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ABSTRACT Environment perception constitutes one of the most critical operations performed by semi-
and fully- autonomous vehicles. In recent years, Deep Neural Networks (DNNs) have become the standard
tool for perception solutions owing to their impressive capabilities in analyzing and modelling complex
and dynamic scenes, from (often multi-modal) sensory inputs. However, the well-established performance
of DNNs comes at the cost of increased time and storage complexity, which may become problematic in
automotive perception systems due to the requirement for a short prediction horizon (as in many cases
inference must be performed in real-time) and the limited computational, storage, and energy resources
of mobile systems. A common way of addressing this problem is to transform the original large pre-
trained networks into new smaller models, by utilizing Model Compression and Acceleration (MCA)
techniques, improving both their storage and execution efficiency. Within the MCA framework, in this
paper, we investigate the application of two state-of-the-art weight-sharing MCA techniques, namely a
Vector Quantization (VQ) and a Dictionary Learning (DL) one, as well as two novel extensions, towards
the acceleration and compression of widely used DNNs for 2D and 3D object-detection in automotive
applications. Apart from the individual (uni-modal) networks, we also present and evaluate a multi-modal
late-fusion algorithm for combining the detection results of the 2D and 3D detectors. Our evaluation studies
are carried out on the KITTI Dataset. The obtained results lend themselves to a twofold interpretation.
On the one hand, they showcase the significant acceleration and compression gains that can be achieved
via the application of weight sharing on the selected DNN detectors, with limited accuracy loss, as well as
highlight the performance differences between the two utilizedweight-sharing approaches. On the other, they
demonstrate the substantial boost in detection performance obtained by combining the outcome of the two
unimodal individual detectors, using the proposed late-fusion-based multi-modal approach. Indeed, as our
experiments have shown, pairing the high-performance DL-based MCA technique with the loss-mitigating
effect of the multi-modal fusion approach, leads to highly accelerated models (up to approximately 2.5×
and 6× for the 2D and 3D detectors, respectively) with the performance loss of the fused results ranging in
most cases within single-digits figures (as low as around 1% for the class ‘‘cars’’).

INDEX TERMS Model compression and acceleration, multi-modal fusion, object detection, scene analysis,
scene understanding, experimental evaluation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong .

I. INTRODUCTION
Autonomous vehicles (AV) are an integral part of the
continuously evolving field of Intelligent Transportation
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Systems (ITS) [1] and introduce a variety of technical
challenges intertwined with the levels of driving automation,
as defined for example by the Society of Automobile
Engineers (SAE) [47], ranging from ‘‘no driving automation’’
(level 0) to ‘‘full driving automation’’ (level 5). Of particular
interest are the levels 3 (conditional driving automation in
which the system is capable of taking over control for a
specific amount of time and/or in specific situations, but the
driver must permanently monitor the system and be prepared
to take over at any time), and 4 (high driving automation in
which the driver need not monitor the systemwhile it is active
for specific conditions). Levels 3 and 4 represent the limits
of what is possible with today’s technology and what is the
envisioned next step toward full automation, respectively.

The functionality of an AV system can be represented by
three layers that incorporate the tasks of sensing, perception,
and decision-making [2]. The first layer, i.e., sensing,
includes various sensing devices such as short and long-
range radars, visual and/or thermal cameras, and ultrasonic,
Light Detection And Ranging (LiDAR), and Global Position
System (GPS) sensors [2], which gather relevant data from
the environment surrounding the AV. The perception layer
utilizes the collected data and extracts information from the
scene about, e.g., other traffic objects, obstacles, etc. This
information is the basis for reaching decisions in the third and
final layer for advanced vehicle control and path planning,
to name a few.

As the level of autonomy increases (especially for levels
3 and above), the ability to perceive dynamic and complex
scenes from sensory data constitutes one of the most critical
functionalities performed by AVs (along with sensing and
decision-making) and is a key enabler for the AVs’ reliable
and safe operation [3], [4], [5], [6]. This is, in turn, translated
into an increasing degree of sophistication regarding not
only the employed sensors but also their utilization via more
advanced processing and fusion techniques. For example,
low-cost and low-accuracy ultrasonic sensors are sufficient
in low levels of automation, e.g., for parking assistance, and
they are used for many years in the automotive industry.
At the next level, radars and cameras are increasingly being
incorporated in modern cars, e.g., as part of adaptive cruise
control systems.

The sophistication required to achieve the desired per-
formance becomes readily apparent if we consider that
even a 30 cm deviation in the lateral position of a vehicle
can lead to dangerous maneuver initiations. Note that in
challenging environments, such as urban and dense areas,
tunnels, etc., the localization error of modern GPS sensors
is orders of magnitude higher than this level [7]. Moreover,
an increasing factor to the difficulty of the problem is the
fact that the prediction window of active perception systems
is very short since the AV should be able to timely adapt
to abrupt changes in the surrounding environment (in a
fraction of a second [8]), such as the ‘‘random’’ motion
style of vulnerable users including pedestrians and cyclists.
Additionally, the complexity of the surrounding environment

requires the use of multiple sensing modalities (including
cameras and LiDAR) for increased effectiveness [9]. These
arguments simply highlight the fact that, in the context of
driving automation, scene understanding solutions (compris-
ing image classification, object detection and tracking, and
semantic segmentation, to name a few), must be accurate,
fast, and efficient.

