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ABSTRACT In recent years, hepatocellular carcinoma has been the leading cause of cancer-related mortality
and thermal ablation procedures such as MWA (microwave ablation) and RFA (Radiofrequency ablation)
provide a viable alternative to radiation and surgical excision. Due to uneven ablation and tissue charring
in RFA, MWA offers faster and uniform heating as a result of its higher operating frequency. In MWA, the
antenna probe heats the tissue to the point of cell necrosis using electromagnetic heating. In this aspect,
a substrate-integrated waveguide (SIW) antenna is designed to work at 2.45 GHz. Further, a finite element
method (FEM) is employed to model the probe and the liver tissue environment. Within 10 minutes of
application time, a maximum ablation diameter of 32 mm (transversal-T) and 25 mm (axial-A) is achieved at
20Wof power. Since the position of the applicator probe is of utmost importance, the relationship between the
percentage of ablation, probe tip position, and tumor diameter is evaluated using ML- algorithm to estimate
the ideal probe location for maximal tumor ablation and thus may improve clinical outcome.

INDEX TERMS Ablation zone, cat boost, microwave ablation antenna, support vector regression, XG boost.

I. INTRODUCTION
Liver cancer is the third leading cause of cancer-related death
and the fifth most common kind of cancer in the world with
a terrible survival rate. Only 20% of patients are candidates
for surgery and both primary and secondary hepatic tumor
patients react poorly to chemotherapy and radiation therapy
as a result of their harsh treatment protocol [1]

In such a situation, thermal ablation procedures are a viable
option compared to surgical resection due to their advan-
tages which include minimum invasiveness, shorter hospital
stays, faster return to normal activities, and lower healthcare
expenses [2].

Microwave ablation (MWA) is a relatively new and well-
approved clinical ablation method among the current thermal
ablation treatments. The primary objective of MWA is to
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cause necrosis in cancer cells by increasing the temperature
between 50-100 ◦C. The thermal damage may be restricted
to the cancerous tissue with a suitable margin of safety to
minimize the chance of damage to healthy tissue. Researchers
anticipate that the microwave ablation applicator should pro-
duce a spherical ablation zone due to the almost spherical
form of most tumors [3]. Therefore, an important feature
of therapeutic microwave ablation antennas is to create a
spherical ablation zone for tumor ablation, and hence, several
types ofmicrowave ablation antennas have been introduced to
date. In previous studies, coaxial cable based MWA antennas
such as a monopole, co-axial choke, co-axial slot, and coaxial
helical antennas were investigated [4]. Since currents flow
through both the inner and outer conductor of the coaxial
cable due to the unbalanced monopole antenna construction,
as a result, the ablation zone is extended along the coaxial line
and healthy tissue along the antenna insertion route may be
burnt which should be avoided in practical applications [5].

26964
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2811-3440
https://orcid.org/0000-0001-6694-7289


S. K. Singh, A. N. Yadav: Machine Learning Approach in Optimal Localization of Tumor Using a Novel SIW-Based Antenna

A choke operating as a balun is introduced to lessen the
unwanted current distribution at the outer conductor of the
co-axial cable. By introducing such a choke as an open circuit
at an appropriate place on the outer conductor of a coaxial
line, it is feasible to generate a high impedance and prevent
the flow of current in the outer conductor. However, the
additional balun designmay increase the cross-section area of
the antenna making it unsuitable for minimally invasive ther-
apy [6]. Further to overcome such a shortcoming, a coaxial
slot antenna is introduced with a balun-free structure but its
performance is hampered by the surrounding medium since
the slot of the outer conductor makes direct contact with
tissue. Another kind of antenna without a balun is the coaxial
helical antenna. A helical construction is often included in
a coaxial line to provide maximum voltage and minimum
current at a certain point along the feeding line. The effec-
tive high impedance acts as a natural choke at this location,
dampening the current flowing in the outer conductor of the
feeding coaxial cable and providing a confined ablation zone.
However, this structure is difficult and expensive to construct
and it is especially challenging to create a matching network
within the coaxial cable [7].

The novelty of this work is to design an axis-symmetric
cross-like antenna that resembles a normal mode helical
antenna integrated on a substrate-integrated coaxial cable
(SICL) and can create a highly localized circular ablation
zone as contrary to the antenna demonstrated in [8], without
using the extended balun structure. The main advantage of
SIW based structure is that it provide better power handling
capacity as compared to microstrip structure and hence can
be useful in high power application such microwave abla-
tion. Also, SIW can also be fabricated with low cost mass
production using plated though hole (PTH) technology. The
designed antenna is fed with a GCPW (grounded coplanar
waveguide) feed connected to an impedance transformation
structure along with an inset transition connected to SICL
which is further connected to an appropriate antenna location
which restrain the need for a matching network in the antenna
applicator. Furthermore, the specific absorption rate (SAR) of
the applicator is also analyzed using temperature-dependent
electrical and thermal properties. Also, for efficient ablation
and optimal localization of the novel antenna applicator var-
ious machine learning algorithms were incorporated in this
study as ML algorithms were found to be useful in medical
diagnostics and treatment protocols [9].

