM (data mining),
KD (knowledge discovery) or IR (information retrieval)
researchers, each of which has its spatial information gen-
erally described by coordinates. The edges represent inter-
actions or cooperation between these researchers. Frequent
subgraphs can be used here to show collaborations among
authors having the same interest in work. To reveal more

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

27662

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-1377-0309
https://orcid.org/0000-0002-0583-5512
https://orcid.org/0000-0002-3945-4363

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

detailed relations, we progressively reduce the frequency
threshold or change the input core pattern until interdisci-
plinary collaborations are discovered.

Another example is POI recommending. Suppose we have
users and enjoyable places in a graph; check-in data in these
places represent the user interest in them. Then, we can use
this graph to mine the frequent visit mode to facilitate POI
recommendation. That is, when recommending a place or
planning a trip, the historic pattern found regarding a user’s
label (e.g., young or old, man or women), POI label (e.g.,
cinema, restaurant, gym) and checking records will give cus-
tomers a better reference.

The literature evaluates the frequency of a subgraph S in a
graph G by looking for isomorphisms of S in G [5], [6], [7].
Isomorphisms mean exact matches of node labels and edges
in the subgraph with a pattern. The problem is well studied
in a general graph, which can be a collaboration graph with-
out geo-attributes [7], bioinformatics network [4] or knowl-
edge graph [5]. In this paper, different from previous work,
we address a new kind of geo-social frequent pattern mining
in networks with constraints on a spatial and fixed label space,
hereafter called GSFPM for brevity. A GsFPM mining is a
top-k query that takes three arguments: (A; L; c; k), where A
is the spatial constraint, L is the label constraint, and c is a
core pattern defined in L. The spatial constraint A is a range
constraint, and L imposes that all nodes appear as a pattern
instance with a label I € L. We argue that spatial and fixed
label space constraints are reasonable assumptions in real life
since the geo-social network is so large that it is not necessary
to explore the relations among all labels in the whole graph.
Additionally, a GSFPM query starts from a core pattern, and
the process can be easily extended to explore all patterns in
the label space constrained by L.

Mining frequent patterns in geo-social networks faces the
same challenges as previous works; the first is the expo-
nentially large number of candidate patterns. The possible
frequent patterns are obtained from the combination of all
feasible nodes and edges in the network. The size of the
search space is obviously huge and is exponential in the
cardinality of the nodes and edges. The second challenge
comes from evaluating the frequency of each candidate pat-
tern. An obvious definition of support for a pattern is the
number of its occurrences in the input graph [8]. However,
such a definition is not anti-monotone since there are cases
where a subgraph appears fewer times than its extension,
which results in not being allowed to develop methods that
effectively prune the search space [7].

In addition to the above two challenges, to conduct GsFPM
in a large geo-social network, we face a third problem: how
to retrieve a specific subgraph with spatial and label space
constraints efficiently.

Due to the additional constraint, traditional frequent pat-
tern mining algorithms [6], [7] cannot be directly applied to
GsFPM. That is, we extract the desired subgraph first and
then apply it to achieve the results. Thus, when GsFPM is
processed in a large network, considerable time is spent on

VOLUME 11, 2023

obtaining the nodes and edges that satisfy both spatial and
label constraints.

In this work, we propose a novel framework for the GsFPM
problem, which addresses the above three challenges. Specif-
ically, we first devise a neighboring-aware R-tree (NaR-Tree)
to organize the spatial and social relationships of each node
in the geo-social network. It helps to access subgraphs effi-
ciently in constraint areas and filter out nodes with undesir-
able labels, thus accelerating the speed of subgraph retrieval.
We modify node-based MNI to edge-based MNIE), which
counts the minimum number of unique edges. Different
from the previous frequent pattern mining algorithm, which
extends the candidate pattern based on the frequency of
edge appearance, we also devise a MNIE-based extension
approach and lazy retrieval strategy to speed up mining.
Finally, we propose an edge sampling-based approach to
accelerate mining. To the best of the authors’ knowledge,
this is the first work on frequent pattern mining in geo-social
networks.

In summary, our main contributions are as follows:

o We present the GsFPM problem, which can be used in
many geo-social network analytical applications.

« We construct a basic solution that integrates the most
advanced frequent pattern mining techniques.

« We devise NaR-Tree to alleviate the challenge of retriev-
ing subgraphs from a large graph and a MNIE-based
extension approach to alleviate the challenge of expo-
nential candidate patterns. We also adapt a lazy retrieval
strategy to reduce retrieval times.

« Extensive experiments on real-world and synthesized
datasets are conducted to demonstrate the effectiveness
and efficiency of our solution. We verify that our algo-
rithm is far more efficient than the basic solution and can
be scaled to networks with millions of nodes.

The rest of the paper is organized as follows. Section II
surveys related work. Section III introduces the fundamen-
tal concepts of frequent patterns and formally defines the
GsFPM problem. Section IV proposes an R-tree-based base-
line solution. Section V presents our mining framework with
several optimization algorithms. Section VII presents the
experimental evaluation, and Section VIII presents the con-
clusions.

Il. RELATED WORK

A. TRANSACTIONAL MINING

Transactional mining and single graph mining are two forms
of FPM. In transactional mining, mining algorithms require
relatively small graphs as inputs [6], [9], [10], [11], [12], [13].
A pattern’s frequency is determined by the number of graph
transactions in which it appears, regardless of how often it
appears in one transaction.

The FSG [9] algorithm performs a breadth-first search, and
candidate subgraphs are generated by combining frequent
subgraphs. Actually, AGM [10] and FSG adopt an improved
version of the Apriori-based approach, which combines small

27663

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

frequent patterns together to create new candidate patterns.
Their join strategy can exclude many infrequent subgraphs.
However, the limitations of these approaches are the complex
combinations and high memory consumption. The gSpan
[6] is a popular frequent subgraph mining algorithm that
is based on pattern modeling. Its extensions of a subgraph
must appear before, which avoids the generation of nonex-
istent graphs. To efficiently identify duplicate subgraphs,
gSpan calculates a DFScode for each searched subgraph.
If two graphs are isomorphic, their minimum DFScodes will
be equal. The gSpan algorithm overcomes the limitations
of the breadth-first approaches by only keeping subgraphs
associated with the recursive call currently in progress. The
FPGraphMiner [11] proposes a structure named BitCode (a
bit vector) to group subgraphs. Therefore, its mining process
uses depth-first search without backtracking, which is highly
efficient. It is true that the FPM is useful in practice, but it is
difficult to set the minimum support threshold. A high thresh-
old will cause few patterns to be found, while a low threshold
will result in a large number of meaningless patterns.

To address this issue, a top-k frequent subgraph mining
problem was proposed. The threshold for the mining process
can be set without any prior knowledge. TGP [12] is the first
algorithm for this problem, and it gradually raises the mini-
mum support threshold, which is initially set to 0. To find the
top-k patterns, TGP generates all patterns, which is obviously
inefficient. To address this problem, the FS3 [13] algorithm,
adopting the Markov Chain Monte Carlo method, was pro-
posed to trade precision for efficiency. Hence, FS? may return
infrequent patterns.

B. SINGLE GRAPH MINING

The input data for single-graph frequent pattern mining is
a single large graph [5], [7], [14], [15], [16], [17]. The
frequency of a pattern is based on its occurrences in the
single graph. SIGRAM [14] stores frequent embeddings to
extend for finding larger subgraphs. However, storing embed-
dings consumes considerable memory, and the computational
cost of SIGRAM is high due to the use of MIS. GRAMI
[7] is an algorithm that does not store all embeddings and
takes advantage of the features of MNI. In contrast to previ-
ous approaches, GRAMI only identifies the minimal set of
instances that satisfy the frequency threshold without enu-
merating all instances. GRAMI adopts DFScode in gSpan
so that no duplicate subgraphs are found in the result. Both
directed and undirected graphs are supported by GRAMI,
which also proposes an approximate version.

However, GRAMI cannot mine patterns in multirelational
graphs. MuGram [15] performs a depth-first search starting
from frequent edges to handle this case. ScaleMine [16]
divide mining tasks among separate CPU cores by optimiz-
ing GraMi. Another algorithm SSIGRAM [17] divides tasks
among threads on a cluster in distributed systems.

