
Received 28 February 2023, accepted 13 March 2023, date of publication 16 March 2023, date of current version 22 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3258399

Design and Analysis of Convolutional Neural
Layers: A Signal Processing Perspective
MOHAMMED M. FARAG , (Member, IEEE)
Electrical Engineering Department, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia
Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

e-mail: mfarag@kfu.edu.sa

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King
Faisal University, Saudi Arabia, under Project GRANT2677.

ABSTRACT Convolutional layers (CLs) are ubiquitous in contemporary deep neural network (DNN)
models, commonly used for automatic feature extraction. A CL performs cross-correlation between the
input to the layer and a set of learnable kernels to produce the layer output. Typically, kernel weights are
randomly initialized and automatically learned duringmodel training using the backpropagation and gradient
descent algorithms to minimize a specific loss function. Modern DNN models comprise deep hierarchical
stacks of CLs and pooling layers. Despite their prevalence, CLs are perceived as a magical tool for feature
extraction without solid interpretations of their underlying working principles. In this work, we advance a
method for designing and analyzing CLs by providing novel signal processing interpretations of the CL by
exploiting the correlation and equivalent convolution functions of the layer. The proposed interpretations
enable the employment of CLs to develop finite impulse response (FIR) filters, matched filters (MFs), short-
time Fourier transform (STFT), discrete-time Fourier transform (DTFT), and continuous wavelet transform
(CWT) algorithms. Themain idea is to pre-assign the CL kernel weights to implement a specific convolution-
or correlation-basedDSP algorithm. Such an approach enables building self-containedDNNmodels inwhich
CLs are utilized for various preprocessing and feature extractions tasks, enhancing the model portability, and
cutting down the preprocessing computational cost. The proposed DSP interpretations provide an effective
means to analyze and explain the operation of automatically trained CLs in the time and frequency domains
by reversing the design procedures. The presented interpretations are mathematically established and
experimentally validated with a comprehensive machinery fault diagnosis application example illustrating
the potential of the proposed methodology.

INDEX TERMS Machine learning, signal processing, convolutional layer, interpretable neural networks,
machinery fault diagnosis.

I. INTRODUCTION
Convolutional layers (CLs) are the backbone of modern
deep neural network (DNN) models. Convolutional neuron
foundations date back to the 1950s [1], and the modern
framework of convolutional neural networks (CNNs) has
been established since 1989 in LeNet-5 [2]. CLs have two
prominent features compared to the fully connected dense
layers: first, the small kernel size imposed by the limited

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaustubh Raosaheb Patil .

receptive field of a CL, which significantly reduces the layer
computational complexity; and second, the automatic feature
extraction ability arising from the correlation operation
performed by the CL. These features have promoted using
CNNs in plentiful DNN architectures and applications [3].

Typically, CLs are instantiated and hierarchically stacked
in a DNN with a set of hyper-parameters, including the
number of filters, kernel size, stride length, and dilation
rate, which are progressively tuned during model training to
minimize the loss function assigned for a specific task. Kernel
weights of CLs are automatically learned during model

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 27641

https://orcid.org/0000-0002-0739-3631
https://orcid.org/0000-0002-0289-5480

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

training using the gradient descent and backpropagation
algorithms, where each kernel learns a specific feature from
the training data. Such an approach proved its effectiveness
for feature extraction, minimizing the need for expert knowl-
edge, and optimizing the model performance in numerous
applications [1]. However, using CLs does not entirely limit
the need for preprocessing and feature extraction procedures.

Feature engineering is the stage in which important
features of the dataset are extracted and prepared for the
machine learning (ML) task. A feature is any information
collected from data that can be used to accomplish the ML
task. Despite the automatic feature extraction capabilities
of CNNs, some tasks and applications still require data
preprocessing to extract representative features of the dataset
rather than feeding raw data to the CNN. Data preprocessing
in ML refers to the techniques of transforming or encoding
raw data into a suitable format that is more effectively
processed by anMLmodel It encompasses several techniques
including data cleaning, integration, transformation, and
reduction [4]. Data cleaning is concerned with filling in
missing values and labels, noise reduction, and outlier
removal. Data integration merges data present in multiple
sources into a single source. Data transformation includes
steps for transforming data into suitable forms forML such as
normalization, domain transformation, data segmentation and
aggregation, data reshaping, and dimensionality reduction.
Typically, preprocessing tasks are implemented as a pipeline
preceding theMLmodel and applied to both training and test-
ing data. Many data preprocessing tasks and transformations
are implemented using signal processing techniques such as
noise reduction, domain transformation, and dimensionality
reduction, to name a few.

Despite its significant importance, data preprocessing
reduces the portability of ML models and incurs extra
computational overhead for ML tasks, limiting their appli-
cability to resource-constrained platforms [5], [6]. This
work presents a methodology to implement several signal
processing-enabled preprocessing tasks inside DNN models
using CLs rather than separate preceding pipelines. Such
an approach would reduce the preprocessing computational
cost and enable the building of self-contained DNNs that
take full advantage of the model computational resources
and accelerators during model execution at inference time.
Frequency-selective and noise-removal filters are examples
of the preprocessing stages that can be implemented using
the proposed method. Domain transformations such as
time-to-frequency transformations, which are fundamental
signal processing transformations applied to extract spectral
features, are another example of potential applications of the
proposed method.

The fundamental operation performed by a CL is com-
puting the cross-correlation between the layer input signal
and the kernel weights assigned to the layer to produce the
layer output. Mathematically, the cross-correlation between
two signals is equivalent to the convolution between a signal
and the time reversal of the other. Linear correlation and

convolution are fundamental operations in signal processing
that constitute the foundation of several concepts and
applications. Both operations are key enablers for designing
interpretable DNNmodels and analyzing their operation from
the signal processing perspective.

In this work, we advance correlation and convolution
interpretations of the CL and exploit them to implement
a set of digital signal processing (DSP) algorithms inside
the DNN model, which can alleviate the need for the
corresponding preprocessing pipelines. The main idea is to
design a convolution- or correlation-based DSP filter that
performs a specific task and pre-assign the filter taps to the
CL kernel weights instead of relying on the backpropagation
and gradient descent algorithms to learn layer weights.
Specifically, we exploit the correlation operation performed
by CLs to implement matched filters (MFs) and continu-
ous wavelet transform (CWT) and exploit the equivalent
convolution operation to implement finite impulse response
(FIR) filters, short-time Fourier transform (STFT), and
discrete-time Fourier transform (DTFT). Linear inactivated
CLs are employed to build the corresponding linear DSP
algorithms. Generally, the proposed approach can be applied
to implement other correlation- or convolution-based DSP
algorithms. This study is confined to 1D convolutional
(Conv1D) layers and time series signals; nevertheless, the
presented approach is extensible to higher dimensional CLs.
1D CNNs have significantly lower computational complexity
than their 2D counterparts, enabling the design of CLs with
relatively larger kernel sizes, which serves the purpose of this
study.

Such an approach enables building self-contained DNN
models which have several advantages compared to using
preprocessing pipelines or internal lambda layers (the lambda
layer is used to build custom functions inside a DNN model)
to implement DSP-based preprocessing steps, including:

• This approach alleviates the need for separate prepro-
cessing and feature extraction stages which enhances the
ML model portability and reduces the pre-processing
computational cost.

• Self-contained DNN models built using standard CLs
are fully compatible with existing model optimization
and quantization techniques applied for model deploy-
ment and execution on edge devices, special-purpose
accelerators, or specific instruction set architectures.
This is in contrast to models that have separate prepro-
cessing pipelines or internal lambda layers. Current deep
learning development frameworks such as Tensorflow
and Pytorch can only optimize a limited set of standard
layers and activation functions and still have limitations
for optimizing models with lambda layers [7], [8]

• Self-contained DNN models take full advantage of the
model computational resources and accelerators during
model execution at inference time unlike models with
separate preprocessing pipelines.

• Initializing a CL with weights designed to perform a
specific DSP task while enabling layer training can

27642 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

simultaneously guide the model learning experience
and enable fine-tuning of the algorithm parameters to
optimize the model performance on the training data.

• Pre-assigning layer weights reduces the number of
model learnable parameters and, consequently, shortens
the model training time.

On the other hand, the presented interpretations of the
CL offer a means for analyzing automatically trained DNN
models in both the time and frequency domains. At the
level of time domain analysis, the convolutional kernels can
be interpreted as MFs, with kernel weights serving as the
MF template. Such an interpretation provides an informed
knowledge of the temporal features extracted by the CL
kernels. At the level of frequency domain analysis, the
convolutional kernels can be interpreted as FIR filters, where
the filter impulse response is equivalent to the time-reversed
kernel. The frequency response of a CL can be computed
from the corresponding FIR impulse response and leveraged
to provide a comprehensive vision of the spectral features
extracted by a CL.

Contributions of this work include:

• Advancing DSP interpretations of CLs established
using mathematical foundations and supported with
implementations and visualizations,

• Proposing a method that enables the development of
self-contained DNN models in which specific signal
processing-based preprocessing tasks are implemented
inside the model, eliminating the need for the corre-
sponding preprocessing pipelines,

• Providing a means to analyze and explain the operation
of automatically trained DNN models.

• Presenting a comprehensive application example of
machinery fault diagnosis to demonstrate the design and
analysis capabilities of the proposed method.