II. DESIGN METHODS OF THE ANTENNA APPLICATOR
The SIW structure consists of a dielectric substrate covered
by metallic plate on both sides. The two parallel rows of via-
metallic holes connecting the upper and lower conductors
act as wall of the waveguide to prevent leakage of elec-
tromagnetic fields. The distance between the two parallel
sets of vias and center to center distance between each via
can be optimized for better propagation of the wave. The
antenna structure consists of cross-like microstrip lines on
the upper and lower part of the substrate at the distal end

FIGURE 1. (a) Top view of the antenna applicator 1(b) Explosive view of
the antenna 1(c) Impedance transformation structure of the antenna.

and are shorted using the metal via as shown in Figure 1(a).
Further, the antenna and the SICL structure are connected
using the middle conductor as shown in Figure 1(b) which
is further connected to a feeding structure. According to the
difference in the functionality of each structure, the whole
setup is divided into the antenna structure part, SICL wave-
guiding part, and an SIW impedance matching part.

A. ANTENNA DESIGN
At the distal tip of the applicator, a radiating intertwined helix
structure with a cross-like pattern is connected to SICL feed-
line, as shown in Figures 1(a) and 1(b). To provide a symmet-
rical ablation pattern, a cross-like helix structure is mounted
on the upper and lower side of the substrate which can provide
a spherical ablation zone. The dimension of the antenna is
shown in Table 1 considering PCB fabrication capability. The
extended middle conductor is used to tap the helix structure
to achieve impedance matching to the 50-ohm line as shown
in Figure 1(b). Further, since the impedance is very low at the
feed point of the antenna, therefore the periodic cross-like
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TABLE 1. Dimension of the applicator.

structure is added to improve the impedance matching with
the feed line.

B. WAVE-GUIDING STRUCTURE
The main wave-guiding portion of the antenna is based on a
SICL. Figure 1(b) depicts an explosive view of the antenna
applicator. Two dielectric layers and three metal layers with
a thickness of 0.035 mm are used to create a conventional
SICL-based structure for the guiding component. As per
Figure 1(b), the three metal layers are interconnected by slots
with a diameter of D. If the diameter D of the slot is less
than λ

10 and if the distance L4 between adjacent vias is less
than twice the diameter D then the two rows of vias may be
regarded as two metal walls [10]. As the thickness of two
SICL dielectric layers is of height h = 0.5 mm, an affordable
low-loss dielectric RT Duroid 5870 is employed. At roughly
2.45 GHz, the relative dielectric constant and loss tangent
of the dielectric are 2.33 and 0.001, respectively; thus, the
SICL can be considered aa a lossless transmission line.
The equation for characteristic impedance is obtained by
using a 50-ohm impedance for the SICL and is given
by:-

Zp =
1

VpCunit
(1)

where, Vp is the phase velocity of the wave inside the SICL
and Cunit is the per unit length capacitance of the SICL.
The middle conducting layer acts as an inner conductor of
the waveguide whose thickness is negligible. Hence, the

FIGURE 2. Reflection coefficient of the antenna obtained in tumor
domain of diameter 10 mm, 20 mm and 30 mm.

capacitance Cunit for the SICL can be calculated by [10] :-

Cunit = 2ϵ
(w2

h

)
+

4ϵ
π

[
ln

(
w22 + h2

4h2

)
+

2h
w2
arctan

(
2w2

h

)]

+
4ϵ
π

[
ln

(
w22 + h2

4w2
2

)
+

2w2

h
arctan

(
h
w5

)]
(2)

C. IMPEDANCE TRANSFORMATION STRUCTURE
An impedance transformation structure is employed to keep
the ablation zone confined at frequency f1 while address-
ing the impedance mismatching issue, as illustrated in
Figure 1(c). Initially, at the start of the SICL-based applica-
tor, GCPW (grounded coplanar waveguide) is implemented
which is further connected to the SICL using the inset tech-
nique. Similar to the SICL, two rows of vias link the ground
planes. For impedance matching, the dimensions mentioned
in Table 1 are meticulously designed. Since the highest cur-
rent is in the center of the GCPW impedance transformation
structure, the distance Lx is changed to optimize the 50-ohm
input impedance to match the GCPW- SICL interface and
SICL- helix interface. Further, the reflection coefficient of
the antenna in the simulated tissue environment with varying
tumor size is shown in Figure 2. A reflection coefficient
of -24 dB is observed in tumor with 30 mm of diameter
and hence can be advantageous in the efficient delivery of
microwave power to the tissue with minimal loss of power.

III. THERMAL AND ELECTRICAL TISSUE PROPERTIES
As tissue is formed of veins and arteries with sizes as small
as a few microns, introducing thermal boundary condition
would complicate the assessment of the bio-heat transfer
model without influencing the results of clinical outcomes.
Therefore, blood vessels are assumed to be missing from
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FIGURE 3. (a) Antenna applicator in simulated tissue environment
(b) Element size-dependent meshing with maximum meshing in complex
applicator domain.