With this goal in mind, this paper presents a study
concerning the application of MCA on high-performance
DNN models used for scene understanding in automotive
scenarios. To this end, we focus on state-of-the-art weight-
sharing techniques and propose two novel extensions that
build upon the concepts of ‘‘global sparsity’’ and ‘‘subspace
grouping’’. These are accompanied by a detailed analysis of
the acceleration and compression gains that can be achieved
as well as representative simulations. Then, the techniques
are applied on modern 2D (i.e., image-based) and 3D (i.e.,
point-could based) detectors that employ DNNs as well as on
a multi-modal detector by describing and adopting a simple
late-fusion strategy that combines the outputs of the 2D and
3D detectors. The impact of MCA on the performance of the
uni-modal and the multi-modal architectures is evaluated in
the well-known KITTI dataset. To the best of our knowledge,
this is the first work that demonstrates the positive effects of
multi-modal fusion not only on enhancing the performance
of deep models for object detection but also on further
mitigating the impact on the performance loss incurred by the
application of MCA techniques.

In the following sections, we first provide the positioning
of the paper through the description of the relevant bib-
liography and its contribution. Then, the employed model
compression and acceleration techniques along with the
proposed extensions and analysis, as well as the adopted
late multi-modal fusion strategy, are described. Afterwards,
a thorough experimental evaluation of the MCA impact on
the behaviour of the adopted models for 2D and 3D object
detection as well as their late fusion version is presented
in automotive scenarios. Finally, we conclude the paper by
summarizing and discussing the results of the presented
analysis.
Notation: A matrix, a vector, and a scalar are denoted as

X, x, and x, respectively. The transpose of a matrix X is
denoted as XT. The matrix with zero elements is denoted
as 0 and its size can be inferred by its context. Moreover,
X ∈ RA×B denotes theXmatrix of sizeA×Bwith real entries.
The operator vec(X) stacks the columns of X into a column
vector, while∪ denotes the union operation between two sets.
Finally, ∥ · ∥2 and ∥ · ∥0 are the Euclidean norm and the l0
(pseudo) norm, respectively, while ⊗ denotes the Kronecker
product.

II. RELEVANT BIBLIOGRAPHY AND CONTRIBUTION
In this section, we present a brief bibliographical survey of
the main research areas that this paper builds upon, namely
MCA, and object detection based on 2D visual images, 3D
point clouds as well as the fusion of the two modalities.
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To this end, both state-of-the-art object detection models
and the utilization of MCA techniques for their efficient
implementation, are presented. Afterwards, the motivation
and the main contributions of the paper are outlined.

A. DNN-BASED OBJECT DETECTION IN AUTOMOTIVE
APPLICATIONS
Object detection constitutes a fundamental operation of
perception systems in autonomous vehicles. In recent years,
DNN models have contributed significantly to the improve-
ment of object detection performance, concerning both 2D
(image-based based captured by visual cameras) and 3D
(i.e., point-cloud based captured by LiDAR) detectors [10].
Works concerning DNN-based 2D detectors can be broadly
categorized into two-stage and one-stage approaches [11].
Detectors following the two-stage approach first generate
region proposals on the input image and then assess each
region regarding the presence of one or multiple objects and
the class each of them belongs to. On the other hand, single-
stage object detectors produce directly both the location
and the class of each object in the input image. Although
two-stage detectors usually perform better [11], single-stage
detectors such as the Single Shot MultiBox Detector (SSD)
[12], SqueezeDet [13], the You Only Look Once (YOLO)v2
detector [14] and EfficientDet [15], are generally preferred
for autonomous driving applications, due to their lower
computational and storage requirements. The classes of
interest here are typically vehicles, cyclists, and pedestrians.

Similar to the 2D case, DNNs have also been ubiqui-
tously employed for point cloud-based detection with the
proposed models following mainly two directions. In the
first one, called grid-based, the irregular point clouds are
initially transformed into a regular representation that can
be processed by ordinary convolutional layers, while, in the
second direction, called point-based, the models operate
directly on the points of the cloud. In general terms,
the performance of grid-based models depends heavily on
the resolution of the underlying grid, while point-based
detectors are computationally more demanding than their
grid-based counterparts. Some of the first DNN-based 3D
detectors, such as VoxelNet [16], utilized 3D convolutions,
with Sparsely Embedded Convolutional Detection (SEC-
OND) [17] introducing sparse 3D convolutions to reduce
complexity. On the other hand, PointPillars [18] introduced
the notion of pillars and employed only 2D convolutions,
thus, being able to achieve both high precision and fast
inference times. Other high-performing DNN models for 3D
object detection are PointRCNN [19], its extension Part-A2

Net [20], and Point-Voxel-RCNN (PV-RCNN) [21], which is
one of the first detectors to exploit both grid-based and point-
based approaches.

Finally, there is an active direction for object detection
that involves the fusion of information originating from
different modalities, with the most common one being the
fusion of 2D (visual images) and 3D (point clouds) related

information [22]. Focusing on the time when fusion takes
place, three approaches can be followed; early, late, and
middle fusion. In the first case, information from the two
modalities is combined at an early stage where the data
are actually generated, while, in the second one, fusion is
performed at the stage of decisions. The latter case, i.e.,
middle, refers to fusing information in any intermediate
stage of the overall DNN-basedmulti-modal object detection.
Currently, there is no consensus on which approach is the
best choice as all have pros and cons associated with their
adoption [22]. The ‘‘late’’ fusion approach, which is of
particular interest in this paper, on the one hand, is simple
and flexible (as any changes in processing a sensingmodality,
do not require re-training of the whole multi-modal detector)
but, on the other hand, has a high computational cost and
memory requirements. Thus, such approaches may benefit
considerably from the application of MCA techniques.

B. MODEL COMPRESSION AND ACCELERATION IN
AUTOMOTIVE APPLICATIONS
DNNs [23] have been employed in numerous application
domains in the last several years, including autonomous
driving which is the main theme of this paper. However,
the high performance of DNNs is typically related to
analogously high requirements regarding computational and
storage resources. This becomes problematic in automotive
applications due to the necessity of very fast inference times
on the one hand, and the limited computational, storage, and
energy resources of mobile systems, on the other [24].

