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ABSTRACT Smart machine-machine (M2M) interactions, such as those enabled by the Internet of Things
(IoT), have enabled people and machines to communicate and make decisions together. Furthermore, these
systems have become increasingly important in the commercial and industrial sectors over the previous two
decades. The Industrial Internet of Things (IIoT) is a smart system comprising engineering equipment which
can connect to one another to improve manufacturing operations. This task would become more complicated
if the amount of energy used by the IIoT ecosystems, as well as the amount of network traffic they generate,
increased dramatically. Consequently, decision-making processes during communication are essential for
autonomous interaction in critical IoT infrastructure. Smart factories employ communication technology
to track and gather information in real-time to enhance the output, effectiveness, and predictability while
lowering the overall cost of vital operations. In this context, Industry 4.0 not only limits to addresses the issues
of integrating technologies, but it also focuses on data collection, dissemination, utilization, and organization
and also improves the delivery of the solution or services quicker with more sustainability. This study intends
to create an NF-based communication system for IIoT platforms to leverage those benefits. The proposed
model includes smart decision-making procedures to deal with communication issues. Compared with the
many methods already in use, the suggested mechanism’s functional viability in the automated system is
found to be optimal. Outcomes from simulations reveal that the suggested method has improved the accuracy
and communication reliability of the IIoT platforms in comparison with the previous methods. Aside from
these, the suggested model keeps the throughput of the local automation unit at 96.03% and the throughput
of the production hall at 95.58% on average while maintaining the lowest average PLR of about 26.48%
across different data rates.

INDEX TERMS IIoT, Neuro-fuzzy, reliability, routing strategy, industry 4.0, decision-making, EANFR and
FBCFP.

I. INTRODUCTION
Within the past two decades, the IoT has attracted a lot of
scientific investigative work. As one of the practical break-
throughs, it offers a treasure trove of solutions to issues
addressed in many sectors. The Internet acts as a network’s
communicative spine, allowing data to be sent across the
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global networking infra [36]. In 1999, Kevin Ashton of
MIT’s Auto-ID laboratory first coined the term ‘‘Internet of
Things.’’ Kevin envisioned a scenario in which the various
domains of the globe are connected via the Internet [38]. Such
a scenario would require numerous pervasive sensing devices
and an infrastructure built on real-time observations. This
seems to have enormous capability to strengthen the present
convenience in accessing information, security, and auton-
omy. The IoT refers to the network comprising gazillions of
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FIGURE 1. Generic anatomy of IIoT-based industry 4.0 infrastructure.

FIGURE 2. Building blocks of IoT.

interconnected digital equipment and industrial robots that
can collect data from their surroundings and relay it to others
without any external intervention [14]. Figure 1 depicts the
generic anatomy of IIoT-based Industry 4.0 infrastructure [6].

The building blocks of the IoT have presented a deeper
understanding of the IoT’s purpose and operation. Figure 2
depicts the five critical components necessary to achieve the
IoT’s capabilities: sensing devices and actuators, data pro-
cessing, connectivity, and automated interactions. For inter-
operability with currently available devices, communication
protocols such as IEEE 802.15.4, Wi-Fi, LTE, Z-wave, and
Bluetooth were all employed. RFID, NFC, and other sim-
ilar technologies were employed for their precision during
information exchange across the network. Services offered
through the IoT will allow smart objects to become malleable
participants in ideological agendas and economical opera-
tions. They might share resources and work together to pass
things around [32], [33]. Each sensing device communicates
with the others. They can also respond autonomously to
actual events, and their ready-to-use technique can motivate
workouts and create organizations with minimal to no help
from a human hand.

The IIoT is a decentralized branch of the IoT that aims
to improve manufacturing operations via the universal inter-
connection of machines [31], functional prototypes, and var-

ious supply chains [11]. Industry 4.0’s vital objective is to
improve the way things are made using different technolo-
gies like the IoT, CPS, ML, virtual computing, and busi-
ness intelligence. The IIoT is gaining popularity due to its
potential to improve workers’ living and working conditions,
boost productivity and prolong the lifespan of manufacturing
equipment. Both physical and cyber platforms are essential
to the IIoT. Automation, communication, and computational
capabilities are all part of the cyber-infrastructure that makes
Industry 4.0 possible. The machinery and operational plat-
forms that employ such industrial gadgets to carry out spe-
cific outputs and automated activities constitute the physical
processes. The IIoT is predicated on the idea that all the
equipment employed in manufacturing processes has access
to a unified network that can be accessed from anywhere in
the world.

Conversely, in the previous era, factory-floor connectivity
was relatively straightforward, with gauges, controllers, and
motors all being linked locally for individual automation pro-
cesses [21]. Ultimately, standardization and the connectivity
of equipment at the scale of the manufacturing space and
across businesses throughout the globe will enable deeper
synchronization inside and across manufacturing facilities.
In addition, it will make equitable operations more efficient
by allowing for regional and international adjustments to be
made to the production line.