FIGURE 4. Near Spherical SAR Pattern of the proposed antenna.

the investigated tissue but their influence is included by con-
sidering all thermo-physical components into the conduction
equation known as Penne’s Bio-Bioheat model for restricted
space and is given by [11]:-

ρCp
dT
dt

− ∇. (k∇T ) = ρbCp,bωb (Tb − T ) + Qmet + Qe

(3)

where, Qmet [W/m2] is the metabolic heat of the tissue, ρ is
the density of tissue [kg/m3], Cp is the tissue-specific heat
capacity [J/kg-K], T temperature of the tissue [K], k is the
tissue thermal [W/m-K], ωb rate of blood perfusion [1/s], ρb
density of blood [kg/m3], Cp,b blood specific heat [j/kg-K],
and Tb is the arterial temperature of blood [K].
The energy balance law over a conserved volume as given

in equation (3) is defined by the total energy gained by the
tissue which is equal to conductive heat generated within the
tissue followed by convective heating due to blood perfu-
sion effect, the heat generated due to metabolic process and
external heat applied to the tissue during microwave ablation,
respectively.

A 3D finite element technique (FEM) using Comsol
Multiphysics 5.5 software is employed in this work to solve
a coupled electromagnetic field and heat transfer model.
The model consists of an antenna applicator, tissue domain
and tumor domain as shown in Figure 3(a). The meshing
is varied according to the complexity of the structure with
finer meshing for the antenna applicator (with element size of
0.0001 mm) and normal to coarse meshing (with element size
of ranging from 0.001mm to 0.01mm) for tumor and tissue

TABLE 2. Temperature-dependent electrical properties.

FIGURE 5. (a) Plot of relative permittivity with temperature in healthy and
tumorous tissue (b) Plot of electrical conductivity with temperature in
healthy and tumorous tissue.

domain. The total number of tetrahedral mesh elements are
663581, as shown in Figure 3(b).

Further, the tissue boundary condition is resolved using the
classical Helmholtz wave equation and is given by [12]:

∇
2E⃗ − β2

0

(
εr −

jσ
wε0

)
.E⃗ = 0 (4)

where E is the electric field complex time-harmonic
vector [V/m], β0 is the wave-wave number space [m−1] εr
is relative permittivity, σ is electric conductivity [S/m], ω is
angular frequency [rad/s] and ε0 is the permittivity of free
space [F/m].

Figure 4 shows the SAR distribution of the applicator in
the Ansys HFSS 18 software considering the permittivity
at 50. Since the applicator is aimed to be inserted into the
tumor tissue therefore, a permittivity value of 50 is chosen
to match with the actual permittivity value of the tumor (i.e.,
permittivity of 50±2) at 60 ◦C, as shown in figure 5(a), [13].
Further, it can also be conferred that due to the matching
of the antenna, the elongated SAR pattern along the axis of
the antenna is minimized. However, the above analysis is
considered without including the tissue environment.
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TABLE 3. Tissue thermo-electrical properties.

Therefore, for further analysis, COMSOL Multiphysics
software is incorporated in this study.

Furthermore, MWA generates structural anomalies in the
tissue as a consequence of the elevated temperatures gener-
ated during tissue heating and cell necrosis near the antenna
resulting in alterations to the dielectric and thermal proper-
ties of the tissue and as a result, the electromagnetic power
distribution is severely affected. Such modifications are not
accounted for in either ex-vivo setups or FEM simulations,
leading to overestimated ablation zones. To correct this
anomaly, temperature-dependent permittivity and electrical
conductivity by using the sigmoidal curve-fitting approach
is incorporated in this study. The fitted curve equation for
permittivity and conductivity in healthy and malignant liver
tissue is provided by [13]:-

εr (T ) = a3

[
1 −

1
1 + ea1(a2−T )

]
+ 1 (5)

σ (T ) = a3

[
1 −

1
1 + ea1(a2−T )

]
(6)

where, the values of each regression constant and the
root mean square of the regression are given in Table 2.
The temperature-dependent sigmoidal model of (a) relative
permittivity and (b) electric conductivity for normal and
malignant tissues is shown in Figure 5. As predicted, the rel-
ative permittivity and conductivity of liver tumors are around
20% and 25% greater, respectively, than those of normal
liver tissue. During microwave ablation, the water content
in the tissue evaporates and the ionic property of the tissue
decreases as the temperature rises leading to a change in the

FIGURE 6. Degree of tissue injury with respect to time (t =

0,1,4,6,8,10 min) with a value of 1 indicates 100 percent ablation.

conductivity and permittivity of the medium. Furthermore,
the slope of dielectric characteristics and electrical conductiv-
ity with temperature is similar in both healthy and cancerous
tissues.

The temperature-dependent conductivity and permittivity
are further incorporated in 3-D model of liver tissue with
20 mm tumor. The tissue and tumor thermo-electrical param-
eters are shown in Table 3.