Regarding DNN-based object detection, research activities
have focused mainly on designing and utilizing com-
pact DNN models such as SqueezeDet [13] and Mini-
YOLOv3 [25], aiming at their efficient implementation on
embedded devices [26]. Towards this goal, the incorporation
of MCA techniques for transforming pre-trained, highly-
performing (yet resource-demanding) DNN models, into
lighter versions while mitigating the impact on the achieved
performance, is also gaining popularity. This is especially true
for the case of image-based detectors. The authors in [27]
employ a combination of pruning criteria for removing up
to 90% of parameters of YOLOv3, reporting virtually no
loss in performance. In [28], detectors based on binary-
weight neural networks (whereby parameters are quantized
to just 1 bit) are proposed, utilizing a knowledge-transfer
method to aid their training, using a full-precision teacher
network. In [29], an efficient version of the YOLOv3 detector
is obtained via a comprehensive pruning scheme including
layer-level and channel-wise pruning, while light-weight
image-based detectors are also proposed in [30], via a
combination of knowledge transfer and pruning strategies.
Finally, [31] utilized a Dictionary Learning-based vector
quantization technique, for the acceleration of SqueezeDet
and ResNetDet (both proposed in [13]) by roughly 60% and
70%, respectively, with negligible accuracy loss.
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On the other hand, the literature concerning the utilization
of MCA techniques in 3D detectors is currently limited.
The work in [32] proposes a multi-task 3D detector and
resorts on pruning of unimportant parameters for a 2× speed-
up of the model inference time. Furthermore, [33] utilizes
vector quantization on two state of the art LiDAR-based
3D detectors, achieving acceleration rates of over 5× with
a negligible loss for the ‘‘car’’ and ‘‘cyclist’’ classes, and
acceptable loss for the ‘‘pedestrian’’ one.

Finally, to the best of our knowledge, there are no works
that discuss the application of MCA on multi-modal object
detection DNN-based models.

C. MOTIVATION AND CONTRIBUTION
So far, the use of MCA techniques on automotive object
detection is limited mainly to the application of simple prun-
ing and/or scalar quantization techniques on single-modality
DNN detectors with the majority of works employing visual
images (see Table 1 for an overview of the existing literature).
This paper aims to move a step forward by introducing more
elaborate weight-sharing MCA approaches that have been
shown to outperform other rivals in the related literature,
on multi-modal object detection in the automotive domain.

To this end, firstly, we focus on the state-of-the-art
VQ [34] and DL [31] based techniques that rely on the
design of codebooks with a preset structure (in terms of
their size, number of utilized codewords, etc.). By observing
that such a structure limits their flexibility and adaptability
on the problem at hand for achieving better acceleration
and/or compression ratios, two novel extensions are proposed
adding flexibility regarding the inherent trade-offs between
compression (memory footprint) and acceleration (compu-
tational power) during the system design phase. Secondly,
we study for the first time the impact of the considered MCA
techniques on the performance of multi-modal DNN-based
object detection by introducing a simple, yet effective, late-
fusion method.

In more detail, the contributions of the paper are summa-
rized in the following points:
• Two new concepts are introduced, namely, (a) global
sparsity that allows the underlying optimization proce-
dure for MCA to partially determine the structure of
the codebooks and (b) subspace grouping that allows
sharing not only at the level of codewords but also
at the level of codebooks. In both cases, the trade-off
between performance and acceleration / compression
ratio is better addressed.

• A late-fusion approach based on the non-maximal
suppression of the individual modalities of the detectors
is presented and evaluated. As it is demonstrated by
our experiments, the resulting multi-modal detector
offers a substantial performance improvement over the
individual uni-modal systems, both in their original and
in their accelerated forms.

• A thorough investigation related to the acceleration
and compression of 2D (image) and 3D (point-cloud)

convolutional object detectors (SqueezeDet [13] and
PointPillars [18], respectively), towards their efficient
deployment as core parts of the perception systems in
vehicular perception systems, is presented.

• Image-based high-performance DL-based MCA tech-
nique with the loss-mitigating effect of the multi-modal
fusion approach leads to highly accelerated models (up
to approximately 2.5× and 6× for the 2D and 3D
detectors, respectively) with the performance loss of the
fused results ranging in most cases within single-digits
figures (as low as around 1% for the class ‘‘cars’’). The
KITTI dataset [35] was used for evaluation purposes in
our experiments.

III. WEIGHT SHARING VIA PRODUCT QUANTIZATION
Viewing the convolution operation as a series of dot-products
between input and kernel vectors in an N -dimensional
space (with N being the number of input/kernel channels),
product quantization aims at reducing the number of required
operations by splitting the initial space into S,N ′-dimensional
subspaces (where N ′ = N/S), and limiting the number of
allowed representations in each of them. To be more specific,
the number of representations in each subspace is reduced
via VQ, namely, by approximating the original kernel sub-
vectors using a small set of representatives called codewords
(and their collection, a codebook). In doing so, product
quantization approximates the original convolution using
only dot-products between input and codewords, instead of
the originals.

Conventionally, VQ is treated as a clustering problem
solved via the popular k-means algorithm [34], however,
a recently proposed technique treating the problem from a
Dictionary Learning perspective, has been shown to achieve
up to 2× acceleration gain over conventional approach [31].

Assuming there are M 3D kernel volumes in the convo-
lution layer, with 2D filters of size p × p, the conventional
and the DL-based approximation schemes (referred to simply
as VQ, and DL, respectively, hereafter) can be expressed as
follows:

VQ : W ≈ C0, DL : W ≈ D30, (1)

where the columns of W ∈ RN ′×p2M and 0 ∈ RKvq×p2M

contain the sub-vectors of all kernel volumes (of a particular
subspace) and assignment vectors, respectively. Matrix
C ∈ RN ′×Kvq denotes the representatives (or cluster
centroids) in the VQ approximation whereas D ∈ RN ′×Ldl

and 3 ∈ RLdl×Kdl denote the dictionary and the matrix of
sparse coefficients, respectively, for the DL approximation.