In the past years, Fieldbus, as well as Ethernet, have
dominated as the preferred means of connectivity in fac-
tory automation due to their ability to establish localized
connections between sensing devices, robots, and embed-
ded processors [21]. Due to Fieldbus services, the number
of cables required for an installation has been drastically
reduced, along with the associated costs, and multiplex peer-
to-peer communication has been enabled across a common
communications platform [25]. However, the intended pur-
pose of establishing a consistent model to guarantee universal
and interoperable alternatives has fallen short since several
specifications relying on individual vendors have evolved
throughout time. Foundation Fieldbus H1 [27], INTER-
BUS [16], and PROFIBUS [26] are only a few well-known
variants.

The usage of wireless technologies like 3GPP-LTE is a
unique strategy towards the IEEE-based principles that are
frequently used in non-licensed bandwidths [3]. Wireless
technologies [37] have an advantage over other connectivity
options because they use a previously established, universally
accessible network design that is intended to allow for free-
dom of movement and confidentiality. Using licensed band-
widths also makes it easier for equipment to work together.
However, the existing LTE protocol does not consider secure,
minimally delayed M2M connectivity [22]; hence, support-
ing the overwhelming amount of M2M services [34], [35] is a
crucial necessity for the forthcoming 5G norm. Although the
future 5G norm is expected to satisfy the needs of the IIoT,
the likelihood that it will be implemented in the industrial
management sector continues to be high.
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FIGURE 3. Challenges in IIoT.

The IIoT comprises various controllers, connected devices,
and sensing units linkedwith cutting-edge technology to form
skilful platforms that can communicate with one another
through the Internet. In addition to this necessary frame-
work, we discovered a small assortment of common ele-
ments that together provide comprehensive establishments
of communication inside the IIoT at a large scale. However,
there are unique difficulties associated with every element
that is needed to be resolved in order to provide a holistic,
unified, and adaptable solution, as dealt with in the previous
research [13], [29], [30].

Figure 3 provides a high-level summary of the various IIoT
communication elements and the issues they pose. We cata-
logue the concerning elements that usually combine to create
an IIoT infra with a wide establishment of connectivity and
communication. As such, we furnish a brief rundown of the
IIoT’s communication mechanisms and the difficulties they
pose.

Individual industrial automation units in a factory space
are responsible for performing a distinct set of functions.
To ensure coherence and flexibility among the factory’s auto-
mated operations, those units must be coupled together along
the production lines’ main concourse. In order to do this, each
piece of equipment must be assigned a unique address (on
the basis of the manufacturing unit), as well as the commu-
nications network, must enable routing to interconnect the
units to a process console and facilitate connectivity between
equipment in holding units. Moreover, a factory may have
a single entry point or numerous ports that connect to the
Internet to enable communication across facilities.

Units for local automated mechanization are clusters of
sensing devices, controllers, and associated actuators located
in a large manufacturing hall. A communications network
connects all of this equipment together. Wireless connections
should be prioritized for convenience and inexpensive setup

and upkeep costs. The physical and MAC layers are highly
pertinent for addressing the rigorous communication con-
straints required in security systems and essential feedback
controllers. As a virtue of the broadcasting capability of the
transmission channels in the wireless network, in the vast
majority of instances, devices that are part of the same auto-
mated unit have the capability to interact with one another
directly.

Application Layer Interaction paves the way for the use of
IIoT applications with the synchronization of manufacturing
operations throughout workplaces and the subsequent adap-
tation of operations via other virtual services [28]. However,
connecting limited equipment to the network effectively via
benchmark approaches is a crucial difficulty, too, just as it is
in the more conventional IoT infra’s.

A. ROUTING ISSUES IN IIoT
Establishing a reliable and optimal route is among the objects
considered in routing-centric data communication. Such a
method handles specific routing-based critical characteristics
of IIoT networks, including energy utilization, traffic, laten-
cies, and response with time bounds. Various routing strate-
gies can be implemented, each catering to the specific needs
of an IIoT network based on its topological dynamism. When
components are not mobile, a static and stable approach can
be employed for use with a hardwired network. Every router
has a route cache with entries for all the destinations it can
send data to and the paths to reach them.

The planned IIoT, on the other hand, would rely heavily
on wireless connectivity channels to ensure that industrial
configurations can be modified easily. Because of this, the
routes must be flexible to some extent, making a definitive
appropriate response unattainable. It is possible to use either
preexisting communications infra or ad-hoc methods to learn
ways to go from one node to another in the absence of a
predefined/static topology. Knowledge about the network’s
components, such as newly discovered neighbors, link condi-
tions, and service requirements, is compiled by a centralized
instantiation of an IIoT connectivity strategy. The centralized
instantiation compiles global data and indicators to determine
the best route for each channel connection in the system.
Still, it then pushes that information out to the required
devices via routing. These indicators include the necessary
hop count to reach a target, the connection bandwidth, the
delay, or even the energy demand, which is very important
for devices that run on batteries. One of the benefits of such a
routing technique is that it reduces the amount of processing
power needed at individual nodes while still providing access
to global data. Figure 4 signifies the major routing issues
in IIoT networking system. Furthermore, this system offers
some degree of adaptability as a result of the nodes sending
revisions of the aforesaid specific features. Conversely, there
are drawbacks, such as a non-negligible processing cost at the
centralized controller and a sole breakdown spot if no sec-
ondary or failover strategy is established. Ad-hoc networking
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FIGURE 4. Routing issues in IIoT networking systems.

systems are self-organizing systems where every node must
transit the data, similar to wireless mesh [2] or MANET [7].