However, threshold-based FPM has difficulty setting a
suitable threshold. To address this issue, FastPat [5] studies a

27664

core-based top-k frequent pattern discovery problem. FastPat
proposes an upper bound of MNI and an index structure
called meta-index. It also designs a join-based approach to
efficiently compute the MNI.

C. SUPPORT MEASURES

In the process of FPM in a single graph, how to measure
the frequency of a pattern is a key problem. Intuitively,
the frequency should be determined by the occurrence of
patterns, while this strategy can lead to an exponentially
large search space. MIS [18] is an anti-monotonic support
measure, but it has been found to be NP-hard, which makes
it unsuitable for practical application. MNI [19] has been
extensively adopted in the FPM literature, which is the most
practical measurement, and the calculation can be done in
linear time. However, the MNI support lacks intuitiveness,
so [8] proposes two support measures: MI and MVC, which
combine the advantages of existing approaches.

D. SPATIAL INDEX

Spatial indices are used to efficiently retrieve multidimen-
sional objects or objects with spatial extents. Hierarchical
tree-based spatial index structures [20], [21] are a popular
type of spatial index that can be classified into two categories:
(a) Grow-and-Post trees [22] such as R-tree [23] and R*-tree
[24], which extend the B-tree structure. The main idea is to
recursively partition the spatial data based on spatial prox-
imity clustering [25]. (b) Space-Partitioning trees include the
Quad-tree [26] and k-d tree [27], which recursively decom-
poses the space into disjoint partitions [25].

The augmented spatial index is another type of spatial
index that is augmented with information to resolve dif-
ferent categories of geospatially related queries [28], [29].
The keyword-first index finds documents that satisfy both
spatial and textual requirements by first locating them based
on keywords and then by their location. The RTree-first
index, used in a reversed manner, is another augmented
spatial index. KR*-tree [29] is extended from R-Tree, and
keywords can be stored in its internal tree nodes. Instead of
directly using keywords, IR?-tree [28] extends R-Tree with
signature files. Similar to IR?-tree, IR-Tree [30] is proposed
for solving top-k geospatial and textual document search
problems, and it stores document summaries such as term
frequency and document frequency. Due to the complex-
ity of graph data, it cannot be implemented for geospatial
graphs.

lll. PRELIMINARIES

This section reviews some basic knowledge of geo-social
networks. The mathematical notation used in this paper is
summarized in Table 1. Then, we introduce R-tree, which
is used to index nodes, and the minimum image-based
support (MNI), which is used to measure pattern fre-
quency. With these concepts, we formally define the GsSFPM
problem.

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

TABLE 1. Summary of notation.

Symbol Description

Gs A geo-social graph

U, v Nodes

(u, v) Edge connecting node u and node v

\% Node set

E Edge set

V1], |E| The size of V and £

L(.) Label function associating each node with a label
Label constraint

A Spatial constraint

c Input core pattern

P(Vp, Ep) Pattern with node set V}, and edge set Ep,

P.freq Frequency of pattern P

S(Vs, Es) Subgraph with node set Vs and edge set Es

MNIE(P) MNIE value of pattern P

MNI(P) MNI value of pattern P

PE(P) Pattern elements of Pattern P

NTS(S) Node types of subgraph S

ETS(S) Edge types of subgraph S

Qgs GsFPM query in a network

f Bijection function between the subgraph and pattern

A. PROBLEM STATEMENT

Definition 1 (Geo-Social Networks): A geo-social net-
work G¢(V,E,L) is an undirected and labeled graph. V
represents a set of nodes, and E(E C V x V) represents a set
of edges. L(.) is a label function such that every node v € V
is associated with a label indicating its type, i.e., L(v) € L.

The geographical attribute or location for a node v consists
of two attributes of node v, i.e., v.x and v.y, which are the x
and y coordinates of node v, respectively.

Definition 2 (Pattern): A pattern P(V),, Ep) is a weakly
connected subgraph obtained from pattern space, in which
each node v/ € Vp is assigned a label L(v'), and each edge
¢ € Ep.

DM: Data Mining
KD: Knowledge Discovery

IR: Information Retrieval v @ V2
GD: Graph Data management

n ® @
(x0) D
V6
r2 ()
\’9 \/'1
(

V. 8

a) (b)

FIGURE 1. (a) Patterns P; and P,. (b) A collaboration graph G; nodes
correspond to authors (labeled with their field of work).

Example 1: Fig. 1 (a) shows two patterns: P: (DM)-(KD)-
(IR) and P>: (DM)-(KD)-(IR)-(DM), indicate cooperations
among data mining, knowledge discovery and information
retrieval scientists. It should be noted that not every pattern
that exists in pattern space will be found in a geo-social graph.

VOLUME 11, 2023

It is obvious that pattern (KD)-(IR)-(KD) does not appear in
the graph shown in Fig. 1(b).

Definition 3 (Instance): An instance of patternP(V), Ep)
is a subgraph S(Vy, E;) € Gy, for which the subgraph iso-
morphism of P(V),, E,) to S(Vy, Ey) is satisfied. There exists
a bijection function f : V,, — Vj satisfying:

o |Vpl =1|Vsland |Ep| = |El;

o L,(vV)=L(f(V));

o« YU V)EE, = (f(U),f(V)) € E;

o YW V)€ E, = (fT'W).f7(V) €E,

If there exists an instance of pattern P in Gy, that means
mapping function f between the subgraph and pattern needs
to map each node and edge in P to a distinct node and edge,
and the label of each node in the subgraph also has the same
label as the nodes in the pattern. Therefore, a pattern can be
considered a general schema for relations among some nodes.

Example 2: Fig. 1(b) shows three instances for Py: (vi-ve-
v8), (v2-vs-v3), and (v7-vs5-v3). For pattern P;, there is only
one instance, (vV2-v3-vs5-vp).

Definition 4 (Geo-Social Frequent Pattern Mining Prob-
lem): A GsFPM query in a network Gy(V, E, L) represented
as Qg5 = (A; L; c; k), where A is a spatial constraint (range
constraint in this paper), L denotes label constraint, k is an
integer and c is a user specified core, which is obtained
from label space constrained by L, returns the top-k frequent
patterns derived from pattern space.

Example 3: Take Fig. 1(b) as an example. If we relax
A to include the whole graph, L = {DM, IR, KD},
k = 2 and c: (DM)-(KD), a GsFPM query returns top-1
pattern (DM)-(DM)-(KD), since it appears four times in the
graph, in the form of (vi-v2-vs), (v2-v1-v4), (v2-v1-vg), and
(v9-v7-v5). It returns (DM)-(KD)-(IR) as the top-2 pattern.

B. MINIMUM IMAGE-BASED SUPPORT (MNI)

Intuitively, evaluating the frequency of a pattern P is a matter
of counting the number of instances it has in the geo-social
network. Each instance in the network is an isomorphism of
pattern P. To find all instances, it is necessary to perform
an exhaustive search in the network. Because the subgraph
isomorphism problem has been shown to be NP-hard [31],
many algorithms [32], [33], [34], [35] have been introduced
to speed up the search for isomorphism subgraphs.

To support practical subgraph mining and efficient fre-
quent subgraph evaluation, several antimonotone metrics
have been proposed in the literature. Reference [19] intro-
duces minimum image-based support, [14] proposes the
concept of maximum independent sets, and [8] presents a
framework that brings together minimum image-based and
overlap graph-based support measures. Since MNI is widely
used in the literature, we adopt it as our frequency measure
[71, [14], [36].

Definition 5 (Minimum Image-Based Support(MNI) [19]):
Given pattern P(V),, E,) and geo-social network Gy(V, E, L),
minimum image-based support is the number of unique nodes
in Gy to which a node from pattern P is mapped. Suppose

27665

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

pattern P has m isomorphisms in Gy, i.e., f1, f2, f3, ..fm, Where
f is a mapping function, and its corresponding image set
is Mv) = i), L), () ..., fm(v). MNI is defined as:
MNI(P) = min{|M (v)| forallv e V, }.

Example 4: The pattern P: (DM)-(KD) corresponds to
4 instances in Fig. 1(b). For the nodes in V,, = (V5. Vi),
we have their image sets as M(vbM) = {v1, v, v7} and
M(\/KD) = {w4, vs, ve}. Hence, the MNI of P in G; is
MNI(P) = min{|M (Vp,,)l IM(vip)I} = MNI{3, 3} = 3.