The remainder of this work is organized as follows:
Section II provides a brief background about the significance
and applications of DSP in ML and related work. Section III
advances the mathematical foundations of the DSP interpre-
tations of CLs and the design and analysis methodology of
CLs according to the proposed interpretations. Section IV
presents a comprehensive application example from the
machinery fault diagnosis literature to illustrate the potential
and usage mechanisms of the proposed methodology for
designing self-contained DNNs and analyzing automatically
trained CNNs. Conclusions and future work are portrayed in
Section V. Appendixes provide the implementation details
and visualization results of the DSP-based CLs using Python
and TensorFlow.

II. RELATED WORK
DSP and ML share many common foundations and mutual
links that can be exploited to push the development of
highly efficient, pervasive tools of broad applicability in
various domains [9]. Numerous DSP tools and algorithms,
such as filters, Fourier Transform, and CWT, play an

essential role in data reprocessing and feature extraction
for a wide range of ML models in various applications
[10], [11], [12], [13], [14]. Time-frequency representations
of 1D signals are widely used in DNN models for elec-
trocardiogram (ECG) classification [15], [16], machinery
fault diagnosis [17], [18], [19], and audio feature extraction
[10], [20], to name a few. Discrete wavelet transform
(DWT) is pervasively utilized for noise removal and feature
extraction in ML models [21], [22], [23].

On the other hand, various ML methods have been
recently applied to many traditional and extended signal
processing areas [24], [25], [26]. Applications include, but
are not limited to, audio processing and speech recogni-
tion [27], [28], [29], image and video processing [26],
[30], language modeling [31], natural language process-
ing [32], [33], [34], biomedical signal processing [35],
radar signal processing [36], and communication system
design and modeling [37], [38]. Common to this research
is the application of data-centric ML techniques to tackle
classical signal processing problems, including classification,
detection, forecasting, and regression.

Despite their immense success in ML, DNN models are
often utilized as ‘‘black box’’ models since their underlying
operation and decision mechanisms are poorly understood
by developers. The inability to comprehend DNN models
inhibits their use in mission-critical applications and restricts
their full potential [39]. The close link between signal
processing and ML can be exploited to provide solid
interpretations of DNN models. In this study, we aim
to advance DSP interpretations of the CL and use these
interpretations to develop explainable DNN models with
improved performance and reduced computational resources.

Srinivasamurthy [40] presented a frequency domain
interpretation of 1D CNN filters, investigated the dropout
regularization impact, and proposed guidelines for setting the
model hyperparameters. Jia et al. [41] presented a frequency
domain interpretation of 2D CNNs. The effect of controlling
the proportion of different frequency filters in the first layer
on network classification accuracy and model robustness is
explored. Stankovic and Mandic [42] utilized the MF theory
as a mathematical tool to explain the CNN operation, which
revealed a direct link between CLs and MFs in finding data
patterns or features. Such an approach reveals the data flow in
CNN learning and elucidates a strategy for optimal parameter
selection.

Some works provide interpretations and implementations
of DSP algorithms using full DNN and CNN architec-
tures [43], [44]. In our previous works, we presented MF-
and STFT-based CNN classifiers for ECG classification
and human activity recognition (HAR) [45], [46], [47].
The proposed models achieved remarkable classification
and real-time performance results compared to state-of-
the-art rivals at a much lower computational cost. This
work advances CL interpretations and implementations of
additional DSP algorithms and provides a comprehensive
example of using the proposed method to design and analyze

VOLUME 11, 2023 27643

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

DNNs in a machinery fault diagnostic application. To the
best of our knowledge, this is the first work to address
using a single CL to implement inclusive DSP algorithms
inside DNNmodels. The proposedmethod alleviates the need
for preprocessing and feature engineering steps, provides
beneficial tools for designing and analyzing DNNmodes, and
opens new frontiers in ML architectures and applications.

Potential applications of the proposed method include
health monitoring [46], [47], machine-human interface [48],
activity recognition [45], machinery fault diagnosis [17],
[18], [19], audio signal processing [10], [20], [27], radar
signal processing [36], automatic modulation recognition
[49], [50], wireless sensor networks and internet of
things [51], [52], and communication systems [37], [38],
to name a few. In these applications, data is collected as a
time series and fed to an MLmodel to perform a specific task
such as classification, regression, or forecasting. Data pre-
processing pipelines, including noise reduction and domain
transformations, are applied to extract representative features
for the ML task. The DSP-based CLs advanced in this study
can replace the corresponding preprocessing pipelines and
create self-contained DNN models. Data denoising can be
implemented using the CL-based FIR filter presented in this
work. The frequency spectral and time-frequency features of
time series data typically computed in separate preprocessing
pipelines can be implemented inside the DNN model using
the DTFT, STFT, and CWT CLs proposed in this work.

III. 1D CONVOLUTIONAL LAYER INTERPRETATION AND
IMPLEMENTATIONS
The discrete convolution operation ∗ between two sequences
h[n] and x[n] is defined by 1 whereas the discrete correlation
operation ⋆ is defined by 2 [53]. Convolution is equivalent to
correlation with the time-reversed sequence defined by 3.

x[n] ∗ h[n] =

∞∑
k=−∞

x[k]h[n− k] =

∞∑
k=−∞

x[n− k]h[k]

(1)

x[n] ⋆ h[n] =

∞∑
k=−∞

x[k]h[k − n] =

∞∑
k=−∞

x[k − n]h[k]

(2)

x[n] ⋆ h[n] = x[n] ∗ h[−n] (3)

Sequential data are converted to parallel segments and fed
to the Conv1D layer to perform concurrent correlation with
layer kernels and produce the output segments. Temporal
data segmentation is equivalent to rectangular windowing in
DSP [53]. Other windowing functions can be readily adopted
by pointwise multiplying the input segment by a window
function of the same segment width.

AConv1D layer comprises several 1Dfilters or kernels that
extract various feature maps from an input signal. By cross-
correlating layer kernels with an input sequence, a Conv1D
layer generates a 1D feature map per kernel. The number
of strides parameter governs the correlation shift amount,

whereas the dilation rate controls the distance between
correlation points. A fine-tuning bias parameter is used to
improve the correlation results. With the stride length and
dilation rate set to 1, the output of a standard Conv1D layer
is defined as follows:

ycout [n] = fa(bcout +

Cin∑
i=1

wicout [n] ⋆ xi[n]) (4)

where y[n] is the kernel output, b is the bias term, w[n] is the
kernel weight, x[n] is the kernel input, cout denotes the output
channel, and Cin denotes the total number of input channels,
and fa() is the activation function. Unless otherwise stated, the
bias term b will be set to zero for all DSP implementations
presented in this work, and CLs with linear activation (an
inactivated kernel) will be considered throughout this work.

The last equation describes the operation of a typical multi-
input, multi-output 1D CL in which an output channel is
computed as the sum of the cross-correlation between input
channels and channel-specific kernels. There are other CL
variants, such as separable and depth-wise CLs, in which
each input channel is correlated with a different kernel,
independent of other channels. For a standard CL with a
single channel input, the CL output is computed as the
cross-correlation between the input channel and multiple CL
kernels, resulting in distinct output channels or feature maps.
This study will focus on the standard single-input, multi-
output CL. Figure 1 illustrates a block diagram of the Conv1D
layer with NF filters each of NK kernel width. For a typical
Conv1D layer with a single stride shift and dilation rate,
an input signal segment of NS -samples is fed to the layer
and correlated with NF filters to produce NF output segments
each of length NS .

FIGURE 1. Block diagram of the 1D CL (Conv1D).

A prominent feature of CLs is their automatic fea-
ture extraction capability. In automatically trained CNNs,
CL kernel parameters are automatically learned during
the model training phase using the gradient descent and

27644 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

backpropagation algorithms to minimize the loss function
and optimize the model performance in a specific task.
Kernels learned during model training represent salient
features manifested by the training examples and captured
by the CL correlation process. However, despite being the
most common approach, automatic training of DNN models
conceals various CL potentials that can significantly improve
the model performance and cut down on its computational
cost. In this study, we seek to unveil some of these potentials,
inspired by the close link between CLs and signal processing.

A. 1D CONVOLUTIONAL LAYER AND MATCHED FILTER
The first interpretation of CLs is based on the correlation
operation. Correlation is the main operation performed by
MFs. An MF is an optimal linear filter for detecting signals
contaminated by additive white Gaussian noise (AWGN)
by maximizing the signal-to-noise ratio [54]. MFs are
extensively deployed in wireless communication receivers
for optimal signal detection. The MF receiver block diagram
is illustrated in Figure 2. An MF correlates the noisy input
signal with a template of the signal to be detected, samples the
maximum correlator output, and decides whether the signal
matches the template via thresholding. The MF correlator
output is defined as:

y[n] = x[n] ⋆ h[n] =

N∑
i=1

x[i]h[i− n] (5)

where y[n] is the correlator output, x[n] is the input signal,
and h[n] is the template signal.

FIGURE 2. Block diagram of the matched filter receiver.