Reactive and proactive route strategies are both employed
in such networking environs. Thus, we emphasize these fun-
damental layouts, notwithstanding the existence of hybrid
options. The purpose of a proactive approach [10] is always
to have a birds-eye perspective of the whole network. In order
to accomplish this, nodes regularly disseminate their routing
information, relying on knowledge about their immediate
vicinity learned via scheduled discoveries. The route data
is always accessible, which is a significant benefit of this
strategy. Yet, the critical drawback is the sluggish consoli-
dation in the event of reorganization or connection break-
downs. In addition, controlling and upkeep communication
complexity is exceptionally high whenever substantial data
volumes are limited (sensed data or actuating instructions).
The proactive routing procedures, which employ up-to-date
route discovery across the entire network, resolve the path
identification problem but demand a regulated schedule.

B. MOTIVATION
Some of the most fundamental requirements for establish-
ing route discovery in a complex network rely on factors
like the number of route hops, the form of connectivity
and communication used to construct that route, the avail-
ability of the target, the pace at which mobile nodes could
move, and so on. Particularly in adaptive routing algorithms
(where network creation starts only after requests), dealing
strictly with path formation and data transfer is necessary.
If this doesn’t happen, it will have a devastating effect on the
network’s efficiency. However, increased network instability
may impede numerous crucial transmissions required to cor-

rectly deliver the observed data. However, a more intricate
routing algorithm would need additional stability measures
for a set of distributed devices in order to communicate with
the target devices. Although developing routing algorithms
for IIoT-based dynamic infrastructure introduces new chal-
lenges, the mobility idea identifies ways to cut the node count
involved in data transfer, hence decreasing latency. With
instantaneous route selection based on the concept of various
possibilities approaching the endpoint and minimal over-
heads, the channel’s unbalancing implications can be miti-
gated, and the nodes’ tolerance for malfunctions/failure may
be accounted for. Providing such immediate route selection
alternatives, particularly in dynamic networking, requires the
use of a sophisticated inference process.

Among these cutting-edge inference systems, the neuro-
fuzzy approach is a popular choice at the moment. Ever
since fuzzy mechanisms [19] began to see widespread use in
industry, researchers have known that creating a system with
a strong showing is no simple feat. In order to solve MF and
rule-based issues, a significant amount of experimentation is
often required. After realizing this, the concept of using learn-
ing techniques in conjunction with fuzzy systems emerged.
The NN has been proposed as a means to either fully or
partially simplify the operation via automated adjustments in
fuzzy systems due to its powerful learning techniques. To reap
the benefits of both NN as well as fuzzy systems and to
address the limitations of each, they should be used in tandem.
The computability properties of NNs are introduced to fuzzy
systems, where they provide both a means of interpreting
such systems and a more precise way of representing them.
Thus, the benefits of NNs make up for the shortcomings
of fuzzy logic control. These strategies must be employed
jointly since they complement one another. Therefore, in this
research, we use an NF strategy to provide a theoretically
sound model for reliable communication in IIoT infra.

The entire article is structured systematically and delin-
eated as follows. Section II discusses the most relevant
existing methodologies and their working processes for iden-
tifying research gaps. Section III elaborates on the clustering
and sub-clustering processes, appropriate CH selection strate-
gies, and theNF-based communication process. Section III-A
discusses the performance of the proposed system relative
to existing models in various aspects. Finally, section III-B
summarizes the study with key points and exposes the future
enhancement plan.

II. RELATED WORK
As a new field of study, IIoT genuinely expects investiga-
tors to tackle complex problems in sectors like design and
architecture, networking, and stability. IIoT relies heavily on
routing because of its pervasiveness. Throughout this section,
we’ll go over some of the fundamentals of IIoT infrastructure
and the NF idea, which is crucial to ensuring reliable rout-
ing [18]. The subsequent phase deals with the observation and
communication difficulties that arise in a networking system
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based on IIoT. This section also concludes with a review of
the available literature.

Brante et al. [9] present a mechanism for an influential
roster of CHs to extend the system’s longevity beyond the use
of surplus power. When nodes are grouped into a cluster, the
CH takes on the extra work of data collection, aggregation,
and connectivity with the primary node (BS). For this reason,
current data is required to predict situations, like bottlenecks,
that affect the CH nodes. Fuzzy rules may be used to deal with
this ambiguity since FL allows for a range of input values (0
to 1) and the ability to make decisions based on incomplete
data. FL was formerly widely utilized by scientists to deal
with uncertainty in a diverse range of situations.