A. A NEW GLOBAL-SPARSITY CONSTRAINT
In this paper, we explore a novel approach by imposing the
sparsity constraint on 3, adding flexibility to the mechanism
followed in [31], whereby sparsity was imposed by restricting
the number of non-zero elements in each column of 3 to
a pre-selected sparsity level value ρ, thus, every codeword
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TABLE 1. Overview of bibliography relevant to model compression and acceleration on automotive scene understanding.

contained in codebookD3 is a linear combination of ρ atoms
from D.

Instead, we propose restricting the total number of its non-
zero elements, regardless of their locations. Denoting this
number as P, in this case, the codewords are constructed
as a linear combination of ρi atoms, i = 1, . . . ,Kdl , with∑Kdl

i=1 ρi = P, hence the increased flexibility. To avoid
confusion, we will refer to this new approach as DL-
GS (namely, Global Sparsity), and the original approach
presented in [31], as DL-LS (namely, Local Sparsity).

To solve the sparse coding problem (i.e. the optimization
concerning 3) stemming from (1), under the DL-GS
approach, we first rewrite the cost function as follows:

E = ||vec(W)− (0T
⊗ D)vec(3)||2, (2)

where the identity vec(AXB) = (BT
⊗ A)vec(X) has

been employed [36]. Using (2) as the cost function, the
minimization problem for the sparse coding step can be
written as

min
ζ
||vec(W)− (0T

⊗ D)ζ ||2 s.t. ||ζ ||0 = P, (3)

and can be solved via the classical Orthogonal Matching
Pursuit (OMP) algorithm [37].

The flexibility that is introduced to the problem at
hand via the global sparsity constraint leads to measurable
improvement of DL the technique regarding the quantization
error (resulting in analogous acceleration gains), as our exper-
iments show. However, perhaps of even more importance
is the fact that contrary to the local sparsity constraint, the
solution attained via global sparsity has the inherent ability
to reduce the size of the used codebook by setting entire
columns of 3 equal to 0. Thus, this variant of the DL
technique can support hybrid MCA approaches combining
weight sharing with (indirect) pruning. It is also noted that a
solution involving group sparsity constraints (with the groups
being 3’s columns) might be even more beneficial towards
this end, although such a direction was not pursued here.

B. COMPUTATIONAL and STORAGE COMPLEXITY
We denote as To, Tvq, and Tdl , the computational complexities
(in terms of Multiply and Accumulate (MAC) operations) of
the original and the approximate versions of a convolutional
layer. Using the VQ and DL weight-sharing methods,

respectively we can show that the following equations
apply [31], [34]

To = m2p2MN (4)

Tvq = m2NKvq (5)

Tdl = m2(NLdl + ρSKdl) (6)

Moreover, the acceleration ratio achieved by the two
weight-sharing approaches is defined as the ratio of the
original over the accelerated complexities,

αvq ≡ To/Tvq (7)

αdl ≡ To/Tdl (8)

Finally, it can be easily shown that the VQ and DL-based
approximations yield the same acceleration ratio when the
employed parameters satisfy the following equality:

Ldl = Kvq
(
1−

ρ c
N ′

)
, (9)

where c > 1 is a coefficient linking the sizes of the DL-based
and the VQ-based codebooks, i.e. Kdl = c Kvq holds.
On the other hand, regarding the storage complexity, in the

case of the original layer, there are p2MN kernel weights to
be stored (omitting the negligible storage requirements of the
bias weights for simplicity). Hence the storage complexity of
the original layer is obtained simply as So = p2MN × bfloat,
where bfloat denotes the number of bits used by the system for
floating point representation.

Adopting the weight-sharing approach, the original
weights are partitioned into S subspaces, with each subspace
being represented by a codebook consisting of real numbers
and a set of indices pointing to the codewords in the
codebook.

More specifically, in the case of VQ, the codebook for each
subspace consists of Kvq codewords of length N ′, i.e., N ′Kvq
real numbers in total. Additionally, there are p2M indices
with each index taking values in {1, 2, . . . ,Kvq}, indicating
the codeword used to represent the corresponding original
subvector. Thus, the (layer) storage complexity for the VQ
technique can be expressed as:

Svq = NKvq × bfloat︸ ︷︷ ︸
C

+ p2MS × ⌈log2(Kvq)⌉︸ ︷︷ ︸
0

(10)

On the other hand, in the DL case, the codebook is further
decomposed as the matrix-productD3, with the dictionaryD
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consisting of Ldl atoms of length N ′, for a total of N ′Ldl real
numbers, while 3 consists of Kdl sparse columns of length
Ldl , each containing ρ non-zero real coefficients. Thus, the
storage complexity in the case of theDL technique is obtained
as follows:

Sdl = NLdl × bfloat︸ ︷︷ ︸
D

+ ρKdlS × b3︸ ︷︷ ︸
3

+ p2MS × b0︸ ︷︷ ︸
0

, (11)

where b3 =
(
⌈log2(Ldl)⌉ + bfloat

)
, b0 = ⌈log2(Kdl)⌉.

Finally, similarly to the acceleration ratios, the compression
ratios achieved by the VQ and DL techniques, are defined
as the ratio of the storage requirement of the original versus
the approximate layer, i.e τvq = So/Svq, τdl = So/Sdl ,
respectively.

1) SUBSPACE GROUPING
A direction that could be pursued to boost the achieved
compression ratio is that of subspace grouping, whereby
each codebook is designed to represent a group of subspaces
instead of a single one. To be more specific, the main
idea is to group all the subvectors falling into the selected
group of subspaces, and estimate the codebook that best
represents them jointly, utilizing the approximations defined
in (1), for the VQ and DL approaches, respectively. From a
technical standpoint, this simply means that matrix W holds
the subvectors of a number of subspaces, instead of a single
one.