Comparing 3 and 5 demonstrates that a Conv1D kernel
can implement the MF correlation operation with the
template signal assigned to the kernel weights. Signals are
sequentially fed to the MF correlator but concurrently fed
to the CL kernel as segments. The correlation shifting
operation is carried out using the CL stride parameter. The
MF sampling operation is implemented using a global max
pooling (GMP) layer to sample the Conv1D kernel maximum
output. The thresholding operation is implemented using a
nonlinear activation function such as Relu. The Conv1D layer
comprises multiple kernels, as shown in Figure 1, which can
be used to build multiple MFs for parallel feature detection.
This stack of Conv1D, nonlinear activation, and pooling
layers work together as a typical MF with multiple templates
hi[n] = wi[n], where i represent the ith kernel of the Conv1D
layer. The total number of MF CL parameters is NF ∗ NK .
The MF interpretation of CLs can be used to build optimal

ML classifiers with minimum computational requirements.
A single Conv1D layer with a large receptive field and a GMP

layer are required to build an optimally resource-efficient
classifier model. The MF CL kernels can be pre-assigned
if the template signals are already known or automatically
learned during model training to extract featured patterns
from the training data. A fully connected dense layer is then
inserted and trained to map MF outputs to relevant classifier
outputs by employing the weighted sum functionality of the
dense layer. The MF-based CNN has been presented in our
previous works with applications to ECG classification and
HAR. The proposed models achieve remarkable classifica-
tion and real-time performance compared to the state-of-
the-art methods while minimizing the computational cost
[45], [47]. The achieved results qualify model usage for edge
inference on resource-constrained microcontroller devices
without sacrificing the model performance, which overcomes
concerns of cloud inference such as availability, privacy, and
connectivity.

The MF interpretation of CLs is not only beneficial
for building MF CNN classifiers, but it is also handy for
analyzing and visualizing automatically trained DNN CLs.
A trained model kernel weights wi[n] can be extracted from
CLs in the model and plotted against time to visualize the
MF templates extracted by the CL and link these templates
to dataset features. Such an approach would help develop
a deeper understanding of the CL operation, especially in
applications emphasizing time domain analysis. Such an
approach for visualizing convolutional kernels and activation
maps has been adopted in the computer vision and machine
learning literature for 2D CNNs since 2013 [55, Chapter 5].

B. 1D CONVOLUTIONAL LAYER AND FIR FILTERS
This interpretation of CLs is based on the convolution
operation. An FIR filter is a DSP filter with a finite impulse
response [53]. Outputs of a causal FIR filter are the weighted
sum of the most recent inputs, as depicted in Figure 3. The
output of an FIR filter of order N is defined as:

y[n] = h[n] ∗ x[n] =

N∑
i=0

x[i] h[n− i] (6)

where x[n] is the input signal, y[n] is the output signal, and
N is the filter order; an N th-order filter has N + 1 taps,
h[n] is the FIR filter impulse response, and ∗ is the 1D
convolution operator. For a direct-form FIR filter, h[n] is the
filter coefficients or taps.

FIGURE 3. A direct form discrete-time FIR filter of order N . Each unit
delay is a z−1 operator in Z-transform notation.

VOLUME 11, 2023 27645

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

Comparing 4 and 6 reveals that an inactivated Conv1D
kernel with b = 0 is equivalent to an FIR filter, where
the kernel input is convolved with the kernel time-reversed
version. The stride shift of a Conv1D kernel performs the time
delay of an FIR filter. Unlike the FIR filter with a sequential
input, a Conv1D kernel is fed with an input segment and
applies parallel convolution to produce the output segment.
Accordingly, a Conv1D kernel is equivalent to the impulse
response of an FIR filter, where the kernel weights are the
coefficients of the FIR impulse response. In other words, the
Conv1D kernel is a direct form FIR filter with h[n] = wi[−n]
applied to a 1D input signal x[n]. A Conv1D kernel of length
NK has an order of N = NK − 1 as an FIR filter.
The Fourier transform of the convolution between two

signals is equivalent to the pointwise product of their Fourier
transforms [53]. Accordingly, the FIR filter output y[n] for an
input sequence x[n] is defined in the frequency domain as:

F(x ∗ h)︸ ︷︷ ︸
Y (ω)

= F(x)︸︷︷︸
X (ω)

·F(h)︸︷︷︸
H (ω)

,

and y[n] = x[n] ∗ h[n] = F−1
{X (ω) · H (ω)} (7)

where operators F and F−1 denote the discrete-time Fourier
transform (DTFT) and its inverse, respectively. The complex-
valued, multiplicative function H (ω) is the filter frequency
response, and X (ω) and Y (ω) are the Fourier transform of the
input and output sequences, respectively. Consequently, the
Conv1D kernel applies an FIR frequency-selective filter to
the input signal.

To implement an FIR filter using a CL, the direct form taps
of the FIR filter are computed using the frequency response
specifications of the filter; a single kernel Conv1D layer is
instantiated with the kernel size set to NK = N + 1, where N
is the filter order, and NK is the kernel size; the Conv1D layer
kernel weights are initialized to the time-reversed version of
the FIR filter taps; the bias is set to zero, and the stride length
and dilation rate are set to 1. If CL training is disabled, the
CL kernel will perform the pre-designed filtering operation,
while enabling layer training would enable fine-tuning the
filter parameters to optimize the model performance for the
training data. The total number of FIR CL parameters is NK
since a single kernel is used.

This interpretation of a CL has an extensive range of
applications as it enables building frequency-selective filters
inside a DNN model at an arbitrary depth. One of the most
common applications of frequency selective filtering is noise
reduction. Noise removal filters with specific pass and stop
band characteristics can be implemented using an FIR CL
and instantiated as an input layer inside a DNN model. Such
a layer will eliminate the need for a preprocessing noise
removal stage and enable the development of self-contained
models. Another application of the CL FIR layer is building
moving average filters by instantiating a CL kernel with
a specific length matching the filter width and assigning
fixed weights to the kernel parameters. Implementation

and validation of the FIR-based CL filter are provided in
Appendix A.

The FIR interpretation of CLs does not only enable the
development of frequency-selective filters inside a DNN
model but also allows developers to analyze and visualize the
frequency response of CL kernels for automatically trained
models. Kernel weights of a trained model are extracted from
CLs and time reversed to get the FIR filter impulse response
hi[n]. The kernel frequency response Hi(f) is obtained by
applying FFT to the impulse response hi[n]. Such an approach
can completely characterize the CL operation, especially in
applications emphasizing frequency domain analysis such as
machinery fault diagnosis [17], [18], [19].

C. 1D CONVOLUTIONAL LAYER AND STFT ALGORITHM
Some DNN models work better when fed the frequency
spectrum of the input signal. Many feature engineering
approaches have been proposed to use the 2D time-frequency
domain representations of the 1D time series as an input
feature to the model [10], [15], [16], [17], [18], [19], [20].
Among the most commonly used time-frequency representa-
tions are STFT and CWT. The STFT is a window-based FT in
which the FT of a long sequence is repeatedly computed over
separate short segments to produce the signal spectrogram,
which contains the signal frequency spectra versus time [56].
The discrete-time STFT is defined as:

STFT {x[n]}(m, f) = X (m, f) =

∞∑
n=−∞

x[n]W [n− m]e−j2π f

(8)

where x[n] is the input sequence, X (m, f) is the STFT of the
sequence, andW [n] is the window function.
To avoid using complex numbers inside the CL to compute

the STFT as defined by 8, we propose an alternative approach
based on the FIR implementation of the CL to compute
a spectrogram-equivalent representation of the input signal.
A Conv1D layer is instantiated with multiple kernels NF
each of size NK = N + 1 to implement a bank of adjacent
FIR bandpass filters (BPFs) of order N . Filter banks are
commonly used for signal frequency decomposition because
they enable extracting spectral components of the signal
while providing efficient implementations [56]. Collectively,
the filter bank works as the FT, where the output of each
filter reveals a specific frequency component of the signal.
Since the Conv1D kernel slides a window along the time axis,
the filter bank output spectrum captures the change in signal
frequency components with respect to time. Therefore, the
Conv1D layer output is a time domain signal indicating the
existence of specific frequency components in the signal at
specific time instants to replicate the STFT operation.

To implement the STFT filter bank algorithm, NF adjacent
FIR filters are developed to cover a specific frequency range
with a pre-set resolution. The kernel weights and Conv1D
layer parameters will be assigned following the FIR filter
design procedures presented in the last section. Increasing the

27646 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

number of Conv1D kernels NF extends the frequency range
of the spectrumwhile increasing the kernel sizeNK (FIR filter
order) boosts spectrum resolution at the expense of increasing
the number of layer parameters. Higher order FIR filters
have steeper roll-off rates and higher quality factors [53].
The 1D kernel outputs are concatenated and reshaped into
a 2D image representing the STFT-like spectrogram of the
signal. The resulting spectrogram can then be handled as
a single-channel 2D image and fed to Conv2D layers for
further processing. The total number of STFT CL parameters
is NF ·NK . Implementation and validation of the STFT-based
CL are provided in Appendix B.

The STFT-based CNN has been presented in our previous
work with the application to ECG classification. The
ECG signal is processed inside the CNN model using
the STFT CL to produce a 2D spectrogram signal fed to
a 2D CNN for feature extraction and classification. The
proposed self-contained model exhibits high classification
performance, a shorter training time, low computational
complexity, and superior real-time performance compared to
the state-of-the-art rival models [46].