Ari et al. [4] published a novel approach for selecting inter-
mediaries; it used a decision-making framework influenced
by FL. With the use of fuzzy inference, Gupta et al. [15]
managed to choose qualified candidates for the role of CH
and execute the routing procedure via the cluster leaders. To a
limited degree, the efficiency of these approaches improved.
The precision, however, has to be increased so that better
choicesmay bemade. Expanding the scope of fuzzy inference
is possible by considering a more extensive set of qualities.
Because of this, Kim et al. [20] created a fuzzy-based routing
approach using path length and energy as crucial factors.
However, owing to the sensor nodes’ inherent limitations,
the energy consumption issue was unable to be addressed
entirely. To effectively manage the uncertainty concern and
make predictions, developing a more impactful learning
approach that can be coupled with FL is required.

Shen et al. [23] proposed an NF approach with output
embedding that is more complicated to design but offers a
substantially finer control interface. Defuzzification interpre-
tation is performed by summing and dividing layers. The
top weights in the summing component are meant to be the
expected readings, whereas the bottom values are intended
to be the actual ones. Due to the similarity between neural
activity and neuro-fuzzy systems in terms of cell processes
(like message basic arithmetic), the design of NF systems is
often compared to that of machine learning models.

In order to better distribute periodic routing, a method-
ology to determine averaged single-hop latencies per trans-
action using a computational model via NN. Furthermore,
swarm intelligence, a dependable, self-organized, and decen-
tralized routing approach, was employed as a reliable indica-
tor for an adaptive NF inference approach to tackle the path
cost minimization issue.

Taheri et al. introduced a novel and energy-aware route
discovery strategy as well as a stochastic and distributed
clustering-based density estimation protocol. This methodol-
ogy employs three different processes, including a stochastic
CH voting procedure, using FL for making decisions, and
implementing on-demand grouping. This approach, much
similar to the LEACH procedure, continually does clustering
since it is concerned with all iterations. In order to efficiently
implement clustering-oriented packet forwarding, the HEED

method is described through various methods that uses the
likelihood function to pick the CHs in a randomized fashion.
But HEED adjusts the CHs most consistently throughout the
whole network system via numerous rounds of experimen-
tation within narrower cluster boundaries. Further, while the
HEED mechanism is not receiving any CH declarations from
adjacent nodes, any node might emerge as CH by cycling
across the responsibilities and employing their likelihood
function. One positive aspect of HEED is the way it uses
a rotation strategy to choose which CHs to assign to each
participant. Further, better rule application has enhanced the
decision-making procedure. Unfortunately, the majority of
the aforementioned methods simply assisted in CH choosing
to utilize FL, while only a handful of methods assisted in clus-
ter formation. Furthermore, prior efforts primarily addressed
routing instead of using machine learning techniques in the
network and relied on FL for decision-making.

According to the work of Abbas et al. [1], an NF system
is implemented to describe the features of the restrictions
related to picking the ideal inspiring path in accordance
with the driver’s individualized interests. If the suggested
system detects traffic problems along the chosen route, it may
proactively choose an alternate path. With the help of a route
rating, the user may make more nimble and future-oriented
choices. By doing this, they could determine the course based
on the user’s selections at a much lower cost. In the method
that has been developed, all potential routes are analyzed for
their expenses, and the most cost-effective one is chosen.
In summary, this method selects to go in the direction that
will lead to the lowest overall cost. Using vehicle-to-vehicle
communication, this study may be expanded to include prac-
tical applications.

Thangaramya et al. [24] offer a novel communication
technique known as NF-based cluster formation protocol
(FBCFP) that executes connectivity learning by taking into
account four vital aspects: the cluster hub, existing energy
levels, its range from the mobile sink, the variation in the dis-
tance among the cluster’s members and the CH because of the
node’s movement, and the cluster hub’s degree. Researchers
employed a convolutional NNwith fuzzy inference for weight
modification to update the network parameters for this task.
Furthermore, they performed cluster-based networking and
effective cluster creation using a fuzzy inference technique.
After a CH has indeed been chosen, all the non-CH endpoints
in the network employ the Mamdani fuzzy inference process
to implement those four criteria for each CH, with the most
significant proportion of energy being taken into account
when determining which will succeed as a CH. Researchers
compare the suggested routing method’s efficiency to that of
FLCFP, LEACH, and HEED. This work’s empirical findings
demonstrate that the suggested approach, called FBCFP, sig-
nificantly increases the overall lifespan of the network when
compared to FLCFP, LEACH, and HEED. Furthermore, it is
demonstrated that the suggested FLCFP decreases energy
consumption and strengthens QoS in IoT-based networking
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systems by maintaining the uniform number of clusters and
optimizing power usage through the rule-based application
knowledge gained from the training process with an ML
algorithm and employing the rules to determine impactful
routing determinations. It was demonstrated via experiments
carried out in this study that the usage of convolutional NN for
training in the suggested technique improves the packet dis-
tribution ratio and decreases the other QoS metrics, notably
latency and power usage.