In addition, using the Arrhenius equation, the simulated
model calculate the rate of tissue damage (α) given by [14].

∂α

∂t
= (1 − α)n ∗ Ae

−1E
RT (7)

where, A is the frequency factor in [1/s], 1 E is the activation
energy for tissue necrosis in (j/mol), R is the Gas constant,
and T is the temperature. The proportion of tissue damage
caused by microwave ablation is calculated using:-

θd = 1 − e−α (8)

When the temperature is more than the tissue damage tem-
perature Td for more than time-period td, the rate of damage
is given by:-

α =
1
td

∫ t

0
ϕd,hdt (9)

where,

ϕd,h (t) =

{
1 if T > Td,h

0 otherwise
(10)
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FIGURE 7. Reflection coefficient plot with respect to time
(0:1:10) minutes.

ϕd,h (t) is the ratio of period of application time T to time
limit of necrosis Td,h. When the ratio reaches the value 1,
it means the tissue has reached necrosis. The fraction of tissue
necrotic is a quantity with min (α,1) value. As depicted in
Figure 6, ablation starts along the normal direction of the
antenna applicator with maximum ablation or tissue necrotic
reached at the time (t) equal to 10 minutes. The antenna appli-
cator successfully ablated the tumor tissue of size 20 mm.
Also, since the antenna applicator is in matched condition,
a spherical ablation zone is reached with minimal elongation
along the axial direction of the antenna and hence, reduces the
chance of ablating healthy tissue along the applicator length.

Further, the Figure 7 shows the reflection coefficient with
respect to time for three different tumor sizes. The value
of S11 is calculated for the time interval of 0-10 minutes.
Since deviation in permittivity and conductivity is faster due
to increase in temperature (as shown in Figure 5), there-
fore, a sharp change is observed in S11. However, at higher
temperature (i.e., above 100 ◦C) the value of permittivity
and conductivity saturates and hence the value of S11 also
move towards saturation The effect can also be explained
from evaporation of water content above 100◦C resulting in
saturated permittivity and electrical conductivity of the tissue
domain.

Further, the maximum value of S11 attained ie below 10 dB
range which shows that more than 90 percent of the applied
power is transmitted to the tissue and the applicator remain
in matched condition thoughout the application time. Further,
since the permittivity of the tumor depends upon the level of
malignancy, Figure 8 shows the specific absorption rate for
permittivity value of 25, 35 and, 55. As can be seen that the
SAR value reduces with an increase in permittivity along the
length of the applicator. Few of the SAR evaluation points
from 0-30 mm is shown in the figure 8(a) at a distance of
2 mm from the applicator.

FIGURE 8. (a) Data points for evaluation of SAR pattern (b), (c) and (d)
SAR along the arc length of the antenna application with permittivity
values of 25, 35 and 55 respectively.
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FIGURE 9. Rate of ablation along axial (z) and transversal direction
(x and y) along the antenna applicator.

The reduction in SAR is due to the impedance mismatch of
the antenna as the surrounding permittivity increases. How-
ever, at a permittivity of 55, the SAR value is still in the
satisfactory range but such cases need to be evaluated while
designing an ablation antenna in order to improve and match
clinical outcomes with simulated results. Further, Figure 9
shows the rate of necrotic tissue along the axial (z) and
transversal direction (x and y) of the applicator. This shows
that the ablation zone is similar in all the directions, depicting

FIGURE 10. (a) Calculated and predicted ablation percentage using
simple regression (b) Residuals plot with maximum error in ablation
percentage prediction of 13 percent.

a near-spherical ablation zone. Since the heat generated by the
applicator is higher near the antenna, therefore, faster rate of
tissue necrosis is observed in the proximity of the applicator.

Further, the optimal positioning of the applicator inside the
tumor is of utmost important to ablate the tumor properly as
misplaced location not only destroys the nearby healthy tissue
but also fraction of the tumormay go untreated and hencemay
cause recurrence of the HCC. Therefore, optimal localization
of tumor is necessary to improve the clinical outcome. In this
regard, various machine learning algorithm were exploited to
establish a relationship between tumor size, tumor location
and ablation percentage. Such a relationship is also helpful
in optimum use of power for variable size of tumor since the
ablation percentage is dependent on applied power.

IV. MACHINE LEARNING ALGORITHM METHODOLOGY
To predict the dependent response ‘y’ (ablation percentage)
using the tumor location (distance of the center of tumor to
the tip of applicator) and tumor diameter as an independent
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TABLE 4. Tumor size and location vs ablation percentage.

variable ‘x’( tumor location and tumor size), at first the simple
linear regression (SR) is used.

Since the connection between the two variables is assumed
to be linear, a linear function that properly predicts the
response value or dependent variable (y) based on the feature
of the independent variable (x) is required.

Here, the purpose is to choose a line that most closely
fits the data in order to predict the response for any
new feature values. This is referred to as the regression
line. The regression line is represented by the following
equation [15]: -

h (xi) = β0 + β1xi (11)

where, h (xi) is the predicted response, β0 and β1 are the
regression coefficient and are represented by the y-intercept
and slope of a line.