D. 1D CONVOLUTIONAL LAYER AND DTFT ALGORITHM
In various applications, such as machinery fault diagnosis,
frequency domain representations are preferred over time
domain features [17], [18], [19]. Some DNN models are fed
with the input signals’ magnitude spectrum or power spectral
density, whereas others use a lambda layer to compute the
fast Fourier transform (FFT) inside the model. The former
approach requires a preprocessing step, while the latter is not
amenable to quantization. The DTFT X (f) of a discrete time
signal X [n] is defined as:

DTFT {x[n]} = X (f) =

∞∑
n=−∞

x[n]e−j2π f (9)

We propose a slight modification to the STFT CL to
implement the DTFT. A GMP layer is instantiated after the
STFT CL to pool the maximum value of each output channel
of the filter bank. The pooling layer output represents the
maximum frequency components of CL filters along the time
axis. Consequently, the pooling layer output is equivalent
to the magnitude spectrum of the input signal. A global
average pooling (GAP) layer can be an alternative to GMP.
In this case, the layer output represents the average frequency
components of CL filters along the time axis. Similar to the
STFT CL, increasing the number of Conv1D kernels NF
extends the frequency range of the spectrum, while increasing
the kernel size NK (FIR filter order) boosts the spectrum
resolution at the expense of increasing the number of layer
parameters. The total number of DTFT CL parameters is
NF · NK . Implementation and validation of the DTFT-based
CL are provided in Appendix C.

At the analysis level, most existing CNN models use
global pooling layers for dimensionality reduction in deep
hierarchical models. According to the DTFT-CL perspective,

the outputs of global pooling layers represent the maximum
frequency components passed through a stack of cascaded
CL FIR filters and local pooling layers, which perform rate
downsampling. This interpretation can explain the domain
shift problem arising in models with training and testing
sets drawn from different domains from the deterministic
system point of view rather than the statistical domain shift
interpretations that dominate the ML literature. Changing
the testing dataset distribution implies changing its spectral
contents, which results in performance degradation of the
model trained on data with different spectral contents. This
interpretation is particularly important for CNN applications
to machinery fault diagnosis because it precisely explains
why such models trained on a specific dataset do not
generalize well to other datasets with different faults and
machine working conditions due to the frequency spectral
variation between the training and testing sets.

E. 1D CONVOLUTIONAL LAYER AND CWT ALGORITHM
In STFT, a trade-off arises between the time and frequency
resolutions. CWT overcomes this limitation by correlating
dilated versions of a mother wavelet with the signal to
extract a high-resolution time-frequency 2D image called a
scalogram of the signal [56]. The real-valued CWT is defined
as:

Xω(a, b) =
1

|a|1/2

∫
∞

−∞

x(t)9(
t − b
a

)dt = x(t) ⋆ 9a(t)

(10)

where x(t) is the input signal, 9(t) is the real-valued mother
wavelet function, a and b are the real-valued scale and
translational values of the wavelet, respectively, and 9a(t) =

|a|−1/29(ta) is the scaled wavelet function.
As depicted by 10, the CWT is computed by correlating

the signal with dilated versions of the mother wavelet. The
main operation performed by a CL is correlation, and hence
assigning suitable weights embodied by the dilated wavelets
to the layer kernels would enable computing the CWT of the
signal. The implementation steps are pretty straightforward,
which include selecting the required mother wavelet from the
set of real-valued wavelet families such as Morlet or Mexican
hat wavelets, computing NF amplitude-scaled time-dilated
versions of the mother wavelet 9a(t) each of a sequence
length NK according to the required time and frequency
resolutions and frequency range; instantiating and Conv1D
layer with NF kernels each of NK size; and assigning the
dilated wavelet values to the Conv1D layer kernels. The
wavelet family and dilation rates are determined according
to the frequency spectral properties of the input data, desired
scalogram characteristics, and DNN model requirements.
The 1D kernel outputs are concatenated and reshaped into
a 2D image representing the CWT scalogram of the signal,
which can be handled as a 2D image of a single channel
and fed to Conv2D layers for processing. The total number
of CWT CL parameters is NF · NK . Implementation and
validation of the CWT-based CL are provided in Appendix D.

VOLUME 11, 2023 27647

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

IV. APPLICATION EXAMPLE: MACHINERY FAULT
DIAGNOSIS
This section will provide an illustrative example of using the
proposed method to design and analyze DNNs in a practical
application. This part aims not to benchmark the proposed
method but to illustrate its potential in practical applications.
For detailed benchmark results and comparative analysis,
we refer to our previous works [44], [45], [46], which
presented application and implementation of the presented
CLs in full CNNs, evaluated their classification and real-time
performance against state-of-the-art models in the ECG
classification and HAR literature, and demonstrated their
superiority and unique features.

Intelligent machinery fault diagnosis is AI-enabled
research aiming to enable early detection and diagnosis of
faults in different machine parts by monitoring machine
conditions in real-time [17], [18], [19]. Various signals,
including vibration, acoustic, and electric measurements,
enable machine condition monitoring, of which vibration
analysis is the most dominant method due to the rich
information available in the vibration signals [57]. However,
raw vibration signals are heavily contaminated by noise
from several sources, including sensor noise, electromagnetic
interference, and vibration components from other machine
parts, making it difficult to use them directly in ML models.
Therefore, a noise removal preprocessing stage is required
to condition the vibration signal for ML settings. The FIR
noise removal CL filter presented in Section III can be
designed inside a DNN model, eliminating the need for the
preprocessing stage.

On the other hand, machinery vibrations are non-stationary
signals in which their spectral contents vary with time.
Time-frequency analysis is an effective method for fea-
ture extraction from non-stationary signals [58]. A pre-
processing stage is needed to extract the time-frequency
features from the vibration signal before feeding them
to the DNN model. CWT- or STFT-based CL proposed
in Section III can be instantiated inside a DNN model
to extract time-frequency features of the vibration signal,
eliminating the need for the corresponding preprocessing
stages.

The frequency spectrum of vibration signals provides
detailed information about the machine conditions, but it also
contains resonance and natural high-frequency components
that complicate diagnosing machine conditions. Envelope
analysis is one of the most commonly used methods for
effective fault diagnosis [59]. Faults and their harmonics
can be easily spotted in the envelope spectral, which
facilitates fault diagnosis. In envelope analysis, the vibration
envelope is computed by applying the Hilbert transform and
computing the DTFT of the absolute envelope [60]. The
resulting envelope has a much lower bandwidth than the raw
vibration signal due to demodulating high-frequency signal
components and using an LPF and downsampler to reduce the
envelope sampling rate and, consequently, the computational
complexity of the subsequent stages.

The computation of the envelope spectral requires a
pipeline of several preprocessing stages, including the
Hilbert transform, downsampler, and LPF. The proposed
DSP-based CLs can be used for envelope spectral estimation,
eliminating the need for the preprocessing pipeline. In this
section, we will design four CNN models for intelligent
fault diagnosis using vibration signals that incorporate the
DSP CLs presented in Section III for different purposes
and illustrate their usage methodology. Two models are
based on raw vibration analysis, whereas the remaining are
based on envelope spectral analysis. The selected application
illustrates the proposedmethod typical use case and potential.
Moreover, we will provide a typical automatically trained
CNN model and demonstrate their analysis methodology
based on the interpretations presented in Section III. Again,
we emphasize that the purpose of this work is neither bench-
marking a specific ML model nor proving its superiority
to existing models for a specific application but illustrating
features of the proposed method on a practical application.

A. DATASET
Rolling element bearings are critical components in rotating
machinery, and bearing faults account for 40% to 90% of
problems in mechanical equipment [61]. Machinery Failure
Prevention Technology (MFPT) is a bearing fault dataset
provided by Society for Machinery Failure Prevention to
push the machinery condition-based monitoring (CBM)
research [62]. The test rig is equipped with a NICE bearing
with healthy, outer race, and inner race fault conditions
running at 1500 rpm speed and different workload conditions
ranging from 0 to 300 lbs with sampling frequencies of
48,828 and 97,656 Hz. The bearing vibration signal is
captured and recorded in mat files for different bearing
conditions and working loads for 3 s at 48,282 sample/s and
6 s at 97,656 Hz sample/s.

Figure 4 shows the raw vibration signals of randomly
selected examples of different bearing conditions under
different working loads in the time domain and their power
spectra in the frequency domain. Figure 5 shows vibration
envelopes of the selected examples. As illustrated by the
figures, the raw vibration power spectrum comprises various
frequency components ranging from 0 to 10 kHz and
is contaminated by white noise. Spectral analysis of raw
vibration signals indicates that an LPF of a cutoff frequency
fc1 = 10kHz can be used to remove high-frequency noise. The
envelope power spectral reveals different single-frequency
components at different frequencies and their harmonics
ranging from 0 to 1 kHz, directly related to the fault class
and severity [60]. It also reveals that the maximum frequency
component of the envelope signal is in the range of 1 kHz,
which instructs for using a second LPF of fc2 = 1kHz to filter
out undesired high-frequency components of the envelope
and downsampling the envelope by a factor of fc1/fc2 = 10.
The DSP-based CL filter will be used to implement the
needed filters inside the CNN model instead of using a
preprocessing pipeline.

27648 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 4. Visualization of random dataset examples of the raw vibration signals in the time and
frequency domains.

FIGURE 5. Visualization of random dataset examples of the raw vibration signals in the time and
frequency domains.