The novel Energy-Aware Adaptive Fuzzy-Neuro Cluster-
ing (EAANFC-MR) with a WSN-aided IoT method is pre-
sented by Daniel et al. [12]. Based on EAANFCs, EAANFC-
MR proposes two fundamental phases: clustering as well
as multi-hop data transmission. First, the EAANFC-based
clustering approach is employed to choose CHs dependent
on the remnant power of all the deployed nodes, as well
as their proximity and node orientations. Afterwards, the
QOBFO technique is applied as a multi-path routing strategy
to choose the best routes to the end target. For the purpose of
selecting a reliable CH system, researchers employed the idea
of an adaptable neuro-fusing inference algorithm. Initially,
EAANFC incorporates clustering notions and principles. The
QOBFO is then utilized to determine optimal destination
pathways using a multi-path routing mechanism (QOBFO).
Finally, the proposed EAANFC-MR concept is performed
in MATLAB, and the findings are analyzed from multiple
perspectives.

To address the issue of high-powered IoT devices,
Jeevanantham and Rebekka [17] offer an energy-aware
neuro-fuzzy routing model (EANFR) that utilizes a vector
space created via the deep-neural system to determine routing
choices and manage the clustering process. The EANFR
approach can be trained to determine the best CH nodes along
with the most efficient, simplest, and optimal pathways. After
running extensive simulations, a scientific study showed that
the suggested EANFR model had the fewest training losses.
Moreover, associated with network lifespan, the EANFR
appears to be better than published studies, in particular
when compared to energy-aware cluster analysis with theML
approach (an improvement of 89.23 per cent), radial basis
NF network inference scales (20.63 per cent), and intuitive
Q-learning (67.21 per cent). Furthermore, their study showed
that the suggested EANFR paradigm significantly increased
the network lifetime and QoS capabilities of the network,
which makes it ideal for IoT-based surveillance applications.

III. METHODOLOGY
The IIoT infrastructure relies on minimally-powered and
lossy networks comprising many macro and micro-level
interconnected embedding devices. Saving energy and mak-
ing efficient use of resources are two areas where routing
can really helps out. Selecting the most appropriate routes
via smart decision-making methodologies helps devices save
more energy and ensures that networks operate longer with
minimal downtime. The routing technique utilizes route vari-
ables such as traffic load, device energy, projected transmis-

sion cost, connectionmeasure, and hop count to determine the
most reliable path for transmitting data. In addition, a well-
thought-out clustering approach is essential for coordinating
the various pieces of communication hardware and ensur-
ing their compatibility with future expansion. As a result,
in this research, we utilize neuro-fuzzy strategies to maintain
a reliable connection between various heterogeneous devices.
In addition, we also adopted a unique clustering approach to
managing the communication devices of the IIoT.

A. DISTRIBUTION OF COMPONENTS IN IIoT
Connectivity to nearby devices is a crucial characteristic of
IIoT infrastructure components and equipment. A component
with no connectivity (0 degrees) cannot share information
with other nodes. A more highly-degreed node increases
the network’s communication probabilities and resilience to
connection failure. When choosing the node to connect to
next, the one that has the highest degree among its neighbors
will be prioritized. This section deals with the computation of
a component’s distribution in the network. Let Q components
(static or mobile) are deployed in the network environment.
Every component’s degree implies a binomially distributed
nonlinear function that is the aggregate of Q-1 autonomously
attributable factors. Let κ denote the likelihood that a connec-
tion exists, and δ stands for the arbitrary element that repre-
sents the degree of the relationship. This degree of component
dispersion is calculated using equation (1).

P (δ = L) :→ (1−κ)(Q−L−1) ·
[
(Q− 1)

L

]
· κL (1)

where,
[
(Q−1)

L

]
states the total quantity to choose L chan-

nels/links from Q-1 possibilities, and (1 − κ)(Q−L−1)
· κ

L

represents the absolute likelihood of choosing available L
links from (Q−L− 1).

B. CLUSTERING
This subsection delineates the novel clustering process,
namely homocentric clustering, which exhibits a concentric
formation of sub-clusters around the central controller. Fig-
ure 5 signifies the graphical representation of the homocentric
clustering process.

The homocentric clustering follows the base principles of
concentric circle formation, in which the common controller
determines the boundary region of each circle based on the
computation exhibited in equations (2) and (3).∑k

i=1
bri = TR

C l
− ri (2)

ri | hi =

[
TR
C l

/2
]

× hi (3)

where, bri denotes the concentric clustering range, T RCl rep-
resents the transmission range of common l th controller, Cl ,
ri indicates the boundary distance of concentric clusters from
Cl , hi signifies the hop counts.
Initially, Cl determines the boundary region of each

concentric cluster based on its transmission range and
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FIGURE 5. Homocentric clustering.