Now, in order to evaluate the correctness of themodel, least
squares principle is used, which is denoted by: -

yi = β0 + β1xi + ϵi (12)

where, yi is the dependent variable or the ablation percentage
obtained from the ablation datasets and xi is the independent
variable (i.e centre of the tumor from the tip of antenna and
size of tumor). The least square principle is used to determine
the best fit regression line for the datasets and is also a
convenient parameter to decide the efficacy of the algorithm.
The total dataset (63 sample size) is divided into test sets
(20%) and training sets (80%) for optimized performance.
Further, to minimize the error function ϵi, the cost function
J is defined as: -

J (β0, β1) =
1
2n

∑n

i=1
∈
2
i (13)
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FIGURE 11. (a) Calculated and predicted ablation percentage using
polynomial regression (b) Residuals plot with maximum error in ablation
percentage prediction of 6 percent.

The task is to find the value of β0, β1 for which the value of
J (β0, β1) is minimum. Consequently, regression coefficients
are defined as:-

β1 =
SSxy
SSxx

and β0 = ȳ− β1x̄ (14)

where, ȳ and x̄ are the mean value of the sample, SSxy is
the sum of cross-deviation of x and y and SSxx is the sum of
deviation of x. The sample for tumor size and location is given
in Table 4 along with the ablation percentage outcome. The
ablation percentage is calculated as per the equation given
in [6].

Percentage of ablation=

4π
3

(T
2

)2 (A
2

)
ablation zone

4π
3

(T
2

)2 (A
2

)
tumor

× 100

(15)

In case of Simple Regression, as shown in Figure 10, the
deviation observed in the test results and predicted result is
from −13 percent to +12 percent which is significant and
therefore, further algorithms were investigated.

A. POLYNOMIAL REGRESSION
Polynomial regression is a specific example of multiple
regression in which only one independent variable, xi, is
considered.

A model of polynomial regression with a single variable
may be stated as:-

yi = β0 + β1xi + β2x2i + β3x3i . . . . . . . . . ..βkxki + ∈i (16)

where i = 1,2,3,4,5. . . . N and k is the degree of the
polynomial.

The R-squared(coefficient of determination) of the multi-
ple regression is comparable to the simple regression, which
is defined as follows:-

R2 = 1 −
SSE
SST

= 1 −

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)2

(17)

where SST represents the total sum of squares and ȳ repre-
sents the arithmetic mean of the output variable, and ŷ rep-
resents the predicted output. R2 estimates the percentage of
variance in the response variable (the percentage of ablation)
and consequently, it is a crucial indicator of how well the
regression model fits the data. R2 always has a value between
zero and one. An R2 score of 0.9 or above is extremely
excellent, while a value of 0.8 or higher is good. As illustrated
in Figure 11, the observed divergence between the test set
and the predicted result ranges from -6% to +4% with 80:20
training and test dataset ratio. Since residuals is used which
measures the distance of regression line from the datapoints,
RMSE (root mean square error) is included in this study
which measures the standard deviation of the residuals.

Nevertheless, the degree of the polynomial equation is
four resulting in a complicated interaction between the input
and output variables. Also, such a regression algorithm may
have overfitting issue and also lesser degree of freedom as
compared to support vector regression (SVR).

B. SUPPORT VECTOR REGRESSION
The main advantage of SVR is its excellent generalization
and good prediction accuracy. The model built by support
vector regression (SVR) is only dependent on a portion of
the training data since the cost function used to construct
the model disregards any training data that is near (within a
threshold) to the model prediction [16].

Support vector machines (SVMs) are most often used in
support vector regression (SVR). The essential idea behind
SVM for regression and function estimation is the use of
training data as [(x1, y1 . . . ..xn, yn)] ⊂ ℵ × ξ where ℵ

signifies the space of input patterns, for instance ξd . The
objective of support vector regression is to select f(x) that has
the greater divergence from the real target yi, for all of the
training data while still being as flat as possible.

The function f(x) is defined by:

f (x) = < w, x > +b with w ∈ ℵ, (18)

where <..> denotes the dot product in ℵ. Flatness in the case
of equation 17 requires a small w. One of the ways is to
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FIGURE 12. Residuals plot of ablation percentage for poly, rbf amd
sigmoidal kernel of SVR with maximum prediction error observed in
sigmoid kernel and minimum prediction error in rbf kernel.

minimize Euclidean norm i.e. | |w| |
2 which can be expressed

as convex optimization problem.

minimize
1
2

||w||
2
+ C

∑n

i=1
(ϑi + ϑ∗

i )

subjectto


yi− < w,xi> −b ≤ ϵ+ϑi,

< w,xi> +b−yi ≤ ϵ + ϑ∗

i ,

ϑi, ϑ∗

i ≥ 0

(19)

slack variables ϑiϑ
∗

i are introduced to cope with otherwise
infeasible constraints of the optimization problem. The regu-
larization constant C > 0 sets the trade-off between the flat-
ness of function f and the tolerance for deviations greater than
ε. A larger value ofC results in a smaller misprediction of the
result, however, may result in overfitting of the predicted data.
The ε-insensitive loss function |ϑ |ϵ described by:-