Understandably, using the same codebook to represent
more than one subspace, reduces the total number of
codebooks that needs to be stored. This is reflected in
the contribution of C in (10), and that of D, 3 in (11),
respectively, whose storage complexities take now the form

N ′NgKvq × bfloat (12)

and

N ′NgLdl × bfloat (13)

ρKdlNg × b3 (14)

respectively, with Ng ∈ {1, 2, . . . , S} denoting the number
of used subspace groups. Note that Ng = S corresponds to
no grouping (i.e. each group consists of a single subspace),
while for Ng = 1, all subspaces are represented by a single
codebook. Note finally that subspace grouping does not alter
the achieved acceleration ratio since the latter depends only
on the size and structure of the used codebooks, not their total
number.

C. DISCUSSION ON IMPLEMENTATION ISSUES
MCA is treated here from an algorithmic point of view as
it is the case with the vast majority of relevant works in the
field, many of whom are referenced here (e.g., [10]). Indeed,
following the main body of the MCA-related bibliography,
the acceleration gains are reported here in percentage/rate of
parameters or operations reduced and not in actual execution
time speed-up.

The main reason behind this lies in the fact that many
of the proposed MCA techniques alter the conventional
flow of operations in deep architectures and are intended
for specialized implementations in embedded devices with
limited resources. This is especially true for elaborate tech-
niques such as the VQ and DL weight-sharing approaches
adopted in this work (as opposed, e.g., to pruning strategies
that simply reduce the dimensions of the network or scalar
quantization that reduces the number of bits in the arithmetic
representation of the parameters).

Given the fact that a specialized implementation (e.g.,
in hardware) of the networks is out of the scope of the paper
and keeping in mind that existing tools (such as PyTorch [38],
TensorFlow [39], etc.) do not support vector quantization
natively, in our experiments, we emulated the effect of
weight-sharing with the goal of assessing the performance
of the ‘‘quantized’’ network (regarding detection accuracy)
and demonstrating the potential of the employed MCA tech-
nique. The methodology (for the emulation) which entails
substituting parameter sub-vectors with the corresponding
codewords (thus, leaving the number of parameters and the
overall architecture of the ‘‘quantized’’ networks unaltered),
is commonly adopted in current MCA literature concerning
weight sharing techniques.

IV. LATE MULTI-MODAL FUSION STRATEGY
A simple late fusion strategy is proposed for processing the
detection outcomes of the two consideredmodalities, namely,
2D visual images and 3D point clouds. An illustration of
the strategy is presented in Figure 1. The concept behind
the fusion approach is to select the outcome of the detector
with the highest confidence score, i.e., either the 2D detection
based on SqueezeDet (lower branch in Figure 1) or the 3D
detection based on PointPillars (upper branch in Figure 1).
To this end, the well known Non-Maximal Suppression
(NMS) algorithm [40] is employed to process the detection
outcomes of the two branches. Note that for the 3D detection
branch, initially, the 3D bounding boxes are projected on the
2D image and these projections are assigned the confidence
score of the 3D detector. Thus, NMS receives a 2D image that
contains bounding boxes from both modalities before fusing
them.

Let us now focus briefly on the used projectionmechanism.
To this end, let P and R denote the camera intrinsic and
transformation matrices, respectively. Let us, also, denote
a 3D point and its projection to the 2D plane as x3D =
[X ,Y ,Z , 1]T and x2D = [x, y, 1]T , respectively. Then, x2D
is obtained from x3D as follows

x2D = PRx3D. (15)

Considering a 3D bounding box B3D as a set of 8 points
xi3D, i = 1, 2, . . . , 8, then, its projection to the 2D plane,
namely, B3Dproj , is obtained by, first, projecting all xi3D’s
using (15) and, then, computing the corresponding axis-
aligned bounding box. Moreover, let P2D and P3Dproj denote
the sets of predicted bounded boxes from the 2D and 3D
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FIGURE 1. Architecture of late multi-modal fusion approach.

(after projection) object detectors, respectively, and let S2D
and S3Dproj denote the sets of the corresponding confidence
scores. Then, the outcome of the late fusion mechanism is
obtained as

P ′ = NMS (P,S, λNMS) , (16)

where P = P2D ∪ P3Dproj , S = S2D ∪ S3Dproj , while
λNMS is the Intersection Over Union (IOU) threshold that
defines the selection of bounding boxes [40]. For the
sake of completeness, the NMS algorithm is presented in
Algorithm 1.

Algorithm 1 Non-Maximal Suppression Algorithm
1: procedure NMS(B, c, λNMS ) ▷ Bounding boxes B,

scores c and threshold λNMS
2: BNMS ← ∅
3: for bi ∈ B do ▷ Iterate boxes
4: d ← False
5: for bj ∈ B do
6: if same(bi,bj) > λNMS then
7: if score(c,bj) > score(c,bi) then
8: d ← True
9: end if

10: end if
11: end for
12: if not d then
13: BNMS ← BNMS ∪ {bi}
14: end if
15: end for
16: return BNMS ▷ Return NMS bounding boxes
17: end procedure

V. EXPERIMENTAL EVALUATION
A performance evaluation of the employed accelera-
tion/compression techniques, using state-of-the-art convolu-
tional DNNs, is presented in this section, along with the
effect of multi-modal fusion on the DNNs before and after

the application of MCA. More specifically, in Experiment I,
we evaluate the representation power of the various VQ
and DL approximation schemes presented in Section III,
by measuring the quantization error incurred by the tech-
niques, namely the residual between the original subvectors
W defined in (1), and their approximations. This experiment
helps us gain insight into the employed techniques and set
optimal values for the required parameters. In Experiment II,
the focus is on the application of multi-modal fusion of
2D-based and 3D-based data for object detection in an
automotive setting. It is shown that multi-modal fusion has
a positive impact on the performance of object detection not
only before but also after the application of MCA techniques.