FIGURE 6. Inter-cluster communication process.

reachability (hop counts). The first concentric cluster
includes all the primary components incorporated into
the IIoT infra. Sequentially, the second concentric cluster
includes secondary components of the IIoT that are directly
associated with the primary components. In a similar fashion,
each concentric cluster is constructed based on the hop count
and transmission range. All of the first-level concentric clus-
ter components can communicate Cl in a single hop. In con-
trast, the next-level of concentric clusters can communicate
Cl according to the computation process of equations (2)
and (3). Figure 6 indicates the inter-cluster communication
process with Cl .

C. FORMATION OF SUB-CLUSTERS
Each machinery components in all the concentric clusters
are again grouped into several sub-clusters with appropriate

TABLE 1. Algorithm for sub-clustering.

CH to communicate to Cl . For the purpose of sub-clustering,
we opted K-means++ algorithm [5]. In the case of finding
initial centroids using Lloyd’s algorithm for K-Means cluster-
ing, randomization process is utilized. The initial k-centroids
were picked randomly from the data points (d). This random-
ization of picking k-centroids points results in the problem
of initialization sensitivity. This problem tends to affect the
final formed clusters. The final formed clusters depend on
how initial centroids were picked.

K-means++ is a smart centroid initialization technique
and the rest of the algorithm is the same as that of K-Means.
The steps to follow for centroid initialization are given table 1.

D. CH SELECTION
Each sub-cluster selects its CH component based on two
parameters: the communication device assigned to per-
form the least number of operations (α) and the device
with the maximum count of interconnected equipment (γ ).
CH changes over time, t whenever the role of the communica-
tion device changes. During the commencement of the initial
communication process, CH is randomly chosen. Later, each
communication device regularly verifies it’s α and γ values
and shares the massage with the current CH. Thus, based on
the computational values, the current CH selects a new CH,
which may reform the boundary of the sub-cluster if neces-
sary. Equation (4) represents the computation process for CH
selection. Around 50 per cent of the equipment is considered
static, while the remaining 50 per cent is considered to be in
mobile mode.

SCH i
tn =

{
min (α) , −∞ ≤ αt ≤ ∞
max (γ ) , −∞ ≤ γ t ≤ ∞ (4)
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FIGURE 7. Architecture of NFIS.

E. COMMUNICATION STRATEGY
The communication processes are handled in two stages:
intra-cluster communication and inter-cluster communica-
tion. Before the commencement of communication at both
stages, discovery of multi-path routing is performed via
neuro-fuzzy inference strategy.

NFIS is a hybrid of standard inference methods and the
more recent and sophisticated approaches of NN and FL.
Iteratively tuning the NN’s hidden (customizable) layers with
input data points implies the defining features of fuzzifica-
tion and the inference process via rule base. The framework
initially exemplifies the learning actions of a NN, and then,
for more precise exegesis, operation, and system depiction,
it also illustrates the action patterns of an FL.

An inevitable conclusion is to strengthen the technical
aspects of understanding fuzzy structures. To automate or
assist in the calibration of the fuzzy inference, NN, which
consists of a set of practical learning procedures, has conven-
tionally been considered a viable solution.

NFIS framework comprises four layers which utilizes
Mamdani inference procedures to attain the outcome. Fig-
ure 7 depicts the architecture of NFIS. All the layers are
briefly elaborated as follows,
Input and Fuzzification Layer: Any fuzzy set ‘F ′ (can be

denoted as Fd ) is the degree set inU to which theMF→ µ(u)
is applied (positively).

Fd →
〈
u ∈ U

∣∣ µFd (u) > 1
〉

(5)

The range of degrees in U in which the MF µFd (u) = 1 is
considered the core of a fictitious dimension (Fd ) (kernel)
described in the U (universe of disclosure).

core(Fd ) →
〈
u ∈ U

∣∣ µFd (u) = 1
〉

(6)

FIGURE 8. MF of (a) D, (b) ϕ, and (c) m.

Any fuzzy set’s MF is expressed in terms of a triangle MF in
the suggested model which is expressed as,

µFrd
(µ) ={

1 −
[
2

∣∣u− ūr
∣∣ /τ r] , if

(
τ r/2

)
= ≥

∣∣= u− =̄ur
∣∣

0 , otherwise
(7)

In equation (7), both ūr and τ r denote the MF’s core
(centre) and spread (width), correspondingly, as determined
by equation 1.3. As per the premise in layer 1, the ‘centroid’ is
considered to be a specific position in the core of the triangle
MF. In accordancewith the premise in layer 2, the distribution
of (Fd) determines the spread in specific MF.