ϑ |ϵ =

{
0, if |ϑ | ≤∈

|ϑ | − ∈, otherwise
(20)

In addition, regression problems have a nonlinear pattern
(nonlinearity) and may be handled using kernel functions.
Kernel is a non-linear version of regression that may be
achieved by the so-called ‘‘kernel trick,’’ in which a linear
regression model is created in a high-dimensional feature
space, F(ϕ : X → F) induced by a nonlinear kernel function
specifying the inner product K(x, x’)= ϕ(x).ϕ(x’) The kernel
function, K : ℵ x ℵ → ξd may be any ‘‘Mercer’’ kernel that
is positive and definitive. The following are the three kernel
functions used to predict the ablation percentage test:-

Polynomial kernel (poly) with degree d

K
(
x, x ′

)
= (xT x ′

+ 1)
d

(21)

Radial basis function (rbf) kernel with width σ

K (x, x ′) = e(−
||x−x′||

2

2σ2
) (22)

Sigmoid with parameters κ and θ

K
(
x, x ′

)
= tanh(κxT x ′

+ θ ) (23)

As seen in the Figure 12 the rbf kernel performs better than the
polynomial and sigmoidal kernels. The residual margin of−4
to 6 ablation percent is observed in the case of rbf. Also, the
predicted value of the sigmoidal kernel is out of bounds and
may not be used in such a scenario. The predicted results of
the poly kernel is also satisfactory but require 4th order of the
polynomial. In conclusion, SVR with a rbf kernel performs
better than polynomial regression and sigmoid kernel. How-
ever, the regularization constant (C) as shown in equation 18,
in case of rbf and poly kernels are of the order of 103 to
minimize RMSE (root mean square error) and maximize R2

which may eventually lead to overfitting. Such a problem
of overfitting the datasets can be resolved through boosting
algorithm with early stopping parameters.

C. BOOST ALGORITHM
Gradient Boosting is a prominent technique for boosting.
Since the above algorithms suffer from overfitting of data
and complexity in formulization due to 4th order polynomial,
therefore, gradient boosting is further incorporated in this
study. Each predictor in gradient boosting corrects the error
of its predecessor and is trained using the residual errors of
the predecessor labels. Further XG- Boost and CAT Boost
algorithm were included in this study with early stopping
parameters to prevent over fitting.

D. XG BOOST
XGBoost is a gradient-boosted decision tree implementation.
In this approach, consecutive decision trees are generated
in which weights play a crucial role. All independent vari-
ables are allocated weights, which are subsequently input into
the decision tree used to predict outcomes. The weight of
variables for which the tree made incorrect predictions are
raised and these variables are then given to a second decision
tree. The ensemble of these independent classifiers/predictors
yields a robust and more accurate model. It can solve issues
including regression, classification, ranking, and user-defined
prediction.

Here, XG Boost is used in the regression model and let ȳi
be the predicted value of the model given by:-

ȳi =

∑K

k=1
fk (xi) (24)

where fk represent the independent regression tree and fk (xi)
denote the prediction score given by k-th tree to i-th sample.
In the regression tree model, the collection of functions fk
may be learnt by minimising the objective function: -

obj =
∑n

i=1
l(yi, ŷi) +

∑K

k=1
µ(fk ) (25)

The l here is a training loss function that measures the
difference between the predicted ŷi and the train object
yi. The term µ(learning rate) penalises the complexity of
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FIGURE 13. (a) Residuals plot for XG Boost with RMSE = 5.51 and
R2 =0.792 (b) Plot for training and validation loss with early stopping
of 20.

the projected model to prevent overfitting and is given
by [17]:-

µ (fk) = γT +
1
2
λ| |ϕ| |

2 (26)

where γ and λ are the degrees of regularization T and ϕ

are the number of leaves and the scores on each leaf in a
decision tree respectively. Further, additional ensembles of
trees may be taught in an additive fashion. The training and
test datasets were divided in the ratio of 80:20 as it provides
minimum root mean square error (RMSE) and maximized R2

value as compared to other training and test sets combination.
Since, the XG Boost suffers from overfitting, therefore, early
stopping parameter is utilized with optimal epoch of 20.
As seen in Figure 13, the residuals (ablation percentage) vary
between -4 and 11, with themajority of residuals being within
the permissible range. The learning rate (µ = 0.1) was set
low to prevent the data from being overfitting. This, however,
leads to a deviation from the projected values. Further, as seen
in Figure 12(b), the optimal number of decision trees in XG
Boost to predict the desired result was considered to be 20.
However, the loss function reaches the minimum value at
40 which results in an increase in computation time of the
boosting algorithm. Also, although the predicted outcome is

FIGURE 14. (a) Residuals plot for CAT Boost with RMSE =2.5 and R2 =

0.95 (b) plot for training and validation loss with early stopping of 20.

satisfactory with RMSE of 5.51 and R2 of 0.79 but other
gradient boosting algorithm is exploited to further improve
the results. In such a case CAT Boost is preferred as Light
GBM algorithm have similar accuracy score as compared to
XG Boost [18].