The sampling frequency of all vibration records is unified
at 48,828 by downsampling files with higher sampling

frequencies. Each vibration record is partitioned into seg-
ments, each containing 4096 samples equivalent to 0.084 s,

VOLUME 11, 2023 27649

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 6. The developed models: a) STFT-based CNN classifier, b) DTFT-based CNN classifier,
c) CWT-based CNN classifier, d) MF-based CNN classifier, e) Typical 1D CNN classifier.

and labeled according to the bearing condition into three
classes: healthy bearing, inner race faulty bearing, and outer
race faulty bearing. Segments with a number of samples
less than 4096 are zero-padded to produce unified length
sequences, which is required by the CNN model. The
bearing rotation speed of 60 Hz is considered in selecting
the segmentation frequency, which equals 11.92 Hz, i.e.
each segment covers around five rotations of the bearing.
A total of 748 examples, each contains 4096 samples, are
produced and partitioned into three classes: 173 healthy
examples, 374 outer race fault examples, and 201 inner race
fault examples. The dataset is randomly split and stratified
into training, validation, and holdout testing sets of 598,
150, and 188 examples, respectively. Vibration segments
are fed directly to the developed CNN models without
applying preprocessing or feature engineering stages to the
raw vibration signals.

B. DESIGN OF SELF-CONTAINED CNNs
Five CNN classifier models for bearing fault diagnosis
are developed and analyzed using the proposed DSP-based

interpretations of the 1D CL presented in this work. Figure 6
depicts the developed models, which are: STFT-based CNN,
DTFT-based CNN, CWT-based CNN, MF-based CNN, and
a typical automatically trained 1D CNN. All models are
built using standard layers provided by TensorFlow and
trained on the MFPT bearing dataset with the categorical
cross-entropy loss function and Adam optimizer with a
learning rate of 0.001. Models are trained on a cloud
workstation featuring 8 CPU cores, 30 GB of RAM, and
an Nvidia RTX A4000 GPU with 16 GB of VRAM. The
training and validation sets are used for model training on
mini-batches of size 64 with 100 epochs. Trained models are
tested on the holdout testing set, and the testing accuracy
is reported. The main objective of the developed models
is to illustrate features and application mechanisms of
the proposed methods; thus, model hyper-parameters are
selected to enable visualization of the model kernels in
the time and frequency domains, not to maximize the
model classification performance. Nevertheless, all presented
models achieve acceptable classification results, as will be
illustrated.

27650 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 7. Impulse and frequency responses of the noise removal FIR LPF 1 with order N = 128 and fc = 10 kHz.

FIGURE 8. Impulse and frequency responses of the downsampling FIR LPF 2 with order N = 64 and fc = 1 kHz.

We will start by presenting the design steps of CLs used in
all models and then discuss each model in detail. The noise
removal layer is designed with an FIR LPF of fc1 = 10kHz.
Figure 7 shows the impulse and frequency responses of the
noise removal FIR filter with order= 128. Filter taps are time
reversed and assigned to an inactivated linear Conv1D FIR
LPF1, the bias term is set to zero, and the layer training is
disabled as instructed in Section III. This layer is instantiated
to filter out high-frequency noise from raw vibration signals
after a batch normalization (BN) layer. The BN layer is
instantiated as an input stage in all models, which is used to
normalize model inputs inside the CNN model and helps to
mitigate the covariate shift between training set batches.

Three models are developed to classify the vibration signal
based on envelope analysis, resulting in better classification
performance due to filtering out irrelevant high-frequency
components and reducing the computational cost due to
downsampling the signal by a significant factor. The envelope
segments are downsampled to 409 samples compared to
the raw vibration segments of 4096 samples, significantly
reducing the CL computation time. Employing the vibration
envelope for classification is critical due to the high sampling
rates of the vibration signals, which results in a prolonged
segment size that incurs increased computational cost.

A stack of three layers is used to estimate the vibration
envelope. A lambda layer is instantiated to compute the
absolute vibration value, an average pooling (AP) layer
with a pool size of 10 is used to downsample the signal,
and an FIR LPF of fc2 = 1kHz and order N = 64 is
designed using a CL similar to the noise removal LPF 1.

FIGURE 9. Frequency response of the STFT layer filter bank of
equally-spaced 32 FIR BPFs and fc = 1KHz .

The proposed method for envelope estimation is based on
the heuristic approach presented in [63], which does not
require the Hilbert transform for envelope detection, with
a slight modification to use the standard neural layers.
We verified the accuracy of the envelope estimation method
against the Hilbert transform-based computation method for
all examples of the dataset, and the resulting mean square
error does not exceed 10%.

1) STFT-BASED CNN
This model extracts time-frequency spectrogram images of
the vibration envelope and feeds them to a 2D CNN for
classification. A bank of 32 equally-spaced filters is designed
between 0 and 1 kHz as shown in Figure 9, and the filter
taps are time-reversed (flipped) and assigned to an inactivated
linear Conv1D layer. The layer bias term is set to zero, and

VOLUME 11, 2023 27651

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 10. Visualization of the envelope estimation stack and STFT layer feature map outputs for random examples of
different classes.

TABLE 1. STFT-based CNN model (envelope) layers and parameters.

the layer training is disabled as instructed in Section III.
This layer is instantiated after the envelope detection layer to
extract the time-frequency spectrogram of the envelope signal
and feed them to a typical hierarchical stack of Conv2D,
BN, Relu activation, and AP layers of a pool size of 2.
The Conv2D stack output is fed to a GAP layer and dense
output layer with Softmax activation for the classification
task. Table 1 presents the layers and parameters used in the
STFT-based CNN model shown in Figure 6a.

Figure 10 visualizes the envelope estimation stack outputs
and STFT Conv1D layer feature maps for randomly selected
examples of the three bearing classes. As demonstrated
by this figure, the envelope estimation stack produces a
representative estimation of the signal envelope. On the other
hand, the STFT CL produces high-resolution spectrograms
of (409 × 32) size with distinguishable features between

different classes. The DC average of the envelope signal is
salient in the first two classes, the periodicity of the last
two classes is identified in their spectrograms, and even the
modulation effect featuring the inner race fault is spotted.

2) DTFT-BASED CNN
This model extracts the frequency spectra of the vibration
envelope and feeds them to a 1D CNN for classification.
The same STFT filter bank depicted in Figure 9 is used for
extracting the time-frequency spectrogram of the vibration
envelope of a (409 × 32) resolution. A GAP layer is
instantiated after the STFT CL to compute the layer average
along the time axis to estimate a 32-point DTFT of the
envelope signal. The computed envelope spectral is then fed
to a typical 1D CNN composed of stacks of Conv1D, BN,
GAP, and Relu activation layers. The Conv1D stack output is
fed to a GAP layer followed by a dense layer with Softmax
activation for the classification output. Table 2 presents the
layers and parameters used in the DTFT-based CNN model
shown in Figure 6b.
Figure 11 visualizes the envelope estimation stack outputs,

STFT Conv1D layer feature maps, and the DTFT layer
outputs for randomly selected examples of the three bearing
classes. Due to disabling layer training, the envelope
detection stack and STFT layer work similarly to the STFT-
based CNN. The DTFT layer computes an estimate of
the envelope spectral with distinguishable patterns between
various classes. The 32-point spectral resolution can be
enhanced by increasing the number of filters of the STFT CL
at the expense of increasing the layer number of parameters
and computation load.

3) CWT-BASED CNN
This model extracts time-frequency scalogram images of
the vibration envelope and feeds them to a 2D CNN for

27652 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 11. Visualization of the DTFT layer feature map outputs for random examples of different classes.

TABLE 2. DTFT-based CNN model (envelope) layers and parameters.

classification. A Morlet mother wavelet is used to extract
64 dilated wavelets, each of a 409 sample length (length
of the envelope segment), as shown in Figure 12. Wavelet
scales are calculated to produce filters covering the frequency
range of envelope signals (0 – 1 kHz). The dilated wavelets
are assigned to an inactivated linear Conv1D layer, the layer
bias term is set to zero, and the layer training is disabled
as instructed in Section III. This layer is instantiated after
the envelope detection layer to extract the time-frequency
scalogram of the envelope signal and feed them to a typical
hierarchical stack of Conv2D, BN, Relu activation, and AP

FIGURE 12. Impulse response of the CWT layer kernels of 64 scaled
Morlet wavelets each of 409 samples.

layers of a pool size of 2. The Conv2D stack output is fed to
GAP and a dense output layer with Softmax activation for the
classification task. Table 3 presents the layers and parameters
used in the CWT-based CNN model shown in Figure 6c.
Figure 13 visualizes the envelope estimation stack outputs

and CWT Conv1D layer feature maps for randomly selected
examples of the three bearing classes. The CWT CL
produces high-resolution scalograms of (409× 64) size with
distinguishable features between different classes.

C. ANALYSIS OF 1D CONVOLUTIONAL LAYERS
Two models are developed to illustrate the analytic power
of the proposed method: the MF-based CNN and a typical
automatically trained 1D CNN. Unlike the three preceding
classifiers, which incorporate 2D CLs, both classifier models
are developed using only 1D CLs and work on the
raw vibration signal rather than the envelope due to the
relaxed computational requirements of 1D CLs. Both models

VOLUME 11, 2023 27653

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 13. Visualization of the CWT layer feature map outputs for random examples of different classes.

TABLE 3. CWT-based CNN model (envelope) layers and parameters.

automatically learn CL weights in the model training phase
using the backpropagation and gradient descent algorithms.
After model training, learned CL kernels are extracted from
the model and analyzed in the time and frequency domains
by treating the CL as an FIR filter described in Section III.