It is easy to see that MNI satisfies downward closure,
and [19] shows that MNI’s antimonotonicity allows efficient
pruning during the search of instances for a pattern.

IV. R-TREE-BASED BASIC SOLUTION
We consider a scenario described in [37], in which the
user’s spatial and social information are stored separately on
external disk storage. Dealing with spatial information, it is
popular to use R-tree [38], a tree data structure for storing
location data indices in an efficient manner. R-trees are highly
useful for spatial data queries and storage for many real-life
applications [25], [39]. A basic approach for GsFPM query
processing on an R-Tree index of user locations is as follows.
For a Qgs = (A; L; c; k), we first find all nodes located
inside A (range constraint) via R-tree, filter out nodes with
labels not in L and then start from core pattern ¢ to conduct
frequent pattern mining. We now present our basic solution
for the GsFPM query, which is summarized in Algorithm 1.
In general, we enumerate all patterns extended from the core
pattern ¢ in the retrieved subgraph and evaluate the MNI
values of these patterns. Specifically, two priority queues
are used to check the candidate patterns and maintain the
current top-k patterns. The algorithm evaluates every pattern
in the min-priority queue to ensure that these patterns meet
requirements. Line 6 prunes the candidate patterns if their
MNI upper bounds are lower than the min-priority queue’s
top pattern — the current kg, frequent pattern.

Algorithm 1 GsFPM-B

Input: Graph G, spatial constraint A, label set L, core pattern ¢
and integer k
Output Top-k frequent patterns extended from ¢
: Gs = Retrieve nodes with constraint from Gy
. Initialize candidate pattern set - max-priority queues ¢
: Initialize top-k pattern set - min-priority queues g2
while ¢; is not empty do
Pcyr = EXTRACT-MAX(q1).
if Py freqg > MINMUN(q2).freq then
Py freq < MNIEvaluate(Pcy,)
if Peyr freqg > MINMUN(q3).freq or SIZE(g2) < k then
INSERT(q2, Peur)
10: Extension(Gg,Pcyr, q1)
11: return ¢

RPN RN

b

In Algorithm 1, Line 5 removes and returns the element of
q1 with the largest key, and MINIMUM() returns the element
of ¢» with the smallest key and compares it with the cur-
rent pattern MNI(Line 6). Then, we evaluate the MNI value
of these patterns (Line 7) with MNIEvaluate(), a function

27666

adapted from [7], which is the state-of-the-art technique for
MNI computation. It works as a constraint satisfaction prob-
lem and checks whether each node of a pattern has threshold
instances in the graph and does not return an exact MNI value.
However, MNIEvaluate() is a modified version of the original
version and returns the exact MNI value after searching all
instances. The same approach was adopted by [5]. Line 9
inserts pattern P, into the set go where the top-k results are
kept. Algorithm 1 returns the final results at Line 11.

Algorithm 2 Extension(G,P,Q)

Input: A Graph G, a pattern P, candidate pattern set Q
Output: All frequent patterns that extend P.

1: for each (e, v) in G do

2 if (e, v) can be used to extend P then

3: Generates a new pattern P’ from P

4: P’ freq < P.freq

5 Put P’ into Q

To enumerate all possible subgraphs in a graph, the
edge-growing method [6], [7] starts with an edge and gradu-
ally adds neighboring edges to extend the graph. Algorithm 2
enumerates all candidate patterns that can be extended from
the core pattern ¢, and it avoids duplicate patterns by using
the DFScode technique of gSpan [6].

V. THE MNIE-BASED TOP-k FREQUENT PATTERN
MINING FRAMEWORK

This section proposes a novel framework to efficiently
address the GsFPM problem in a geo-social network.

Obviously, the approach of the basic solution adopted is
inefficient for Q,s = (A;L;c; k) in some scenarios. For
example, there is a high chance of keeping the irrelevant
node in a sparse graph while searching for frequent patterns.
As we can see from Fig. 1, node vy is not connected with any
other nodes and cannot be used to construct any pattern. The
problem will worsen when extending the pattern from a core.
Many nodes and edges in which the query is not of interest
or is not closely related to the core pattern will be included in
the search subgraph.

The second problem with the basic solution is that it always
checks every edge in the graph to extend the pattern. A typical
approach to extend the pattern or add edges to the pattern
is according to their frequency of appearance in the graph.
Edges with higher frequency enjoy more opportunity to be
added to candidate patterns. However, as we revealed in
Section VI, pattern extension based on the knowledge of the
whole graph is not always appropriate for us, since what are
interested in in this work are patterns growing from a core.
The edges that should be used in extension are edges that
appear frequently around instances presented.

For the two reasons above, we devise a novel index struc-
ture extended from R-tree: neighboring-aware R-tree, which
allows us to conduct node and edge filtering during sub-
graph extraction from the original networks. We also intro-
duce a new extension approach, which extends the candi-
date pattern based on the knowledge of the subgraph around

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

(D

V4
.V9 VI 0

(a) MBRs of graph G in Fig. 1(b)

roor []5]]
((DV)-DM), DM)-R),
(DM)-(KD), (IR-KD)}

v v
olal] [l

{OM)-OM). ©M)-IR),
(DM)-KD). (IR)-(KD)}
Leaf

V4‘ ‘ ‘

{OM-DM), OMHKD); {DM-DM), DM-IR). {DM-KD), (R-KD)}
DM)(KD). (R)KD)}

F1 ONERE]I

I
(b) NaR-Tree index structure

Root E. {(DM):3, (IR):2. (KD):3}

{(DM)-(DM):1. (DM)-(IR):1.
(DM)-(KD):7/2, (IR)-(KD):2}

o]
{R):1, (KD):2}

{(DM):3, (IR):2, (KD):3}
{(DM)-(DM):1. (DM)-(IR):1. {(DM)-(KD):1/2. (IR)-(KD):1}

{DM)-DM). OM)-(KD)}

Vi Vs Vo | Vs V7| Yo |Vio

L] »

.

Leaf (DM)-(KD):3, (IR)-(KD):1}
‘ ¢ A 4 i
Vr | va | vo | vi| vs Vé | Vs | V7 | Vo | Vio

{(DM):3, (KD):1} {(DM):3. (IR):2, (KD):3} {R):1, (KD):2}
{(DM)-(DM):1/2, (DM)-(KD):3/2} {(DM)-(DM):1/2, (DM)-(IR):1, {(DM)-(KD):1/2, (IR)-(KD):1}
(DM)-(KD):3/2, (IR)-(KD): 1}

(c) Example of NaR-Tree search

FIGURE 2. NaR-Tree index structure and search process.

instances previously found. With NaR-Tree and subgraph-
based extension in hand, we have our frequent pattern search-
ing framework.

A. NEIGHBORING-AWARE R-TREE

Since Qg involves spatial and social constraints, both spa-
tial and social relations should be indexed simultaneously
to expedite its processing. However, traditional R-tree only
indexes the spatial information of the nodes. In this subsec-
tion, we first introduce the structure of NaR-Tree and then
present details of the search algorithm.

From the example shown in Fig. 2(a), we can make an easy
observation: when we extract unique edges in a graph and its
subgraph, the edge types from the graph include edge types
from the subgraph. In this figure, we have unique edge types
{(DM)-(KD), (DM)-(IR), (IR)-(KD), (DM)-(DM)} for the
whole graph and {(IR)-(KD), (DM)-(DM)} for the subgraph

VOLUME 11, 2023

constrained by rectangle B. In the following discussion,
we use Edge Types (ET) to denote unique edge types in a
rectangle region or subgraph. With this observation, we have
the NaR-Tree index.

A NaR-Tree is a variant of the R-tree in which each nonleaf
tree node further maintains some edge type information for
the rectangle related to it, and each graph node indexed by
leaf tree nodes maintains its neighbor information. Fig. 2(b)
exemplifies a NaR-Tree, which satisfies the following prop-
erties in addition to the traditional R-tree:

o Graph nodes indexed by NaR-Tree keep information of
their neighbors.

o Index record in a leaf node has ET information of nodes
included in the minimum bounding rectangle (MBR) of
this node.

o Index record in a nonleaf node has ET information to
keep the union of its children.