The layer 1 include the elements that actualize the MF
µFrdx

(ūx), for r = 1,. . . .,N and x = 1,. . . ,n. The precise
input feed [(ūx),. . . ., (ūn)] is compiled of vector components
u = [ūr, . . . .,un]T. The preceding section (antecedent) of the
fuzzy sets Frd1 , . . . .,F

r
dn

for r = 1,. . . .,N at the laconic degree
µFrdx

(ūx), produces the fuzzified values. Thus, the total com-
ponents’ count equalizes (n.N), where n denotes the input
while N represents the set of rules in IF-THEN format. So,
the preceding component of the fuzzifier is represented by the
MF in layer 1. The primary objective of NFIS is to discover a
set of optimal intermediate communicative components and
essential routes. For this, three vital factors are considered:
the distance (D), maximum operational time of ith equipment
(ϕ), and mobility (m).

Figure 8(a), 8(b), and 8(c) represent the input MFD, ϕ, and
m, respectively. Each fuzzy set of input linguistic variables is
categorized into three linguistic terms, namely, L,M , and H ,
which are utilized to infer the fuzzified values via rule base.
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FIGURE 9. Rule base inference.

Rule Assessment Layer: The second layer consists of the
elements that validate the Cartesian product (implement the
min. function) of the variables of the MF µF rdx

(ūx) where
x is an integer ranging from 1 to n. A set of defined rules
Rk corresponds to the collection of N components that make
up this layer’s composition. The expression in equation (8)
describes the set of the objective rule base.

Rk : if
[
(u1 → Frd1 )&&(u2 → Frd2 )&& · · · (un →

Frdn
)]
Then

(
v → ok

)
(8)

where uk ,. . . .,un and v are the input and output linguistic
variables, respectively and k = 1,. . . .,N. Additionally, the
values of the defined variables are drawn from a set of pre-
configured MF depending on various linguistic terms. Both
F rd1, . . . .,F

r
dn and o

k refers the linguistic terms of input and
output, respectively.

To infer rules, theMamdani inferring technique [8] is used,
which is based on the precise ‘‘IF-THEN’’ rule-base. In this
way, the 27 rule guidelines in the rule-base are formed by
the three input variables used together to decide the var-
ious alternatives for data routing through an intermediary
route. Figure 9 shows the rule-base and the potential rule fir-
ings for simpler comprehension. Ultimately, the established
routes’ defined rules are sorted into categories for training and
decision-making. Typically, the ni that performs NF inferring
procedures will focus on the best possible route node along
the path. If the likelihood of receiving the optimal route node
is low, the subsequent set of ideal nodes is chosen as a backup.
This form of backup strategy increases the network’s reli-
ability in communication, particularly during data transfer.
Table 2 provides a classification of the rules that may be used
to find a degree of optimality (optimal, better, least optimal)
to choose route nodes.
Defuzzification and Outcome Layer: Both defuzzification,

as well as crisp outcome layers, are defined in the remain-
ing two NF layers. The Mean of Maximum (MoM) [19] is

TABLE 2. Compilation of rules and consequences.

applied for the defuzzification process, and it generates a
measurable result centered on the fuzzy sets, F̄kd, k= 1,. . . .,N.
An expression represented in the equation (9) characterizes
the defuzzification procedure.

u∗=

∑
(ui) ∈

[
eui/|e|

]
(9)

In this case, |e| denotes the cardinality of the Fd , and
‘e’ is used to normalize the heights of the F dk. The
level of antecedent compatibility is denoted by the hook’s
expressionξk = µF rdx

(ok ). On the other hand, that ξk is the
primary cause of the procedure in the linearization layer since
it is the result of the new stage and has been fed as input
to the defuzzification layer. To a large extent, the neural
system’s weights are determined by the values of uk , which
are propagated from the initial layer (first). Therefore, the
procedure stated involves a division operation carried out by
the layer’s last element in order to provide a precise result, o
and expressed as,

ō = ξk/
∑N

k=1
(ξk) ·

∑N

k=1

(
ūk

)
(10)

IV. PERFORMANCE EVALUATION
A. EMPIRICAL SETUP
To test and evaluate the proposed model, we utilized IoTIFY.
It is a testing, hyper-scalable application that can handle
thousands of connected devices. This form of network model
aids in the resolution of IIoT network challenges by modeling
many IoT virtualized interfaces and end-points. Working in
tandem with the IoT Application Integration Environment,
IoTIFY provides a versatile and adaptable IoT equipment
testbed that speeds up the creation, validation, and imple-
mentation of large-scale IIoT solutions supporting thousands
of devices. Data packet loss ratio, out-of-order transmis-
sion, delay, and concurrency are brought into networking by
LoRaWAN’s unpredictable communication medium. We use
the essential experimental specifications to assess the effec-
tiveness of the suggested model, which are all listed in
Table 3.

B. DISCUSSION
In a sequence of simulations carried out in two contrasting
IIoT settings (local automation unit and factory hall), the
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TABLE 3. Experimental settings and parameters.

proposed model’s efficacy is compared to that of two estab-
lished methods (EANFR and FBCFP). For analysis purposes,
a few basic metrics are considered. They are throughput, PTP,
PLR, communication delay, and reliability checks against
device failures.