A. EXPERIMENT I: MEASURING THE
QUANTIZATION ERROR
Here, we focus our attention on the comparative per-
formance of the employed weight-sharing techniques, the
relation between the achieved acceleration and compression
ratios, as well as the role of subspace grouping. Experi-
ment I is based on individual, pre-trained layers from the
widely used image classification CNNs ResNet50 [41] and
SqueezeNet [42]. Note that the latter constitutes also the
backbone network for the 2D object detector studied in
Experiment II. After experimentation, the parameter values
that yielded the best results were as follows: subspace
dimension N ′ = 8, c = 3 (i.e., the DL codebook was 3 times
larger than the VQ one), sparsity level (for DL) ρ = 2.
Finally, to enable a direct comparison between the VQ and
DL results, the involved parameters satisfied equality (9),
meaning that the two rivals yielded the same acceleration
ratio.

In the first part of Experiment I, we present a performance
evaluation concerning the two variants of the sparse coding
step of the DL technique (as described in Section III),
in comparison to the performance obtained by VQ, for a
range of acceleration ratios. For this evaluation, we measure
the Mean Squared Error (MSE) between the original and
approximate kernels of individual convolutional layers from
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FIGURE 2. MSE as a function of acceleration and compression of DL vs VQ
techniques for layers res4f-branch2b of ResNet50 (left), and fire8-expand3 × 3
of SquezeNet (right), using subspace group sizes of 1 (all rows), 2, and 5
(bottom two rows). Where not mentioned, DL refers to the GS variant.

the employed CNNs. A representative instance of this
experiment, involving layers (a) res4f-branch2b of ResNet50
(256 kernels of size 3× 3× 256), and (b) fire8-expand3× 3
of SquezeNet (256 kernels of size 3 × 3 × 64), is shown in
the top row of Figure 2.

As it is apparent in this figure, the DL-based (both variants)
techniques outperform their VQ rival leading to significantly
lower MSE for the same acceleration, or, equivalently to
a significantly higher acceleration ratio, for the same level
of incurred error. Regarding the two variants of DL, it can
be observed that the added flexibility enabled by the global
sparsity constraint leads to (relative) acceleration gains of
DL-GS vs DL-LS of up to approximately 10% in the shown
examples, depending on the specific configuration and target
acceleration.

It is noted here that for the global sparsity variant,
the achieved acceleration/compression is decoupled from
the number of employed representatives (i.e. the number
of representatives can be altered to meet e.g. specific
memory needs without affecting the achieved acceleration),
which can be exploited during system design. To enable
a direct comparison between the two DL variants in this
particular experiment, we set the (global) sparsity P in
DL-GS equal to ρKdl where ρ, Kdl are the local sparsity
and number of representatives, respectively, set for DL-LS
(the computational & storage complexity of the DL-based
codebook depends on the number of nonzero coefficients in
3, but not on their locations). The number of representatives

for DL-GS was set to various multiples of Kdl , as shown in
the top row of Figure 2.

We mention finally that since DL-GS generally outper-
formed DL-LS in all our comparative experiments, in the
following, we focus only on the DL-GS variant (indicated
hereafter simply as DL).

In the second row of Figure 2, the performance of VQ
vs DL, in terms of MSE, is depicted for different values of
subspace grouping. As expected, increasing the number of
subspaces per group has an impact on performance without
changing the relative comparison between VQ and DL.
On the other hand, in the third row of Figure 2, the MSE
achieved by VQ and DL is depicted versus the achieved
compression gain. Again, the advantage of DL vs VQ
becomes readily apparent, namely, for the same level of
incurred error, the employment of the DL technique results
in a considerably higher acceleration and compression ratio.

Finally, we should notice that, as it is apparent from
Figure 2, subspace grouping can be used to better control the
achieved compression as a function of the acceleration ratio
and the incurred quantization error, thus offering additional
flexibility at the system design phase. Specifically, one can
achieve higher compression ratios by increasing the group
size, sacrificing either the achieved acceleration (to keep the
system performance constant) or the incurred MSE (to keep
the acceleration constant).

For illustration purposes, let us focus on an example drawn
from the MSE values on the bottom right plot of Figure 2.
Specifically, as it can be observed there, one can incur roughly
the same quantization error of ≈ 5 × 10−4 (i.e. compa-
rable accuracy loss), by using the following combinations
(α: acceleration ratio, τ : compression ratio):

VQ: a) No grouping: α ≈ 20, τ ≈ 15
b) Groups of 2: α ≈ 15, τ ≈ 21

DL: a) No grouping: α ≈ 40, τ ≈ 25
b) Groups of 2: α ≈ 30, τ ≈ 30
c) Groups of 5: α ≈ 25, τ ≈ 38

B. EXPERIMENT II: APPLICATION ON MULTI-MODAL
FUSION DRIVEN OBJECT DETECTION
In this experiment, we evaluate the performance of the pre-
sented weight-sharing MCA techniques when paired with the
proposed multi-modal fusion scheme, combining two auto-
motive detection modalities. Specifically, the SqueezeDet
[13] and PointPillars [18] models have been used for image-
based and point-cloud-based object detection, respectively.
Note that SqueezeDet is a representative of a family of
lightweight models used for 2D automotive object detection
(along with other models such as Mini-YOLOv3 [25]). Being
a lightweight model, it can be considered as a worst-case
scenario, thus, helping us assess the performance of the
employed MCA techniques under non-favorable conditions,
namely, when less redundancy in the parameters is present
(as opposed to larger models such as PointPillars). The late

VOLUME 11, 2023 28215



S. Nousias et al.: Accelerating DNNs for Efficient Scene Understanding in Multi-Modal Automotive Applications

FIGURE 3. Architecture of SqueezeDet (2D detector). The convolutional layers highlighted by the red frames constitute the
target layers in our acceleration experiments. B is the batch size, H is the height and W is the width of a volume kernel.
CL−1 is the number of channels of the previous layer.