Example 5: Fig. 2(b) shows an instance of NaR-Tree. For
leaf node aj, az, we have ET (S,)={DM-DM, DM-KD},
ET(S4,) = {DM-DM, DM-KD, DM-IR, IR-KD}; for both
of them, DM-DM is an outgoing edge. For MBR A, we have
ET(S4) =ET(S4,) UET(S4,) = {DM-DM, DM-KD, DM-IR,
IR-KD}.

To build a NaR-Tree, we adopt a bottom-up approach in our
implementation. We first construct a standard R-tree based
on the location of the nodes. Then, from edges connected
with each graph node, we add ET information into its leaf
node entry. For a nonleaf entry e, let eq, 2, €3, ..., ey (mis
the minimum number of entries that will fit in one NaR-Tree
node); then, ET'(S,) can be computed by recursively applying
the union operation among ey, €3, €3, . .., €.

The purpose of devising NaR-Tree is to retrieve the sub-
graph for a special pattern. While a subgraph has its edge
types, a pattern also has edge types. To make a difference
between them, we have Definition 6.

Definition 6 (Pattern Element): Pattern elements are edge
types that appear in a pattern P(V), E,). Pattern elements
(PE) are presented as a set of ordered pairs of labels. The
order of labels is their alphabetical order.

To extract a subgraph of a pattern, we first broke the pattern
into elements, then together with spatial and label constraints,
we filtered out nodes and edges not related to the pattern. For
example, when we want to retrieve a subgraph for a pattern
(DM)-(KD)-(IR), we first obtain pattern elements {(DM)-
(KD), (IR)-(KD)} and then search the NaR-Tree shown in
Fig. 2(b). Since there is no such edge type in rectangle by,
nodes and edges are filtered out.

With NaR-Tree, we propose the following search
algorithm.

Algorithm 3 returns a subgraph and statistical information
of this subgraph. A NaR-Tree also works as a temporal data
structure that is used to store node and edge type information
for the returned subgraph. We declare two collection variables
Node Type of Subgraph (NTS) and Edge Type of Subgraph
(ETS) to keep the maximal degree of a special label mapped

27667

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

Algorithm 3 NaR-Tree Search(T, S, A, L, PE(P))

Input: Root node of a NaR-Tree T, spatial constraint A, pattern P
QOutput: A subgraph S satisfy A, L and ¢ constraint, Updated 7.
1: if T is not a leaf then
2: for eachchilde; of T do
if ¢, MBR overlaps A && PE(P) N T.ET # @ then
NaR-Tree Search(e;, S,A, L, PE(P))
Update T.NTS and T .ETS

else
for each node u of T do
for each edge (u,v) of u do
if u.location overlaps A && v.location overlaps A &&
L) e L && L(v) € L && (L(u), L(v))e PE(P)) then
10: S=S U {(u,v)}
11: Update T.NTS and T.ETS

B A A g

nodes and the unique edge numbers of pattern elements
mapped. The purpose of this information will be introduced
in detail in section V-B.

When the algorithm finds a qualified node, as Line 9 indi-
cates, both nodes at the end of an edge are mapped to labels
in L, and its type (L(u), L(v)) (suppose it is in the order
of L(u), L(v)) is included in PE(P). Then, it will be added
to set S, which is used to keep the returned subgraph. For
example, the algorithm encounters two edges in the rectangle
b1, as shown in Fig. 2(c), (DM)-(KD) and (IR)-(KD). The
unique occurrence of (IR)-(KD) is 1. (DM)-(KD) is the type
for an outgoing edge. The occurrence in this situation is
1/2. Node types in this rectangle are (IR):1 and (KD):2,
where the number indicates maximal degree for the label IR
is 1 (occurred in vg) and maximal degree for label KD is 2
(occurred in vg). Finally, the algorithm returns a subgraph S.
At the root node T of NaR-Tree, we have the maximal degree
for each label and a unique edge number for each type of edge.

We have Lemma 1 and Lemma 2 for the correctness of
Algorithm 3.

Lemma 1 (Instance Integrity of Subgraph S): Subgraph S
returned by Algorithm 3 includes all instances of pattern P
constrained by A and L.

Proof: We now prove the lemma by contradiction. Sup-
pose that an instance / is not included in S. Then, there exists
an edge (u,v) € I, for which (L(u), L(v)) € PE(P) or (L(v),
L(u)) € PE(P). This contradicts Line 10 in Algorithm 3,
which has exhausted every edge of u. [|

Lemma 2 (Extension Integrity of Subgraph S): Subgraph
S returned by Algorithm 3 includes all possible extensions
of pattern P constrained by A and L.

Proof: The same as that of Lemmal.]

B. MINIE-BASED PATTERN EXTENSION

As stated before, the usual constraint employed in frequent
pattern mining is minimum support, especially MNI support.
MNI in Definition 5 is a single node-based support measure
that avoids potentially expensive maximal independent set
computations compared to other support measures [8], [14].
It is obvious that pattern elements enforce more constraints
than node-based measures since there is certain topology
information with them. In this section, we modify node-based

27668

MNI to edge-based MNI, which count the minimum number
of unique edges an element of the pattern is mapped to.

Definition 7 (Minimum Image of Edge-Based Support
(MNIE)): Given pattern P(V,, E,) and geo-social network
G,(V, E, L), the minimum image of edge-based support is the
unique edge number in G to which an element from pattern P
is mapped. MNIE is defined as: MNIE(P) = min{| M’ V')|:
YV u',v € P, M is a subgraph isomorphic mapping (instance)
of Pin Gy }.

In the following discussion, we refer to MNI introduced in
Definition 5 as the minimum image of node-based support
(MNIN). With MNIE, we can tighten its upper bound by
removing disqualified edges from a graph by checking the
types of edges. The following lemma shows that MNIE is
an antimonotonic support measure and can be used as the
minimum support constraint.

Lemma 3 (Antimonotonicity of MNIE): Given a geo-social
network G(V, E, L), consider a pattern P and its extension
P’. 1t holds that MNIE(P) > MNIE(P’).

Proof: Suppose P’ is extended by adding an element
(X,X"); there are two situations concerning this extension:
(X,X") € PE(P) and (X,X’) ¢ PE(P). When (X,X’) € PE(P),
we have MNIE(P) = MNIE(P'). When (X,X') ¢ PE(P),

we have MNIE(P) > MNIE(P’) from Definition 7. |
(DM)-(KD) :4
Element (DM)-(KD) (IR)-(KD) (IR-KD) =2
Instance 1 vi-ve ' veve (]_)_l\-/l):(]E)I\;Ii 7 727 77777
Instance 2 V2-vs V35 (DM)-(IR) :1
Instance 3 Vs V5Vs

FIGURE 3. An example of the MNIE bound.

Example 6: Fig. 3 shows that pattern (DM)-(KD)-(IR)
has two elements: (DM)-(KD) and (IR)-(KD). Unique edge
numbers for these two elements are 3 and 2. Hence, we have
MNIE value 2 for this pattern. There are two possible exten-
sions to (DM)-(KD)-(IR): (DM)-(DM) and (DM)-(IR). After
we extend the pattern, either for pattern (DM)-(DM)-(KD)-
(IR) or (DM)-(KD)-(IR)-(DM), the MNIE value is less than
or equal to the original value.

During frequent pattern mining, after retrieving subgraph
S for a pattern from Gy, we have obtained NTS and ETS,
as we introduced in the last subsection. These two values are
the maximal degree of a special label mapped node and the
unique edge numbers of pattern elements (or MNIE value).
They can be used in pattern extension. We have Algorithm 4
to account for this procedure.

The difference between Algorithm 2 and Algorithm 4 is
in Line 2 of the algorithm. We do not expand edge types
with MNIE value less than the currently found k-th MNIE
in the top-k queue to pattern P which is under considera-
tion. Thus, we eliminate many unfeasible candidate patterns.
When extending a pattern, we also check whether it is prac-
tical to expand by examining the maximal degree of nodes

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

Algorithm 4 Extension-S(S, P, Q)

Algorithm 5 MNIE Evaluate (7, S, P)

Input: A subgraph §, a pattern P, candidate pattern set Q
Output: All frequent patterns that extend P

1: for eachtypeer inS do

2: if MNIE(er) > k; MNIE in gy && e7 can be used to extend

P then
3: Generates a new pattern P’ from P
4: P’ freq < P.freq
5: Put P into Q

(c) External extension

FIGURE 4. Extension modes of a pattern.

maintained in NTS. Algorithm 4 also uses the DFScode form
from gSpan to remove duplicate candidates.