V. CAT BOOST
Cat Boost is an open-source implementation of Gradient
Boosted Decision Tree (GBDT) for Supervised Machine
Learning that features two innovations: Ordered target statis-
tics and ordered boosting.

In Cat Boost, random permutations of training dataset
are generated which uses many permutations to increase
the robustness of the algorithm and then selects a random
permutation to derive gradients from it. These are the same
permutations used for generating categorical feature statis-
tics. For each permutation σ , n different models are trained.
That means that for building one treeO

(
n2
)
need to be stored

and recalculated for each permutation σ and for each model
Mi, Mi (X1),. . . , Mi (Xi) model need to be updated. Thus,
the resulting complexity of this operation is O (sn2). Using a
crucial technique, the complexity of tree building is lowered
in practical implementation to O(sn), for each permutation,
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FIGURE 15. Model depicting positioning of applicator in HCC and
acquiring datasets for ML algorithm.

instead of storing and updatingO(n2) valuesMi (Xj),M ′
i (Xj),

i = 1, . . . , [log2 (n)], j < 2i+1 values are maintained, where
M ′

i (Xj) is the approximation for the sample j based on the
first 2i samples. Thus, the number of predictions M ′

i (Xj) is
not larger than

∑
0<i<log2(n)

2i+1 < 4n. On the basis of the
approximation, the gradient of the example Xk used to choose
a tree structure is calculated based on the approximation M ′

i
(Xk), where i = [log2(k)] [18].

The training and test datasets were divided in the ratio
of 70:30 as it provides minimum root mean square error
(RMSE = 2.50) and maximized R2 (0.95) value as compared
to other training and test sets combination.

As shown in the Figure 14, the CAT Boost algorithm
performs better than the other gradient boosting algorithms
with predicted ablation percentage has error margin of −2 to
7 percent due to ordered boosting.

In addition, as explained above, since fewer trees are
needed to predict the ideal value, the loss factor decreases
more rapidly for 20 optimal trees than for the XG boost
method. Since loss optimization and residues are smaller
than XG boost, this technique may be employed more effec-
tively when determining the ideal antenna site for maximum
ablation.

Since this is a simulation-based study and complex bio-
chemical process is not taken into account, therefore, a similar
dataset can be attained from an ex-vivo setup as well for
further calibration, if required. As shown in the figure 15,
a cross-sectional incision is made in bovine liver and the
antenna applicator is placed in the tumor along with the
measurement scale. Further, the tip position is changed along
z-axis and the percentage of the ablation zone is calculated as
per the equation 15. The procedure is repeated for different
tumor sizes. However, this is one-time process and do not
require data acquisition before every clinical procedure. Also,
the ablation zone generated by the antenna is up to 36 mm

TABLE 5. Performance analysis of different ML algorithm used in this
work.

therefore, the optimal localization should not exceed themax-
imum ablation capability of the applicator.

VI. RESULTS AND DISCUSSION
The proposed antenna structure shows good impedance
matching due to SICL and impedance transformation struc-
ture. The S11 obtained for 30 mm tumor diameter is −24 dB
as shown in the Figure 2. Further due to the insertion of a
transition layer between the SICL and impedance transfor-
mation structure and tapping the antenna at optimal location
predominately reduced the surface current along the antenna
axial direction and hence the elongated ablation zone, as con-
trary in recent articles, is minimized as shown in the Figure 4.

In this paper, a coupled electromagnetic field and heat
transport model is solved using a 3D finite element approach
(FEM). The simulated environment consists of temperature
dependent permittivity and conductivity. For 10 minutes
of ablation time 32 mm transversal diameter of tumor is
observed which spherical ablation zone as shown in the
Figure 6. Further, since the permittivity of tumor depends
upon the level of malignancy, Figure 7 shows the specific
absorption rate for permittivities ranging from 25,35 and 55,
and can be concluded that the increase in permittivity reduces
the SAR and can severely impact the ablation zone of the
antenna. Additionally, Figure 8 proves the sphericity of the
ablation zone.

Since the optimal localization of the antenna applicator is
of utmost importance for achieving the maximum ablation
zone and also significantly reduces the chances of ablating
healthy tissue, machine learning algorithms are considered.
All the python code used in ML algorithm is performed in
Google Colaboratory.