1) MF-BASED CNN
This model is built to work as an MF classifier, as shown in
Figure 6d. The pre-designed FIR filter LPF1 is instantiated
after the initial BN layer for noise removal. An automatically
trained Conv1D MF layer is then inserted, followed by a
second BN layer, a Tanh activation layer, a GMP layer, and a
dense layer with Softmax activation for the classification task.
This model is a shallow CNN with a single Conv1D layer
correlator, a GMP layer for selecting maximum correlation
outputs, a Tanh activation layer for maximum thresholding

TABLE 4. MF-based CNN model (raw signal) layers and parameters.

correlations, and a Dense layer for mapping the threshold
outputs to the corresponding class outputs. Table 4 presents
the layers and parameters used in the MF-based CNN model.
The MF Conv1D layer comprises three kernels, each of
length 128; the bias term is set to zero. The number of
kernels is set to three to match the number of classes in
the MFPT dataset, which indicates that each kernel should
learn a distinguishable pattern corresponding to one of the
classes. The MF Conv1D parameters can be tuned to learn
more distinguishable patterns for each class, but we opted to
select minimal parameters for better visualizations.

Next to model training, learned MF Conv1D kernel
weights are extracted from the model and flipped to get
their time-reversal, equivalent to the impulse response of
an FIR filter as described in III. Afterwards, the FFT of
the FIR impulse response is computed to get the frequency
response of the FIR filter. Figure 14 depicts the impulse and
frequency responses of the three MF kernels. time domain
analysis of the trained kernels demonstrates theMF templates
learned by the CNN, which discriminate between different
classes of the training set. Learned templates are directly
affected by the kernel length, number of kernels, training
set size, weight initialization method, and other factors;
however, they still provide an effective means to understand
the learning process of the CNN. Frequency domain analysis

27654 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 14. Visualization of the MF CNN Conv1D automatically-learned kernels in the time and
frequency domains.

of the frequency response functions learned by the Conv1D
kernels depicts frequencies passed and stopped by each
filter. As shown by Figure 14a, Kernel 0 is a BPF passing
frequencies between 5-6 kHz and 14-15 kHz, Kernel 1 is
BPF passing selective frequencies between 0-3kHz and some
higher range frequencies, and Kernel 2 is a BPF passing
frequencies between 0-1 kHz and 4-5 kHz. These frequency
ranges are tightly related to bearing fault frequencies,
indicating that the MF Conv1D layer learns distinguishable
fault frequencies during model training. This analysis also
explains why a CNN-based fault diagnosis model trained
using a dataset collected under specific working conditions
does not generalize well for other datasets of different
working conditions due to changing the learned fault
frequencies.

2) TYPICAL 1D CNN
This model is designed as an automatically trained model
resembling a typical 1D CNN as shown by Figure 6e. The
model comprises hierarchical stacks of Conv1D, BN, AP,
and Relu activation layers and a dense output layer with
Softmax activation for the classification task. Such a topology
represents the prevalent usage scenario of CNNs in the
ML literature. Model layers and parameters are presented
in Table 5. The first layer of this model is a single-
input, multi-output Conv1D layer with three kernels each
of 64 kernel size, and the bias term is not zeroed. This
layer can be analyzed based on the method presented in
this work, which is confined to single-input, multi-output

TABLE 5. Typical 1D CNN model (raw signal) layers and parameters.

1D CLs. The subsequent Conv1D layers are multi-input,
multi-output CLs where each output channel is calculated
as the sum of the correlation between all input channels
and corresponding kernels. Currently, the FIR-based analysis
method presented in this work does not address multi-input,
multi-output CLs with merged-channel outputs, but it can
be applied to separable and depthwise Conv1D CLs with
separate channel-wise operation [45].

Next to model training, learned Conv1D kernel weights
are extracted from the model and flipped to get their time-
reversal, equivalent to the impulse response of an FIR filter
as described in III. Afterwards, the FFT of the FIR impulse
response is computed to get the frequency response of the

VOLUME 11, 2023 27655

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 15. Visualization of the 1D CNN Conv1D layer 1 automatically-learned kernel in the time and
frequency domains.

FIR filter. Figure 14 depicts the impulse and frequency
responses of the three MF kernels. Each kernel resembles
a frequency-selective filter with specific pass and stop
frequencies related to the fault frequencies. As the first
layer, filters learned by this layer directly affect subsequent
layers and delineate frequencies passed to their enclosed
kernels. Due to using a smaller kernel size compared to
the MF kernels, the roll-off rate of the filter is reduced.
Due to employing a deeper network topology, the pass and
stop bands associated with each class cannot be determined
entirely from the first layer but from the full cascaded
stacks.Moreover, the nonlinear activation functions introduce
nonlinear distortion components affecting the operation and
decision mechanism of the entire network, yet this does not
invalidate the interpretation presented for the single-input
multi-output CL.

3) RESULTS AND DISCUSSION
Table 6 presents the training time, average inference time,
total number of parameters, and testing accuracy results
of the developed models. These results are obtained with
a basic tuning of the model hyperparameters because the
objective is to illustrate the proposed method potentials and

TABLE 6. Testing results of the developed models.

application mechanisms, not to benchmark the developed
models. Nevertheless, all models achieve good classification
performance on the holdout testing set. The STFT-basedCNN
achieves the best accuracy of 100% and the 1DCNN achieves
the lowest accuracy of 96.27%. The time-frequency and
spectral envelope-based methods have better performance
than the MF and 1D CNN models applied to the raw
vibration signal, which indicates the superiority of envelope
spectral analysis for bearing fault diagnosis. On the other
hand, all DSP-based CNNmodels achieve better performance
compared to the automatically trained 1D CNN, indicating
the potential of the proposed method. It should be indicated
that with slight fine-tuning of model hyperparameters, all
models can achieve 100% accuracy, but performance is
sacrificed for better visualizations.

27656 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

However, classification performance comes at the expense
of increased model size, as indicated by the total number of
parameters used by each model. At this level, the MF-based
and 1D CNNs require only 541 and 2065 parameters,
respectively, compared to the CWT-, STFT-, and DTFT-
based models, which need 132,873, 110,665, and 14,815
parameters, respectively. The increased number of CWT- and
STFT-based CNNs is attributed to using deeper stacks of 2D
CLs applied to the scalogram and spectrogram output images
produced by the 1D DSP-based CLs. Notwithstanding, the
total number of parameters of these models is relatively small
compared to existing models presented in the fault diagnostic
literature [17], [18], [19].

The training time of all models does not exceed 1 minute
due to the small size of the training set. Comparatively, the
MF-based CNN has the lowest training time of 24.2 s due to
the shallow nature of the model, while the STFT-based CNN
has the highest training time of 36.41 s. The short training
time of all models is attributed to the small size of the MFPT
dataset and the reduced computational complexitiy of the
developed models. Another factor affecting the training time
is pre-assigning CL weights which reduces the number of
model trainable parameters.

The average inference time is computed by calculating the
total inference time of the testing set and dividing the result
by the number of examples in the set. The MF-based CNN
has the lowest inference time of 0.24 ms, while the CWT- and
STFT-based CNNs have the highest inference time of 0.42ms
due to incorporating 2DCLs. Generally, the efficient resource
usage and low computational time of the presented models
enable their deployment on resource-constrained devices for
edge inference, which has been experimentally established in
our previous works [45], [46], [47].

Eventually, the proposed DSP-based CL design method
complements the automatic feature extraction capabilities of
CNNs by advancing a means to implement frequently used
DSP preprocessing tasks inside the model using layers of the
model. A single CL can be used to build DSP transformations
such as STFT and CWT whereas a stack of neural layers
such as pooling layers, non-linear activation functions,
and dense layers can be stacked to build more complex
DSP tasks such as MF, DTFT, and envelope detection.
Self-contained CNN models are portable, resource-efficient,
faster, and optimization-compatible compared to the separate
preprocessing pipelines. The DSP-based CLs have full access
to themodel computational resources and accelerators, unlike
separate preprocessing pipelines that are neither optimized
nor accelerated using the model hardware delegates. DSP-
inclusive models can be fully optimized and quantized for
deployment and execution on edge devices, special-purpose
accelerators, or specific instruction set architectures.

Nevertheless, the proposed method has some limitations
at both the design and analysis levels. All DSP algorithms
implemented using CLs are based on the correlation and
equivalent convolution operations performed by CLs, lim-
iting the scope of potentially developed algorithms. For

example, the renowned FFT algorithm cannot be directly
implemented using the proposed method because it is not
based on convolution or correlation. Another limitation
posed by the state-of-the-art machine learning development
packages is the lack of support for complex number layers,
which are commonly needed bymanyDSP algorithms. At the
analysis level, the proposed method can only be used to
analyze the single-input, multi-output, separable, and depth-
wise CLs, which are addressed in the definitions of the
convolution and correlations presented in Section III. The
proposed method does not present an interpretation of the
multi-input, multi-output CLs with mixed convolution across
input channels.

V. CONCLUSION AND FUTURE WORK
In this work, we presented signal processing interpretations
of the convolutional layer in neural networks and translated
them into practical implementations of DSP algorithms that
can be used for various preprocessing and feature extraction
tasks inside a DNN model. Specifically, we exploited the
correlation and equivalent convolution operations performed
by a CL to implement FIR filters, MFs, STFT, DTFT, and
CWT algorithms. The proposed interpretations of the CL
are based on a straightforward understanding of the layer
correlation and convolution signal processing operations. The
implementation steps of each DSP algorithm were detailed,
and validation visualizations were provided.