C. LAZY RETRIEVAL OF THE SUBGRAPH FOR A PATTERN
It is easy to observe that there are two types of extension:
extension inside a pattern and outward extension. Fig. 4 illus-
trates these situations. Suppose P’ is an extension of pattern
P, and it is an extension inside of P. This means that when
obtaining a subgraph for P’ from G,, we do not add more
nodes or edges to the subgraph for P. In regard to an outward
extension, there are two situations: with a pattern element
already existing or with a new pattern element. Fig. 4 (c)
shows these two situations. Either the other side of the edges
appears as a node with a label available in pattern P or not,
and we must retrieve the subgraph once again from the graph.
The reason is that we do not check the node at the other side
of the edge when retrieving the subgraph for P. Based on
the observations above, we have Algorithm 5, which adopts
a lazy retrieval strategy.

Algorithm 5 follows the approach adopted by GRAMI. The
algorithm first conducts lazy retrieval of the subgraph for a
pattern. Then, it searches all instances for each element in
P (Line 4-11) to return the MNIE value. The optimization
details used by GRAMI are not presented in the algorithm.
We will show in the experiment section that the lazy retrieval
approach effectively avoids frequent subgraph creation while
obtaining frequent patterns.

The GsFPM-M follows the steps of the basic solution.
Algorithm 6 describes the overall procedure of our mining
framework. First, we construct a NaR-Tree for the graph
(Line 1) and then modify Algorithm 1 with MNIE Evaluate()

VOLUME 11, 2023

Input: NaR-Tree 7', Subgraph S, Pattern P
Output: MNIE value from pattern P

1: if PE(P) € ETS(S) then

2: obtain S from NaR-Tree searching

3: occurrence = 00

4: for each element e € PE(P) do

5 tmp=0

6: for each instance’s edge i, of ein V do
7: if i, is already marked then

8: tmp—++

9: else

10: if an instance of P found then
11: Mark all edges of this instance to P’s elements
12: tmp++
13: if occurrence > tmp then
14: occurrence = tmp

15: return occurrence

(Line 8) and Extension-S() (Line 11). We have Theorem 1 for
the correctness of Algorithm 6.

Algorithm 6 GsFPM-M

Input: Graph G, spatial constraint A, label set L, core pattern ¢
and integer k
Output: Top-k frequent patterns extended from ¢
: Construct NaR-Tree T from G
: Initialize subgraph §
: Initialize candidate pattern set - max-priority queues g1
: Initialize top-k pattern set - min-priority queues g2
: while ¢, is not empty do
Pcyr = EXTRACT-MAX(q).
if Py .freqg > MINMUN(q»).freq then
Py freq <— MNIE Evaluate(T,S,P¢y,r)
if Poyr.freqg > MINMUN(q2).freq or SIZE(g2) < k then
INSERT(q2, Peur)
Extension-S(S,Pcyr,q1)
: return g

—_— =
N0

Theorem 1 (Correctness of the MNIE-Based GsFPM
Algorithm): The MNIE-based GsFPM algorithm returns an
exact top-k frequent pattern with A, L and c constraints.

Proof: To show that MNIE-based GsFPM works cor-
rectly, we use the following loop invariant: At the start of each
iteration of the while loop of lines 5, each patterni (1 < i < k)
queued in g3 is the top-k frequent pattern in G5 with A, L
and c constraint. This invariant is true prior to the first loop
iteration, each iteration of the loop maintains the invariant,
and the invariant shows correctness when the loop terminates.

|

1) INITIALIZATION
Prior to the first iteration of the loop, the queue is empty.
Then, the invariant remains.

2) MAINTENANCE

To see that each iteration maintains the loop invariant, observe
that subgraph S obtained from the graph contains all instances
according Lemma 1. Then, we have an exact MNIE value for

27669

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

this pattern. If the MNIE value is greater than the current k-th
pattern, it will be inserted into g2, and a series of candidate
patterns will be created for it. According to Lamma 2, all pos-
sible patterns will be examined. If it is a feasible candidate,
it will be put into g1 . This ensures the loop invariance for the
next iteration.

3) TERMINATION
At termination, by the loop invariant, the patterns in g, are
top-k frequent patterns.

4) COMPLEXITY ANALYSIS

The time complexity of Algorithm 6 consists of several parts.
First is the construction of NaR-Tree. Its time complexity
is O(JV| + |E|). The second is retrieving a subgraph for a
pattern. When spatial constraint A and label set L are relaxed
to the whole graph, the time complexity is O(|V| + |E|). The
third part is instance enumerating for each pattern candidate.
Let n be the number of nodes in the pattern; then, the time
complexity is O(V|" 1Y [7]. The last part is the number of
candidate patterns explored. Algorithm 6 improves the effi-
ciency mainly by reducing pattern candidates, the retrieving
times and the size of the subgraph that is needed for a pattern.

VI. ACCELERATING MINING VIA EDGE SAMPLING
Geosocial networks have grown explosively in recent years,
and there are millions or even billions of nodes and edges in
such graphs. As a result, various graph sampling techniques
have been proposed for accelerating mining of these complex
and evolving networks [40]. Under the sampling approach,
only a small subset of the nodes or edges from the original
graph is selected for further processing.

Many graph sampling algorithms have been proposed
in the literature [41], [42]. In particular, uniform random
edge sampling (URE) and nonuniform random edge sam-
pling (NURE) are two approaches that have been extensively
studied. URE sampling scans a graph and puts each edge
under scanning into the sampled graph with a constant proba-
bility. On the other hand, NURE samples edges with different
probabilities.

In this work, we adopt a sample and hold approach
[43], [44] that falls in the middle of URE and NURE. The
approach takes a strategy of keeping the sampling probability
of an arriving edge as a function of those already sampled.
Consider a random process H; = {H; : i € [|E|]} where
H; = lifedgee;is selected, and H; = 0 otherwise. F; denotes

the set of possible outcomes {H1, - - - , H;}. Thus, we have
Plk; is sampled|{H1, - - - , Hi_1}] = E[H{|Fi-11=p; (1)

where p; € (0, 1] is a random probability that is determined
by the previous sampling result. For Ng = |E|, an unbiased
estimate would be

Np=) — @

27670

TABLE 2. Dataset details.(K = 103,M = 10°).

Dataset Nodes Edges Distinct node labels Average degree
Citeseer 3.3K 4.7K 6 2.86
GitHub 377K 289K 30 15.33

Brightkite 582K 214K 50 7.35
Mico 100K 1.08M 29 21.61
Twitch 168K 6.8M 21 80.87
Twitter 11.3M 85.3M 100 15.08

Following this approach, an arriving edge is sampled with
probability g when its nodes match a node that currently
has been sampled. If there is no match, the edge is stored
with probability p. With this simple and single-pass approach,
we have Algorithm 7.

Algorithm 7 NaR-Tree Search-Sampling(7',S,A,L,PE(P))

Input: Root node of a NaR-Tree 7', spatial constraint A, pattern P
Output: A subgraph S satisfy A, L and ¢ constraint, Updated T

1: (same with Algorithm 3)

2: ifu € Vg orv € Vs then
3 prob =p

4: else
5
6
7

. prob=gq
. § =S U {(u, v)} with probability prob
: Update T.NTS and T .ETS

VII. EXPERIMENTS

In this section, we experimentally evaluate the efficiency
and effectiveness of our proposed algorithms by conducting
extensive experiments on six real-world datasets. The exper-
imental settings are introduced in Section VII-A. The effi-
ciency of our algorithms is measured in terms of the search
area, running time, core pattern size and the number of
constraint labels. We then conduct experiments to mea-
sure the effectiveness of our optimization techniques in
Section VII-C. All experiments are run on a machine with
an Intel i5 2.50 GHz CPU and 8 GB main memory (Ubuntu
Linux 64-bit 14.04 LTS). All algorithms are compiled with
Java (JDK v1.8.0_271).