FIGURE 4. Architecture of PointPillars (3D detector). The convolutional
layers highlighted by the red frames constitute the target layers in our
acceleration experiments.

fusion method (described in Sec. IV) has been implemented
via modifying the well-known OpenPCDet suite.1

1https://github.com/snousias/multimodal-fusion-driven-automotive-
scene-analysis

1) DESCRIPTION OF THE DEEP MODELS
SqueezeDet is a fully convolutional detection network
presented by Wu et al. [13], consisting of a feature-extraction
part that extracts high dimensional feature maps for the
input image, and ConvDet, a convolutional layer to locate
objects and predict their class. For the derivation of the
final detection, the output is filtered based on a confidence
index also extracted by the ConvDet layer. Figure 3
presents the overall architecture of the deep networks, the
convolutional volume kernel shapes, and the feature tensor
shapes.

As it can be observed from Figure 3, the feature-
extraction (convolutional) part of SqueezeDet is based on
SqueezeNet [42], which is a fully convolutional neural
network that employs a special architecture that drastically
reduces its size while remaining within the state-of-the-art
performance territory. Its building block is the ‘‘fire’’ module
that consists of a ‘‘squeeze’’ 1 × 1 convolutional layer to
reduce the number of input channels, followed by 1 × 1 and
3 × 3 ‘‘expand’’ convolutional layers that are connected in
parallel to the ‘‘squeezed’’ output. SqueezeNet consists of
8 such modules connected in series.

On the other hand, PointPillars [18] is designed for 3D
object detection using LIDAR point clouds. Its architecture
consists of three main stages. More specifically, the first stage
transforms the point cloud into a pseudo-image by grouping
the points of the cloud into vertical columns, called pillars,
that are positioned based on a partition of the x − y plane.
The second stage consists of feature extraction backbone
network providing high-level feature-rich representations of
the input. Finally, object detection takes place in the third
stage, which is responsible for producing 3D bounding boxes
and confidence scores for the classes of interest.
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2) DESCRIPTION OF THE DATASET
Our experiments were based on the well-known KITTI
benchmark dataset [35], [43]. The KITTI object detection
dataset is used for training and post-quantization retraining of
the detectors and the tracking dataset is used for testing and
evaluation. For training, the dataset consists of 7481 training
images and 7518 test images, as well as the corresponding
point clouds comprising a total of 80256 labeled objects. For
evaluation, theKITTI tracking dataset contains annotations or
eight different classes with 21 training sequences and 29 test
sequences. Three classes are considered for evaluation,
namely cars, cyclists, and pedestrians. Table 3 presents the
number of visible objects per class and for each track in
the evaluation dataset, comprising in total of 27300 cars,
11470 pedestrians, and 1938 cyclists.

3) THE ADOPTED TRAINING PROCEDURE
Both networks were trained with the KITTI object detection
dataset [35]. For the deployment and retraining of PointPil-
lars, the OpenPCDet framework was employed [44]. For the
initial evaluation, pre-trained instances were used, while for
retraining, the Adam optimizer was employed with learning
rate lr = 0.003, weight decay rate DW = 10−2 and a batch
size B = 4. Training took place in an NVIDIA Geforce RTX
2080 with 16GB VRAM and compute capability 7.5.

For the training of the SqueezeDet architecture, Stochastic
Gradient Descent (SGD) was used. The following values for
the hyperparameters where selected for training: batch size
B = 8, learning rate LR = 10−4, with a weight decay rate
DW = 10−4, a learning rate decay rate of DLR = 2 ∗ LR/Ne,
number of steps Ns = 3×Ntr and a dropout rate of 50%, over
a total of Ne = 300 epochs. Training and testing took place
in an NVIDIA GeForce GTX 1080 graphics card with 8GB
VRof AM and compute capability 6.1 in a Intel(R) Core(TM)
i7-4790 CPU @ 3.60Hz based system with 32GB of RAM.
A data augmentation scheme was adopted, according to
which the bounding boxes drift by kx ∗ 150 and ky ∗ 150 pix-
els across the x-axis and the y-axis, respectively, where
kx , ky ∼ U (0, 1). A 50% probability is also assumed to flip
an object.

4) ACCELERATING 2D AND 3D OBJECT DETECTORS
In this experiment, we follow the acceleration strategy
proposed in [34], whereby isolated parts of the network
(e.g., individual layers) are quantized progressively, in stages,
beginning at the original network. After each stage, the
remaining original layers are retrained (or, fine-tuned). The
reported acceleration ratios are defined in III-B.

Concerning SqueezeDet, the focus is on its feature-
extraction part, namely consists of 8 ‘‘fire’’ modules con-
nected in series. SqueezeNet is responsible for roughly 83%
of the total 5.3 × 109 MAC operations and 76% of the
approximately 16MB storage space required by SqueezeDet.
Since it constitutes an already efficient network, we only
targeted SqueezeNet’s ‘‘expand’’ layers in our experiments.

TABLE 2. Acceleration and compression gains for the SqueezeDet and
PointPillars networks under study, concerning both the Feature Extraction
(FE) part and the Total model.

TABLE 3. Information for each route in KITTI tracking dataset.

Acceleration was performed in 8 acceleration stages (one
‘‘expand’’ module per stage), followed by fine-tuning.