Afterwards, we advanced a comprehensive application
example of mechanical bearing fault diagnostic to illustrate
how to use the proposed method to design DSP-inclusive
CNN models and analyze automatically trained CNNs. The
STFT-, CWT-, and DTFT-based CNNs were designed using
the proposed DSP-based CLs to extract the spectrogram,
scalogram, and frequency spectral of the vibration envelope.
An FIR-based LPF was designed for noise removal, and
a stack of an absolute layer, AP layer, and downsampling
FIR-based CL LPF were developed for envelope detec-
tion. MF-based and automatically trained 1D CNNs were
advanced to illustrate how to analyze single-input, multi-
output CLs in the time and frequency domains. All models are
evaluated in terms of classification accuracy, total number of
model parameters, training time, and average inference time.

The proposed approach alleviates the need for preprocess-
ing and feature engineering steps and opens new frontiers in
ML architectures and applications. Moreover, the presented
CL interpretations provide a means to analyze and explain
the operation of DNN models in both the time and frequency
domains. Eventually, the CL signal processing interpretations
advanced in this study will be immensely valuable for both
the design and analysis of DNNs, opening new frontiers in
ML research.

In future work, we will investigate CL implementations
of other convolution-based DSP algorithms. We will study
extending the interpretations presented in this work to
Conv1D layers with multiple input channels and other types
of convolutional layers, such as depth-wise and separable

VOLUME 11, 2023 27657

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 16. Linear chirp testing signal of a 1 s duration and a linear
frequency range from 1 to 100 Hz.

FIGURE 17. Visualization of the CL FIR filter applied to the chirp input
signal.

CLs. Also, we will study applying the CL interpretations
presented in this work to 2D CLs. Moreover, we plan to study
the effect of manipulating CL hyper-parameters such as stride
length and dilation rate on the DSP algorithm functionality.
Furthermore, interpretation and DSP implementations of
other layers, such as dense, pooling, and activation layers,
will be explored. Another research direction inspired by
this study is developing custom DSP layers rather than
relying on the standard set of layers provided by existing
ML development packages. Finally, we will explore other
potential applications of the proposed methodology.

APPENDIX
In this appendix, we will provide the development steps and
validation results of the CL-based DSP algorithms presented
in this article. The algorithm implementation details will

FIGURE 18. Application of the CL FIR filter for noise removal.

FIGURE 19. Visualization of the 2D spectrogram produced by the CL STFT
layer.

be disclosed using Keras with the TensorFlow backend and
Python programming language. Keras is an open-source
Python interface for TensorFlow. TensorFlow is Google
open-source machine learning framework, equipped with a
rich ecosystem of tools, libraries, and community resources
to help developers build and deploy ML-powered apps.

27658 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

FIGURE 20. DTFT-based CL layer output for NF = 100 and NK = 100.

FIGURE 21. Visualization of the 2D spectrogram produced by the CL STFT
layer.

The development and testing steps of a DSP-based CL are:

• Using the Python Scipy and Pywavelets packages to
design the DSP algorithm and compute the filter taps.

• Instantiate a single Conv1D layer and assign the layer
hyperparameters as instructed by Section III.

• Assign the computed filter weights to the Conv1D layer
kernels and disable layer training.

• Apply a test signal to the CL and visualize its output.

A linear chirp signal is generated and applied to the
CL-based DSP layer to test the developed algorithms.
Figure 16 illustrates the testing signal of a 1 s duration and
a linear frequency range from 1 to 100 Hz.

A. IMPLEMENTATION AND VALIDATION OF THE CL FIR
FILTERS
The following Python script shows how to develop a
CL-based FIR filter. Figure 17a demonstrates the frequency
response of an example FIR BPF of order 99 with a passband

between 40 and 60 Hz. Figure 17b illustrates the CL output
for the chirp testing input in the time domain. As expected,
the CL layer works as a BPF and passes frequencies
from 40 to 60 Hz. Figure 18 depicts the application of the
CL FIR filtering for noise removal. An AWGN of 10 dB
SNR is added to the chirp signal in Figure 16 and applied
to a CL FIR LPF with a 100 Hz cutoff frequency and
order N = 99. As evidenced by the output, the CL filter
significantly smoothens the input noisy signal by filtering out
high-frequency noise.

B. IMPLEMENTATION AND VALIDATION OF THE STFT CL
The following Python script demonstrates how to develop
a CL-based STFT algorithm. Figure 19a demonstrates the
frequency response of an example FIR filter bank of 10 filters
each of order 99 Figure 19b illustrates the time-frequency
output of the CL with NF = 10 and NK = 100 for the

VOLUME 11, 2023 27659

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

chirp testing input. As expected, the CL layer produces an
STFT-equivalent spectrogram image that a 2D DNN can
handle.

C. IMPLEMENTATION AND VALIDATION OF THE DTFT CL
The following Python script depicts how to develop
a CL-based DTFT algorithm. Figure 20 illustrates the
FFT-based frequency spectral and spectral output of the CL
withNF = 100 andNK = 100 for the chirp testing input. The
CL layer produces a DTFT-equivalent spectrum of the input
signal.

D. IMPLEMENTATION AND VALIDATION OF THE CWT CL
The following Python script illustrates how to develop
a CL-based CWT algorithm. Figure 21a demonstrates an
example of scaled Morlet wavelets with 100 scales, each

of 1000 samples. Figure 17b illustrates the time-frequency
output of the CLwithNF = 100 andNK = 1000 for the chirp
testing input. As expected, the CL layer produces a CWT
scalogram image that a 2D DNN can handle.

REFERENCES
[1] J. Gu, ‘‘Recent advances in convolutional neural networks,’’ Pattern

Recognit., vol. 77, pp. 354–377, May 2018.
[2] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,

and L. Jackel, ‘‘Handwritten digit recognition with a back-propagation
network,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 2, 1989, pp. 1–9.

[3] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[4] S. A. Alasadi and W. S. Bhaya, ‘‘Review of data preprocessing techniques
in data mining,’’ J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107, 2017.

[5] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, ‘‘A review on
data preprocessing techniques toward efficient and reliable knowledge
discovery from building operational data,’’ Frontiers Energy Res., vol. 9,
Mar. 2021, Art. no. 652801.

[6] T. A. Alghamdi and N. Javaid, ‘‘A survey of preprocessing methods used
for analysis of big data originated from smart grids,’’ IEEE Access, vol. 10,
pp. 29149–29171, 2022.

[7] (2022). TensorFlow Lite: ML for Mobile and Edge Devices. Accessed:
Feb. 20, 2023. [Online]. Available: https://www.tensorflow.org/lite/

[8] (2022). Quantization in Pytorch. Accessed: Feb. 20, 2023. [Online].
Available: https://pytorch.org/docs/stable/quantization.html

[9] M. A. Little, Machine Learning for Signal Processing: Data Science,
Algorithms, and Computational Statistics. London, U.K.: Oxford Univ.
Press, 2019.

[10] G. Sharma, K. Umapathy, and S. Krishnan, ‘‘Trends in audio signal feature
extraction methods,’’ Appl. Acoust., vol. 158, Jan. 2020, Art. no. 107020.

[11] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed,
‘‘A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction,’’ J. Appl. Sci. Technol. Trends,
vol. 1, no. 2, pp. 56–70, May 2020.

[12] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection methods,’’
Comput. Elect. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.

[13] M. M. Richter, S. Paul, V. Këpuska, and M. Silaghi, Signal Processing and
Machine Learning With Applications. Springer, 2022. [Online]. Available:
https://books.google.com.sa/books?id=VuD8vQAACAAJ

[14] A. Papandreou-Suppappola, Applications in Time-Frequency Signal Pro-
cessing. Boca Raton, FL, USA: CRC Press, 2018.

[15] T. Wang, C. Lu, Y. Sun, M. Yang, C. Liu, and C. Ou, ‘‘Automatic ECG
classification using continuous wavelet transform and convolutional neural
network,’’ Entropy, vol. 23, no. 1, p. 119, Jan. 2021.

[16] J. Huang, B. Chen, B. Yao, and W. He, ‘‘ECG arrhythmia classification
using STFT-based spectrogram and convolutional neural network,’’ IEEE
Access, vol. 7, pp. 92871–92880, 2019.

[17] G. Yu, ‘‘A concentrated time–frequency analysis tool for bearing fault
diagnosis,’’ IEEE Trans. Instrum. Meas., vol. 69, no. 2, pp. 371–381,
Feb. 2019.

[18] R. X. Chen, X. Huang, L. X. Yang, X. Y. Xu, X. Zhang, and Y. Zhang,
‘‘Intelligent fault diagnosis method of planetary gearboxes based on
convolution neural network and discrete wavelet transform,’’Comput. Ind.,
vol. 106, pp. 48–59, Apr. 2019.

[19] W. Deng, S. Zhang, H. Zhao, andX. Yang, ‘‘A novel fault diagnosis method
based on integrating empirical wavelet transform and fuzzy entropy for
motor bearing,’’ IEEE Access, vol. 6, pp. 35042–35056, 2018.

[20] M. H. Soni, N. Shah, and H. A. Patil, ‘‘Time-frequency masking-based
speech enhancement using generative adversarial network,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5039–5043.

[21] M. Kimlyk and S. Umnyashkin, ‘‘Image denoising using discrete
wavelet transform and edge information,’’ in Proc. IEEE Conf. Rus-
sian Young Researchers Electr. Electron. Eng. (EIConRus), Jan. 2018,
pp. 1823–1825.