A. EXPERIMENTAL SETTING

1) DATASETS

We use six real-world datasets in TABLE 2 for our experi-
ment: (a) Citeseer [45]: Citeseer is a directed graph with 3.3K
publications(nodes) which models the citation information
between publications. Nodes represent publications and are
labeled with a computer science area. Edges represent the
citations between them; (b) GitHub [46]: A large social net-
work of GitHub developers that was collected from the public
API. Nodes are developers, and edges are mutual follower
relationships between them. The node labels are extracted
based on location, and e-mail address; (c) Brightkite [46]:
A friendship network that was collected using public APIL.
Edges represent friendship between users. The original graph
does not contain labels, so we added labels to the nodes
randomly. The number of distinct labels was set to 50 and

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

TABLE 3. Description of parameter.

Parameter Values

Search area 15000, 20000, 25000, 30000, 35000
Value k& 1,5,10, 15,20

Node size 2,3,4,5,6

the randomization follows a Gaussian distribution; (d) Mico:
This dataset models Microsoft coauthorship information,
which is a dense graph. Nodes represent authors and are
labeled with the author’s field of interest, edges represent
collaboration between two authors. Mico was crawled by [7];
(e) Twitch [47]: A Twitch users social network collected from
the public API, which models the mutual follower relation-
ships between users. Each node has a single label representing
the user’s language, with EN(English) dominating; (f) Twit-
ter [48]: This graph models the social news of Twitter. Nodes
represent Twitter users, and edges represent an interaction
between two users. The number of distinct labels was set to
100 and the randomization follows a Gaussian distribution.
For fair comparison, each running time reported is averaged
over 50 randomly generated core patterns. TABLE 2 shows
the detailed information of these six datasets.

2) ALGORITHMS
We conduct extensive studies to compare the following
4 solutions.
e GsFPM-B: The basic solution (Algorithm 1), which uti-
lizes the techniques from GRAMI and gSpan.
e GsFPM-R: This develops the search procedure in

GsFPM-B through the NaR-Tree structure (Algorithm 3).

e GsFPM-S: This improves GsFPM-R by adapting
the MNIE and MNIE Based Pattern Extension in
Section V-B.

e GsFPM-M: Our mining framework (Algorithm 6)
improves GsFPM-S by employing a lazy retrieval
strategy.

3) PARAMETER SETTINGS

Table 3 shows the tested parameter settings, where the default
values are highlighted in bold. In particular, to preserve the
characteristics of each dataset, we choose 30000(km?) as the
default search area. Since the numbers of distinct labels are
different among datasets, the label constraint depends on the
specific dataset. To analyze the effect of each parameter,
we vary one parameter while setting the rest to default values.

B. EFFICIENCY EVALUATION
Extensive experiments are conducted in this subsection to
verify the efficiency of the proposed algorithms.

1) EFFECT OF SEARCH AREA

We first assess the efficiency of the solutions for the GSFPM
problem by varying the search area. The running times for
the four solutions are shown in Fig. 5. The results show

VOLUME 11, 2023

10°4

= GsFPM-B
> CeFPMR = GsFPM-B
+ GSFPM-S 10°) o GsFPM-R
o v GsFPM-M ™ A GsFPM-S .
2] v GSFPM-M
T T
E 1074, . E . ol .
a
.
£ v By . .
o© a v '3 A v
10'4¢ d v
. v
15000 20000 25000 30000 35000 15000 20000 25000 30000 35000
Search Area(km?) Search Area(km?)
(a) Brightkite (b) Mico
FIGURE 5. Effect of searching area.
10 10*
= GsFPM-B ol
o GsFPMR Dot
4 GsFPM-
4 GsFPM-S
o v GSFPM-M . g = CsERMM - -
S10° . o AL I . - . .
o .
_E - . . 2 E . .
a
2| . : g .
€ o | - v € 4024 . i
10744 . 5 i v
v
© o) .
10 10" 1 T T - -
2 3 4 5 6 2 3 4 5 6
Pattern Size Pattern Size
(a) Mico (b) Twitch
FIGURE 6. Effect of core pattern size.
10° 10° 5
= GsFPMB = GsFPMB
s GsFPM-R ® GsFPMR
4 GSFPM-S 4 GSFPM-S
5 —GAFPMM s v GSFPM-M
13
b 1074 210°
Ef b - [} -
15 £
- . . = = .
o o
2 . £ s a .
s s . 2 .
£ 10’ - . . : m‘%10 . i : .
@ v
i 1
100 v 10 . ¥
0 5 10 15 20 0 5 10 15 20

Constraint Labels

(b) Mico

Constraint Labels

(a) GitHub

FIGURE 7. Effect of label constraint.

that the running time clearly increases as the search area
grows, especially in Mico. This is because the graph scale and
density are much higher for a larger search area. It is obvious
that GsFPM-B has the worst performance. We found that the
performance of GSFPM-M is the best among the 4 solutions,
with a speedup of 5x to 11 x over the basic solution. Further-
more, the performance gap between GsFPM-S and GsFPM-R
narrows when the search area grows for the Mico dataset. This
is because the full graph of Mico is a dense graph in which
many candidate patterns are valid [5] and cannot be pruned
by Algorithm 4.

2) EFFECT OF K

We then evaluate the performance by adjusting the value of
k. As illustrated in Fig. 8, the running time increases with
increasing k. This is because a larger kK means a larger result
set and more candidate patterns. It can be seen that the perfor-
mance of GsFPM-M is the best among the four solutions and
achieves a speedup of 11x to 32x. We notice that GsSFPM-R
performs better in graphs with more distinct labels because

27671

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

10°

1025 . GsFPM-B
= GsFPM-B = GsFPM-B . GuFPMR
o GsFPM-R o GsFPM-R SFPM-
A GsFPM-S — 4 GsFPM-S . - 4~ GsFPM-S = -
B v GSFPM-M 9 v GSFPM-M . S v GSFPM-M| =
8 104 . %102— . 8102 . N
. S .
g - . ° £ . . * £ .
E . = . A = a :
=) - =4 A 2 . A v v
£ . £ A c
g 10°4 R . E 107+ ‘ v E10'4x s v
nj: w . A 03: L] A O:C v
° v v ° v v :
PN v v & v v
&
1075 ; . ‘ ‘ 10° 4 ‘ : : ‘ 100 L+ . . . :
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
k k k
(a) Citeseer b) GitHub ¢) Brightkite
g
L I 10°4 10°4
= GsFPM-B = GsFPM-B = GsFPM-B
® GsFPM-R e GsFPM-R * GsFPM-R -
. 4 GsFPM-S + GSFPM-S 4 GsFPM-S
8 . v GsFPM-M u ’g v GsFPM-M . ’g v GsFPM-M . -
2107 . - @104 . - . L10° " .
£ o . : g - © ¢ GEJ A
. e ;
g 2 * g a E’ " ° 4 v
g 10° 4 A . v v € 102 N A € 10%4 A
o u S w S
v 14 L] . v M x ¢ M
v v
H v § v
10" ; . . ; 1 la ,
10" 14 ; : . ; 102 ; - - .
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
k k k
(d) Mico (e) Twitch (f) Twitter
FIGURE 8. Effect of k.
NaR-Tree can retrieve smaller graphs by casting off labels K
100 —

that are not contained in the current pattern. As we mentioned
before, dense graphs such as Mico contain almost every
pattern’s instance, which makes it difficult for our GsSFPM-S
solution to prune candidate patterns. In addition, we set users’
languages as the node label in dataset Twitch. It is obvious
that users in different languages have strong independence,
so unlike Mico, a great number of candidate patterns can be
pruned by GsFPM-S.

3) EFFECT OF CORE PATTERN SIZE

Next, we evaluate the performance by adjusting the size of
the input core pattern. Fig. 6 shows the results on Mico
and Twitch. The results show that the running time grad-
ually increases as the size of core pattern grows. This is
because a larger size of core pattern means more potential
candidate patterns. As illustrated in Fig. 6, GsSFPM-M has
the lowest time cost among all four solutions and on both
datasets again. For Mico and Twitch, it is at least 8x and
23 x faster than GsFPM-B. Additionally, in Mico, GsSFPM-S
performs slightly better than GsSFPM-R, as shown in Fig. 6(a).
However, the performance gain of GSFPM-M over GsFPM-S
is significant. The reason is that the lazy retrieval strategy
adapted by GsFPM-M can reduce the number of times sub-
graphs are retrieved because many candidate patterns gener-
ated by GsFPM-S do not contain pattern elements that have
not appeared before.