Concerning PointPillars, its feature-extraction (backbone)
stage is responsible for 97.7% of the total MAC operations
required. In total, the Pointpillars network encompasses
4.835 × 106 parameters and requires 63.835 × 109 MACs.
For a good balance between acceleration and accuracy
loss, we only targeted the convolutional layers of the
backbone network comprising the second stage of PointPil-
lars. Specifically, the targeted 2D- and 4 × 4 transposed
2D- convolutional layers, are responsible for approximately
47% and 44.4% of the total required MACs, respectively.
Acceleration was performed on 16 acceleration stages with
each stage involving the quantization of a particular layer,
followed by fine-tuning. Using the acceleration ratios α =
10, 20, 30, and 40 on the targeted layers leads to a reduction
of the total required MACs by 82%, 86%, 88%, and 89%,
or equivalently, to total model acceleration of PointPillars by
5.6×, 7.6×, 8.6×, and 9.2×, respectively.
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TABLE 4. Average precision for detection network and their respective fusion. Acceleration approaches VQa=10 and DLa=10 demonstrate the robustness
of multi-modal fusion as an approach to combine the benefits of weak detectors.

5) METRICS
The official KITTI evaluation detection metrics include
Bird’s Eye View (BEV), 3D, 2D, and Average Orientation
Similarity (AOS). The 2D detection is done in the image
plane and average orientation similarity assesses the average
orientation (measured in BEV) similarity for 2D detections
[43]. The KITTI dataset is categorized into easy, moderate,
and hard difficulties, and the official KITTI leaderboard is
ranked by the performance of ‘‘moderate’’. Each 3D ground
truth detection box is assigned to one out of three difficulty
classes easy, moderate, hard), and a 40-point Interpolated
Average Precision metric is separately computed on each
difficulty class, according to [45].

To measure the accuracy of our approach we project
the 3D bounding boxes on the 2D image and evaluate the
outcome with the 2D KITTI evaluation suite deriving
the average precision via the Precision/Recall curve. The
Precision/Recall curve is defined as

AP|R = 1/|R|
∑
r∈R

ρinterp(r) (17)

averaging the precision values provided by ρinterp(r), accord-
ing to [45]. In our setting, we employ forty equally spaced
recall levels,

R40 = {1/40, 2/40, 3/40, . . . , 1} (18)

The interpolation function is defined as ρinterp(r) =

max
r ′:r ′≥r

ρ(r ′), where ρ(r) gives the precision at recall r ,

meaning that instead of averaging over the observed precision
values per point r , the maximum precision at recall value
greater or equal than r is taken.
For each detection, the IOU score is computed as the ratio

of the area of intersection to the area of union between the
predicted and ground-truth bounding boxes. A true positive
occurs when IOU > λ and the predicted class is the same
as the ground-truth class, for some predefined threshold λ.
A false positive occurs when IOU < λ or a different
class is detected, meaning that unmatched bounding boxes
are taken as false positives for a given class. Precision,
recall and mean average precision (mAP) are subsequently
calculated according to [46]. It is important to highlight that
the performance of the image detector, the LIDAR detector,

and their fusion is measured using the 2D benchmark via
projecting the bounding boxes to the 2D modality space.

6) RESULTS
For this experiment, the initial network architectures are com-
pared with the accelerated ones via the vector quantization
and dictionary learning approaches for an acceleration ratio
a = 10. Table 4 presents the results for 2D, 3D and fusion-
based object detection using the Average Precision (AP) per
class and per difficulty, for all objects within the dataset.

As the table reveals, in all cases, the fusion of modalities
generates better results than each detector’s ones, showcasing
the acceptable performance of even a simplistic late fusion
approach. The compression of the models in all cases, dete-
riorates the detection outcome of the individual detectors as
the highlighted columns indicate. However, it is interesting to
note that the late fusion approach improves the performance
of the overall model even when the MCA techniques are
applied, resulting in accelerations of about 2.5× and 6× for
the 2D and 3D detectors, respectively, while the performance
loss of the fused results ranging in most cases within single-
digits figures (as low as around 1% for the class ‘‘cars’’).

Comparing the performance of the utilized uni-modal
detectors, it becomes readily apparent, that the 3D LIDAR
based detector is much more resilient with respect to the
incurred accuracy loss due to the application of accelera-
tion/compression. This comes as a direct consequence of
the fact that SqueezeNet (i.e. the back-bone network of
SqueezeDet) constitutes an already optimized lightweight
network, as opposed to PointPillars, whose architecture is
much more ‘‘redundant’’ in the number of filters/parameters.
Additionally, it can be observed that the performance of
the DL-based weight-sharing MCA technique, is universally
better than the one obtained via the VQ-based approach
This indicates as expected that the gains in terms of
weight approximation (i.e. quantization) error presented in
Experiment I, are translated to analogous gains concerning
the performance loss of the accelerated networks.

Finally, let us provide some indicative examples of object
detection using the 2D, 3D and fusion-based approaches.
Figures 5 and 6 present qualitative outcomes of detector
fusion. In the figures, green boxes represent the 3D outcomes,
red boxes the 2D detector outcomes and the blue boxes
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FIGURE 5. Qualitative fusion evaluation outcome. Tracking route #0008.

FIGURE 6. Qualitative fusion evaluation outcome. Tracking route #0014.

represent their fusion., We can identify that at least two
cars are captured by only one of the two detectors which
subsequently contributes to fusion outcome.

VI. CONCLUSION
This work investigates the application of weight-sharing
methods in deep learning-based scene analysis for automotive
scenarios. The impact of transforming (i.e., accelerating and
compressing) two well-known DNN models is evaluated
on 2D image-based, 3D LiDAR-based and fusion-based
detection approaches. The KITTI dataset is used for the
evaluation of the presented approaches. Two state-of-the-
art weight sharing techniques are considered and two novel
extensions are proposed and their efficacy is presented via
Experiment I. Comparing the uni-modal vs multi-modal
detection approaches, it is demonstrated that the multi-modal
fusion not only improves the performance of the individual
detectors, but also considerably improves the performance of
the networks when they are accelerated / compressed by the
considered weight sharing techniques.
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