[22] S. Saxena, R. Jais, and M. K. Hota, ‘‘Removal of powerline interference
fromECG signal using FIR, IIR, DWT andNLMS adaptive filter,’’ inProc.
Int. Conf. Commun. Signal Process. (ICCSP), Apr. 2019, pp. 12–16.

27660 VOLUME 11, 2023

M. M. Farag: Design and Analysis of Convolutional Neural Layers: A Signal Processing Perspective

[23] T. Tuncer, S. Dogan, and A. Subasi, ‘‘Surface EMG signal classification
using ternary pattern and discrete wavelet transform based feature
extraction for hand movement recognition,’’ Biomed. Signal Process.
Control, vol. 58, Apr. 2020, Art. no. 101872.

[24] L. Deng, ‘‘A tutorial survey of architectures, algorithms, and applications
for deep learning,’’ APSIPA Trans. Signal Inf. Process., vol. 3, no. 1, p. e2,
2014.

[25] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
‘‘A survey of deep neural network architectures and their applications,’’
Neurocomputing, vol. 234, pp. 11–26, Apr. 2017.

[26] S. Pouyanfar, ‘‘A survey on deep learning: Algorithms, techniques, and
applications,’’ ACM Comput. Surv., vol. 51, no. 5, pp. 1–36, Sep. 2018.

[27] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams, Y. Gong, and A. Acero, ‘‘Recent advances in deep
learning for speech research at Microsoft,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 8604–8608.

[28] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and T. Sainath,
‘‘Deep learning for audio signal processing,’’ IEEE J. Sel. Topics Signal
Process., vol. 13, no. 2, pp. 206–219, Apr. 2019.

[29] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, ‘‘Speech
recognition using deep neural networks: A systematic review,’’ IEEE
Access, vol. 7, pp. 19143–19165, 2019.

[30] D. J. Hemanth and V. V. Estrela, Deep Learning for Image Processing
Applications, vol. 31. Amsterdam, The Netherlands: IOS Press, 2017.

[31] G. Melis, C. Dyer, and P. Blunsom, ‘‘On the state of the art of evaluation
in neural language models,’’ 2017, arXiv:1707.05589.

[32] D. W. Otter, J. R. Medina, and J. K. Kalita, ‘‘A survey of the usages of
deep learning for natural language processing,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.

[33] T. Young, D. Hazarika, S. Poria, and E. Cambria, ‘‘Recent trends in deep
learning based natural language processing,’’ IEEE Comput. Intell. Mag.,
vol. 13, no. 3, pp. 55–75, Aug. 2018.

[34] L. Deng and Y. Liu, Deep Learning in Natural Language Processing.
Cham, Switzerland: Springer, 2018.

[35] G. Litjens, ‘‘A survey on deep learning in medical image analysis,’’ Med.
Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[36] P. Lang, X. Fu, M. Martorella, J. Dong, R. Qin, X. Meng, and M. Xie,
‘‘A comprehensive survey of machine learning applied to radar signal
processing,’’ 2020, arXiv:2009.13702.

[37] O. Simeone, ‘‘A very brief introduction to machine learning with
applications to communication systems,’’ IEEE Trans. Cogn. Commun.
Netw., vol. 4, no. 4, pp. 648–664, Dec. 2018.

[38] C. Zhang, P. Patras, andH. Haddadi, ‘‘Deep learning inmobile andwireless
networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224–2287, 3rd Quart., 2019.

[39] F.-L. Fan, J. Xiong, M. Li, and G. Wang, ‘‘On interpretability of artificial
neural networks: A survey,’’ IEEE Trans. Radiat. Plasma Med. Sci., vol. 5,
no. 6, pp. 741–760, Nov. 2021.

[40] R. S. Srinivasamurthy, ‘‘Understanding 1D convolutional neural networks
using multiclass time-varying signalss,’’ Ph.D. dissertation, Dept. Comput.
Eng., Clemson Univ., Clemson, SC, USA, 2018.

[41] Z. Jia, C. Bao, and K. Ma, ‘‘Exploring frequency domain interpretation of
convolutional neural networks,’’ 2019, arXiv:1911.12044.

[42] L. Stankovic and D.Mandic, ‘‘Convolutional neural networks demystified:
A matched filtering perspective based tutorial,’’ 2021, arXiv:2108.11663.

[43] D. Yu and L. Deng, ‘‘Deep learning and its applications to signal and
information processing [exploratory DSP],’’ IEEE Signal Process. Mag.,
vol. 28, no. 1, pp. 145–154, Jan. 2011.

[44] V. Monga, Y. Li, and Y. C. Eldar, ‘‘Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,’’ IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.

[45] M. M. Farag, ‘‘Matched filter interpretation of CNN classifiers with
application to HAR,’’ Sensors, vol. 22, no. 20, p. 8060, Oct. 2022.

[46] M. M. Farag, ‘‘A self-contained STFT CNN for ECG classification and
arrhythmia detection at the edge,’’ IEEE Access, vol. 10, pp. 94469–94486,
2022.

[47] M. M. Farag, ‘‘A tiny matched filter-based CNN for inter-patient ECG
classification and arrhythmia detection at the edge,’’ Sensors, vol. 23, no. 3,
p. 1365, Jan. 2023.

[48] L. Guo, L. Wang, J. Dang, Z. Liu, and H. Guan, ‘‘Exploration of
complementary features for speech emotion recognition based on kernel
extreme learning machine,’’ IEEE Access, vol. 7, pp. 75798–75809, 2019.

[49] Z. Liang, M. Tao, L. Wang, J. Su, and X. Yang, ‘‘Automatic modulation
recognition based on adaptive attention mechanism and ResNeXt WSL
model,’’ IEEE Commun. Lett., vol. 25, no. 9, pp. 2953–2957, Sep. 2021.

[50] Q. Zhang, Z. Xu, and P. Zhang, ‘‘Modulation recognition using wavelet-
assisted convolutional neural network,’’ in Proc. Int. Conf. Adv. Technol.
Commun. (ATC), Oct. 2018, pp. 100–104.

[51] Z. Sun, L. Zhou, and W. Wang, ‘‘Learning time-frequency analysis
in wireless sensor networks,’’ IEEE Internet Things J., vol. 5, no. 5,
pp. 3388–3396, Oct. 2018.

[52] I. Dey and S. Siddiqui, ‘‘Wavelet transform for signal processing in
internet-of-Things (IoT),’’ in Wavelet Theory. London, U.K.: IntechOpen,
2021.

[53] A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-Time Signal
Processing, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[54] R. E. Ziemer and W. H. Tranter, Principles of Communications. Hoboken,
NJ, USA: Wiley, 2014.

[55] F. Chollet, Deep learning With Python. New York, NY, USA: Simon and
Schuster, 2021.

[56] A. Mertins and D. A. Mertins, Signal Analysis: Wavelets, Filter Banks,
Time-Frequency Transforms and Applications. New York, NY, USA:
Wiley, 1999.

[57] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, ‘‘Deep learning
algorithms for bearing fault diagnostics—A comprehensive review,’’ IEEE
Access, vol. 8, pp. 29857–29881, 2020.

[58] W. Caesarendra and T. Tjahjowidodo, ‘‘A review of feature extraction
methods in vibration-based condition monitoring and its application for
degradation trend estimation of low-speed slew bearing,’’Machines, vol. 5,
no. 4, p. 21, 2017.

[59] D. Wu, J. Wang, H. Wang, H. Liu, L. Lai, T. He, and T. Xie, ‘‘An automatic
bearing fault diagnosis method based on characteristics frequency ratio,’’
Sensors, vol. 20, no. 5, p. 1519, Mar. 2020.

[60] S. Kim, D. An, and J.-H. Choi, ‘‘Diagnostics 101: A tutorial for
fault diagnostics of rolling element bearing using envelope analysis in
MATLAB,’’ Appl. Sci., vol. 10, no. 20, p. 7302, Oct. 2020.

[61] F. Immovilli, C. Bianchini, M. Cocconcelli, A. Bellini, and R. Rubini,
‘‘Bearing fault model for induction motor with externally induced
vibration,’’ IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3408–3418,
Aug. 2013.

[62] E. Bechhoefer. (2013). Condition Based Maintenance Fault Database
for Testing of Diagnostic and Prognostics Algorithms. Accessed:
Feb. 23, 2023. [Online]. Available: https://www.mfpt.org/fault-data-sets/

[63] C. Jarne, ‘‘A heuristic approach to obtain signal envelope with a simple
software implementation,’’ 2017, arXiv:1703.06812.

MOHAMMED M. FARAG (Member, IEEE) was
born in Egypt. He received the B.Sc. and M.Sc.
degrees in electrical engineering from Alexandria
University, Egypt, in 2003 and 2007, respectively,
and the Ph.D. degree in computer engineering
from Virginia Polytechnic Institute and State
University, in 2012. He was a Teaching Assistant
with Alexandria University, from 2003 to 2009.
From 2009 to 2013, he was a Research Assistant
with Virginia Tech. From 2013 to 2017, he joined

the Electrical Engineering Department, Alexandria University, as an
Assistant Professor. Since 2018, he has been with the Electrical Engineering
Department, College of Engineering, King Faisal University, Saudi Arabia.
His research interests include machine learning, signal processing, VLSI
design, and cyber-physical security.

VOLUME 11, 2023 27661