27672

80

60

40

20

Retrieved Graph Scale(%)

il

T T
Twitch Twitter

T T T T
Citeseer GitHub Brightkite Mico

FIGURE 9. Effectiveness of retrieving optimization.

4) EFFECT OF LABEL CONSTRAINT

We then examine the influence of the number of constraint
labels in GitHub and Mico. Both datasets contain nearly the
same number of labels. As illustrated in Fig. 7, the running
time gradually decreases as the number of constraint labels
increases. This is because excluding the constraint labels
will result in a smaller graph and fewer candidate patterns.
However, GsFPM-R and GsFPM-S are more suitable for
graphs with many labels, which leads to a widening of the
performance gap between GsFPM-M and other solutions
(i.e., GSFPM-B, GsFPM-R and GsFPM-S). The reason is that
fewer labels will significantly reduce the number of times
graphs are retrieved by our lazy retrieval strategy.

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

IEEE Access

10%+

E3

7 [Without Optimization

| MNIE Extension — [Without Optimization

[_JMNIE Extension

No. of Candidates
3 3

No. of Candidates

<

=)
>

Citeseer GitHub Brightkite Mico Twitch Twitter

(b) k=15

Citeseer GitHub Brightkite Mico Twitch Twitter

(a) k=5

FIGURE 10. Effectiveness of MNIE extension.

10%4 _— 10%5
[without Optimization

] Lazy Retrieving

10° |_h 10°

Citeseer GitHub Brightkite Mico Twitch Twitter

(a) k=5

[without Optimization
Lazy Retrieving

)
2

Times of Retrieving
3
Times of Retrieving
3

£

3
=

Citeseer GitHub Brightkite Mico Twitch Twitter

(b) k=15

FIGURE 11. Effectiveness of Lazy retrieving.

C. EFFECTIVENESS EVALUATION

1) EFFECTIVENESS OF RETRIEVING OPTIMIZATION
Retrieving graphs aims to reduce the graph scale and further
reduce the running time. In Fig. 9, we compare the scale
of the retrieval graph with different datasets to show the
effectiveness of retrieval optimization. The effectiveness of
subgraph retrieval becomes worse with increasing k, because
larger value of k leads to more candidate patterns. It is clear
that datasets with more distinct labels achieve better retrieval
performance, especially on BrightKite and Twitter. This is
because with more distinct labels, more nodes in other labels
will be removed in the retrieval process. As a result, the
scale of the retrieval graph is reduced. However, retrieval
performance in Twitch is only better than Citeseer, which
only contains 6 distinct labels. The reason is that we set the
user’s language as the node label in Twitch, and the label
EN dominates the label set. Therefore, other labels can only
slightly impact the scale of the retrieved graph.

2) EFFECTIVENESS OF MNIE PATTERN EXTENSION

Fig. 10 illustrates the effectiveness of the MNIE-based pat-
tern extension on six datasets. We compare the number of
candidate patterns generated by two pattern enumeration
algorithms, i.e., Algorithm 2 and Algorithm 4. As shown
in Fig. 10, the number of candidate patterns is markedly
reduced (by 1.75x-9.26x) using MNIE pattern extension.
As we have mentioned before, MNIE pattern extension sets
an upper bound for each pattern and reduces the running time
by pruning invalid candidate patterns. We can observe that it
works better in sparser datasets because many candidate pat-
terns are valid and cannot be pruned in dense graphs such as
Mico. However, MNIE pattern extension also performs well
in Twitch, a dense graph. Because of the practical significance

VOLUME 11, 2023

of Twitch, there is little overlap between users of different
niche languages.

3) EFFECTIVENESS OF THE LAZY RETRIEVAL STRATEGY

Fig. 11 shows the retrieval times of the two different strategies
for different values of k. As a result of lazy retrieval, there
is a significant reduction in retrieval times on every dataset,
especially on Citeseer, GitHub and Mico. Obviously, datasets
with fewer label types usually have fewer retrieval times.
This is because there are fewer label combinations to choose.
Recall that the lazy retrieval strategy does not retrieve with
pattern elements that already exist. As shown in Fig. 11, the
lazy search strategy performs the worst on Brightkite. The
reason is that Brightkite contains 50 label types, which leads
to poor optimization.

10%
= GsFPM-M 1004
o Appropriate
§103 __ 804
8 <
- - 5
£ 3 60
= e
o 3
[Q
= Q 404
§102 . <
4
. 20
o
10" 45 0 - - - y v
1 5 10 15 20 1 s 10 15 20

K k
(a) running time (b) accuracy

FIGURE 12. Effectiveness of appropriate solution.

4) EFFECTIVENESS OF THE APPROXIMATE ALGORITHM
Finally, we evaluate the effectiveness of our approximate
solution. Fig. 12(a) and (b) show the running time and accu-
racy comparison of GsFPM-M and the edge sampling-based
approximate solution on Twitter. The running time of the
approximate solution achieves a speedup of 16.15x to
20.24x over GsFPM-M. For the accuracy, an approx-
imate solution can achieve 78% accuracy on Twitter,
which proves the effectiveness of our edge sampling-based
solution.

VIIl. CONCLUSION AND FUTURE WORK
In this paper, we study the top-k FPM problem in geo-
social networks. We introduce a novel framework for sub-
graph retrieval and MNIE-based mining with a series of
optimizations. The NaR-Tree index structure is first proposed
to improve mining efficiency and effectiveness. Together with
the index, a MNIE-based candidate pattern extension strategy
is devised to alleviate the exponentially increaing number
of candidates. We also introduce subgraph lazy retrieval and
edge-based graph sampling approaches to accelerate mining.
Extensive experiments on real social networks are conducted
to test the performance of the algorithms, and the experimen-
tal results strongly corroborate the superiority and effective-
ness of our approaches.

The limitations of our work is the framework can only be
applied to a single static graph, which is difficult to meet

27673

IEEE Access

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach

the timeliness required in the field of data analysis. With this
observation, there are some opportunities for theoretical and
experimental research. (1) Time dimension can be considered
into research. Future work can focus on extending algorithms
and index structures to dynamic graphs, which is desirable
for many applications. (2) Design algorithmic frameworks for
pattern mining that can be applied to other data types such as
graph databases, trajectory networks, etc.

REFERENCES

[1]

[2]

[3]

[4

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, ““Geo-social K-cover
group queries for collaborative spatial computing,” in Proc. IEEE 32nd
Int. Conf. Data Eng. (ICDE), May 2016, pp. 1510-1511.

E. Wang, Y. Jiang, Y. Xu, L. Wang, and Y. Yang, “Spatial-temporal interval
aware sequential POI recommendation,” in Proc. IEEE 38th Int. Conf.
Data Eng. (ICDE), May 2022, pp. 2086-2098.

X. Chen, Y. Zhao, K. Zheng, B. Yang, and C. S. Jensen, “Influence-aware
task assignment in spatial crowdsourcing,” in Proc. IEEE 38th Int. Conf.
Data Eng. (ICDE). IEEE, 2022, pp. 2141-2153.

A. Prateek, A. Khan, A. Goyal, and S. Ranu, “Mining top-k pairs of
correlated subgraphs in a large network,” Proc. VLDB Endowment, vol. 13,
no. 9, pp. 1511-1524, May 2020.

J. Zeng, U. L. Hou, X. Yan, M. Han, and B. Tang, “‘Fast core-based top-k
frequent pattern discovery in knowledge graphs,” in Proc. IEEE 37th Int.
Conf. Data Eng. (ICDE), Apr. 2021, pp. 936-947.

X. Yan and J. Han, “GSpan: Graph-based substructure pattern mining,” in
Proc. IEEE Int. Conf. Data Mining, Dec. 2002, pp. 721-724.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GraMi:
Frequent subgraph and pattern mining in a single large graph,” Proc. VLDB
Endowment, vol. 7, no. 7, pp. 517-528, Mar. 2014.