Further, at first the basic linear regression is used to pre-
dict the ablation percentage from the tumor location but the
deviations observed were large as compared to the target
output as shown in the Figure 9. Further, since polynomial
regression involves better curve fitting, the results obtained
were close to the target value but are not optimal since 4th
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TABLE 6. Comparative analysis of newly released works.

order polynomial is required to predict the result which is
complex. Further support vector regression (SVR) is used to
predict desired output. Since, the output of SVR is dependent
on loss function and type of kernel used in the hyperplane,
three types of kernels were used namely ploy, rbf, and sig-
moidal and shown in the Figure 11. The rbf and poly kernel
performed well with high R2 value and low RMSE, as shown
in Table 5. However, a high regularization constant C was
selected in order to fit the data which may result in overfitting
of the dataset. Therefore, gradient boosting algorithm was
incorporated and the overfitting is prevented by utilizing early
stopping parameters.

The efficient prediction outcome of ML algorithms
depends on roundness of ablation zone since elongated abla-
tion pattern may complicate the ablation zone prediction and
also destroys the healthy tissue. Therefore, aspect ratio (ratio
of minimum ablation diameter to maximum ablation diame-
ter) is an important parameter for efficient use of applicator
as shown in table 6.
Table 6 compares various recently published articles with

the proposed work. Different crucial parameters reported
were included in the comparison, such as power setting,

frequency of operation, antenna dimension, application time,
and volume of the ablation zone. An antenna with low input
power may facilitate better power handling capacity. Addi-
tionally, as input power is increased, the water content boils
off, resulting in an impedance mismatch and heating of the
applicator, resulting in a more elongated pattern in the axial
(A) direction [6], [19]. Additionally, since blood in arter-
ies functions as a heat sink owing to its thermos-regulation
nature, a more rapid ablation is necessary. However,
Hassan et al. [21] used a lower input power but a higher oper-
ating frequency resulting in a more rapid dielectric rotation of
the polar molecules and thus, a faster dielectric heating. How-
ever, since applied input power has a more significant impact
on the ablation zone, therefore, lower power setting may be
used for smaller tumors. Since only a few articles provide the
overall ablation volume, therefore, to have an analogous com-
parison, the equation reported used to calculate the ablation
volume is as followed in [6]. The proposed work provided a
better transversal ablation zone at similar power input.

Ablation Volume =
4π
3

(
T
2

)2 (A
2

)
(27)
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Also, to reduce complexity and overfitting arising from
the 4th-order polynomial as in polynomial regression and
SVR-poly, XG Boost and CAT Boost algorithm were incor-
porated. Since the CAT Boost algorithm requires lesser num-
ber of decision trees to converge to the optimal results and
also provide optimal R2 and RMSE value as shown in Table 5,
it can be a better algorithm for prediction of percentage of
ablation.

This study shows that the roundness of ablation zone is
an important parameter in prediction of ablation percent-
age efficiently. The novel applicator not only achieve near
spherical ablation zone but also provide considerable ablation
zone within application time. Further, the estimated ideal
probe location acquired by the ML algorithm for the pro-
posed antenna provides the percentage of ablation for specific
locations and since most of the MWA requires image guided
mechanism to insert the applicator into the tumor, therefore,
strategically placing the applicator as per the tumor size and
antenna tip location from the center of the tumor, the machine
learning algorithm such as CATboost would be able to predict
the ablation percentage beforehand. Such a technique not
only predicts whether a tumor will be ablated completely or
not (beforehand) but also is helpful in better optimization
of power delivery by restricting over/under ablation. Over-
ablation may lead to the destruction of healthy tissue nearby
and under-ablation may lead to the recurrence of Tumor

However, such a study is FEM based and further in-vitro
analysis is required as few assumption is incorporated in
this model such as no protein denaturation or other complex
biochemical process are considered, also, the liver tissue and
embedded tumor do not undergo any deformation during
heating.

VII. CONCLUSION
This study presents a novel SIW based antenna working at
2.45 GHz. The cross-like antenna element which resembles a
normal mode helix is used to ablate the tissue mainly in the
broadside direction.

The use of SICL and impedance transformation structure
provides impedance matching at 50 ohm which successfully
suppresses the surface current and hence reduced the elon-
gated ablation zone along the axial direction and therefore
localize the ablation zone to tumor tissue only. Such a round-
ness in ablation zone not only prevent over ablation but also
help in prediction of the ablation percentage with changing
position of the applicator and hence can be advantageous
in maximum ablation of the tissue with optimum use of
power.

The temperature-dependent conductivity and permittivity
study is introduced in this study as such tissue properties
change with the change in temperature.

In this regard, a 3-Dmodel of human liver tissue containing
the tumor is simulated using the FEM software. The antenna
probe is then inserted into the tumor. The proposed antenna
successfully ablated the tumor with diameter up to 32 mm in
transversal direction and 25 mm along the axial direction.

Further, since optimal localization of the antenna is
of utmost importance to destroy the tumor, various
machine learning algorithms were exploited. The polynomial
regression with 4th order provided satisfactorily prediction
but suffers from over-fitting of the data while SVR with rbf
kernel also yield good prediction of the ablation percentage
but also tends to overfit with higher regularization parameter
C . Further, to eliminate overfitting gradient boost algorithms
were incorporated and the results obtained by CAT Boost
algorithm among various ML algorithm is found to be opti-
mum for actual clinical outcomes with high R2 value and
low RMSE.
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