J. Meng and Y.-C. Tu, “Flexible and feasible support measures for mining
frequent patterns in large labeled graphs,” in Proc. ACM Int. Conf. Manage.
Data, May 2017, pp. 391-402.

M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Proc.
IEEE Int. Conf. Data Mining, Nov./Dec. 2001, pp. 313-320.

A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for
mining frequent substructures from graph data,” in Principles of Data
Mining and Knowledge Discovery, D. A. Zighed, J. Komorowski, and
J. Zytkow, Eds. Berlin, Germany: Springer, 2000, pp. 13-23.

R. Vijayalakshmi, N. Rethnasamy, J. F. Roddick, M. Thilaga, and
P. Nirmala, “FP-GraphMiner—A fast frequent pattern mining algo-
rithm for network graphs,” J. Graph Algorithms Appl., vol. 15, no. 6,
pp. 753-776, 2011.

Y. Li, L. Quan, R. Li, and D. Duan, “TGP: Mining top-k frequent closed
graph pattern without minimum support,” in Proc. Int. Conf. Adv. Data
Mining Appl., 2010, pp. 537-548.

T. K. Saha and M. A. Hasan, “FS3: A sampling based method for top-
k frequent subgraph mining,” Stat. Anal. Data Mining, ASA Data Sci. J.,
vol. 8, no. 4, pp. 245-261, 2015.

M. Kuramochi and G. Karypis, “Finding frequent patterns in a large
sparse graph,” Data Mining Knowl. Discovery, vol. 11, no. 3, pp. 243-271,
Nov. 2005.

V. Ingalalli, D. Ienco, and P. Poncelet, “Mining frequent subgraphs in
multigraphs,” Inf. Sci., vols. 451-452, pp. 50-66, Jul. 2018.

E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour,
“ScaleMine: Scalable parallel frequent subgraph mining in a single large
graph,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.
(SC), Nov. 2016, pp. 716-727.

F. Qiao, X. Zhang, P. Li, Z. Ding, S. Jia, and H. Wang, ““A parallel approach
for frequent subgraph mining in a single large graph using spark,” Appl.
Sci., vol. 8, no. 2, p. 230, Feb. 2018.

N. Vanetik, E. Gudes, and S. E. Shimony, “Computing frequent graph
patterns from semistructured data,” in Proc. IEEE Int. Conf. Data Mining,
Dec. 2002, p. 458.

B. Bringmann and S. Nijssen, “What is frequent in a single graph?”
Proc. 12th Pacific—Asia Conf. Adv. Knowl. Discovery Data Mining, 2008,
pp. 858-863.

P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases: With Application
to GIS. San Mateo, CA, USA: Morgan Kaufmann, 2002.

27674

(21]

(22]

(23]

(24]

(25]

[26]
[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

(41]

(42]

[43]

[44]

(45]

[46]

H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Mateo, CA, USA: Morgan Kaufmann, 2006.

D. B. Lomet, “Grow and post index trees: Role, techniques and future
potential,” in Proc. 2nd Symp. Adv. Spatial Databases (SSD), Zurich,
Switzerland. Springer, 2005, pp. 181-206.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47-57.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, May 1990, pp. 322-331.

Y. Sun and M. Sarwat, “Riso-tree: An efficient and scalable index for
spatial entities in graph database management systems,” ACM Trans.
Spatial Algorithms Syst., vol. 7, no. 3, pp. 1-39, Sep. 2021.

R. A. Finkel and J. L. Bentley, “‘Quad trees a data structure for retrieval on
composite keys,” Acta Inf., vol. 4, no. 1, pp. 1-9, 1974.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975.

I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spa-
tial databases,” in Proc. IEEE 24th Int. Conf. Data Eng., Apr. 2008,
pp. 656-665.

R. Hariharan, B. Hore, C. Li, and S. Mehrotra, ‘“Processing spatial-
keyword (SK) queries in geographic information retrieval (GIR) systems,”
in Proc. 19th Int. Conf. Sci. Stat. Database Manage. (SSDBM), Jul. 2007,
p. 16.

Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D.-C. Lee, and X. Wang,
“IR-tree: An efficient index for geographic document search,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 4, pp. 585-599, Apr. 2011.

J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison
of subgraph isomorphism algorithms in graph databases,” Proc. VLDB
Endowment, vol. 6, no. 2, pp. 133-144, Dec. 2012.

J.R. Ullmann, “An algorithm for subgraph isomorphism,”” J. ACM, vol. 23,
no. 1, pp. 31-42, Jan. 1976.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, Oct. 2004.

P. Zhao and J. Han, “On graph query optimization in large net-
works,” Proc. VLDB Endowment, vol. 3, nos. 1-2, pp.340-351,
Sep. 2010.

X. Ren and J. Wang, “Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs,” Proc. VLDB Endowment, vol. 8,
no. 5, pp. 617-628, Jan. 2015.

M. Fiedler and C. Borgelt, “Subgraph support in a single large graph,” in
Proc. 7th IEEE Int. Conf. Data Mining Workshops (ICDMW), Oct. 2007,
pp. 399-404.

N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general frame-
work for geo-social query processing,” Proc. VLDB Endowment, vol. 6,
no. 10, pp. 913-924, 2013.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manag. Data, 1984, pp. 47-57.

Q. Zhu, H. Hu, C. Xu, J. Xu, and W.-C. Lee, “Geo-social group
queries with minimum acquaintance constraints,” VLDB J., vol. 26, no. 5,
pp. 709-727, Oct. 2017.

G. Preti, G. De Francisci Morales, and M. Riondato, “MaNIACS: Approx-
imate mining of frequent subgraph patterns through sampling,” in Proc.
27th ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2021,
pp. 1348-1358.

P. Hu and W. C. Lau, “A survey and taxonomy of graph sampling,” 2013,
arXiv:1308.5865.

R. Gao, H. Xu, P. Hu, and W. C. Lau, “Accelerating graph mining
algorithms via uniform random edge sampling,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1-6.

N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample and
hold: A framework for big-graph analytics,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2014, pp. 1446-1455.

C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270-313, 2003.

R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. AAAI Conf. Artif. Intell.,
vol. 29. New York, NY, USA, 2015, pp. 4292-4293.

B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” J. Complex Netw., vol. 9, no. 2, 2019, Art. no. cnab014.

VOLUME 11, 2023

C. Zhou et al.: Mining Top-k Frequent Patterns in Large Geosocial Networks: A MNIE-Based Extension Approach IEEEACCGSS

[47] B.Rozemberczki and R. Sarkar, ““Twitch gamers: A dataset for evaluating
proximity preserving and structural role-based node embeddings,” 2021,
arXiv:2101.03091.

[48] R.Zafarani and H. Liu. (2009). Social Computing Data Repository at ASU.
[Online]. Available: http://socialcomputing.asu.edu

CHANGBEN ZHOU received the B.E. degree in
computer science and technology from Shaanxi
University of Science and Technology, Xi’an,
China, in 2020. Since 2020, he has been with
the Laboratory of Internet and Network Security,
Hangzhou Dianzi University, Hangzhou. His cur-
rent research interests include data mining and
social network analysis.

JIAN XU received the Ph.D. degree from Zhejiang
University, Hangzhou, China, in 2004. He is cur-
rently a Full Professor with Hangzhou Dianzi Uni-
versity, Hangzhou. His research interests include
data mining, machine learning, and social network
analysis.

VOLUME 11, 2023

MING JIANG received the Ph.D. degree from
Zhejiang University, Hangzhou, China, in 2004.
He is currently a Full Professor with Hangzhou
Dianzi University, Hangzhou. His research inter-
ests include natural language processing and
semantic web.

DONGHANG TANG received the B.E. degree in
software engineering from Henan University of
Engineering, in 2021. Since 2021, he has been
with the Laboratory of Internet and Network Secu-
rity, Hangzhou Dianzi University, Hangzhou. His
current research interests include data analysis and
social network analysis.

SHENG WANG received the B.E. degree in the
Internet of Things engineering from Information
Engineering College, Hangzhou Dianzi Univer-
sity, Hangzhou, China, in 2020. Since 2021, he has
been with the Laboratory of Internet and Network
Security, Hangzhou Dianzi University. His cur-
rent research interests include data analysis and
sequence pattern mining.

27675