The IIoT-based network’s throughput is defined as the rate
at which data is transferred between components at the local
automation unit level as well as the factory hall level and
the computation is expressed in equation (11). As a result,
the network’s efficiency is enhanced, as data transmission
distribution is optimized and packet latency is reduced.

T =

∑N

c=1
rdLAUc +

∑N

c=1
rdFHc (11)

FIGURE 10. Throughput analysis at (a) local automation unit, (b) factory
hall level.

Figures 10(a) and 10(b) demonstrate the suggested NF-based
routing throughput rate. In terms of the network’s throughput,
NF-based routing outperformed EANFR and FBCFP routing
approaches. It accurately estimated the data transmission rate
from origin to destination throughout the network. Overall,
the suggested methodology is determined to have an average
result of over 95%, whether applied to local automation or
the whole factory hall. The investigation is performed on
multiple stages (i.e., across and within clusters), revealing an
average throughput of 96.03% at the local automation unit
and 95.58% at the manufacturing hall. Additionally, it was
shown that the suggested model outperformed the EANFR
and FBCFP methods by a margin of 7% which is evident
from the outcome exhibited in figure 11. Such a high level of
functioning is achieved because of the NF inference engine,
which is touted as a sophisticated method for choosing the
intermediate routing equipment and distinguishing packet
losses incurred by wireless-generated faults.

The packet transmission proportion indicates the percent-
age of data streams sent ρs by the sources that actually
reach the target, ρr . It is determined by comparing the total
proportion of packets sent across the IIoT network to the total
proportion of packets intercepted at the terminal/end-point.
The computation of this metric is expressed in equation (12).

PTP =

(
ρr

/
ρs

)
(12)

Estimating the amount of data transferred from one device
connected to another is called PTP throughout the network.
Figures 12(a) and 12(b) depict the effectiveness of the PTP
for the proposed routing approach under varied payloads at
the LAU and FH levels, respectively. Inter-communication
at the LAU level has an average PTP percentage of 87.4%,
while intra-communication at the FH level averages 91.2%
due to the predominant use of NF-based methods in routing
with finer decision-making on choosing suitable intermediate
routing devices/equipment.

Inter-communication PTP resultants at the FH level aver-
age 84.6%, whereas intra-communication PTP resultants
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FIGURE 11. Throughput resultant comparison.

FIGURE 12. PTP analysis at (a) Local automation unit, (b) Factory hall
level.

average 90.2%. The PTP result shows that the conceptual
model outperforms competing approaches in intra-cluster
communication situations, suggesting prospective usage in
a vast scope of intra-cluster settings. Figure 13 shows that
when the performance of the proposed model is compared
to that of the current models, the NF-based routing approach
bolstered the suggested model for superior performance, and
this is true regardless of whether or not intra-cluster commu-
nication outcomes are included.

Figure 14 depicts the reliability check against a
device/equipment failure rate ranging from 5 to 25%. It is
found that the proposed model is highly reliable because it
tends to provide a tolerable communication service in the
presence of device/equipment failure. On the other hand, the
existing model failed to provide complete reliability due to a
higher failure rate.

The packet loss rate (PLR) is the proportion of successfully
delivered packets relative to the overall count of packets
sent across different sources and targets. Figure 14 shows
the resulting impact on the packet loss ratio for the pro-
posed model, EANFR, and FBCFP approaches by changing

FIGURE 13. PTP resultant comparison.

FIGURE 14. Reliability check.

the data transfer rate of transmission packets per minute
(1 pac/m, 5 pac/m, 15 pac/m and 20 pac/m). It has been
shown that NF-based routing strategies have a lower PLR
than EANFR and FBCFP methods across the range. Packet
loss rose by 20.12%, 28.58%, and 30.76% for the proposed
models, EANFR, and FBCFP, respectively, at a data trans-
mission rate ranging from 1 to 20 pac/m (see Figures 15(a),
15(b), 15(c), and 15(d). The possibility of packet loss esca-
lating in tandem with the data transfer pace is also noted.
This occurs as a result of the unrestricted involvement of
intermediary devices/equipment inside the clusters. This real-
ization highlights the significance of limiting or fixing the
data transmission rate throughout the IIoT-based networking
infrastructure.

It is evident through the observed results from figure 16 (a)
and 16 (b), which exhibits the average communication ser-
vice of the three different models at varying scalability. The
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FIGURE 15. PLR analysis at varying data transfer rate.

FIGURE 16. Scalability analysis.

proposed model maintains the above 96% communication
service across varying scalability at local automation cells
(ranging from 50 to 250 equipment), which dominates the
existing models. Similarly, at the factory hall level, though
the equipment count varies from 5 to 25, the communication
service is maintained at above 97%. This observation reveals
that the proposed model is highly compatible and adaptable
in different scenarios.

Though the performance of the proposed model excels in
all departments, they are a few identified limitations which
are considered in future work. They are (i) the processing
time of the NF system and (ii) exceeding observation of PLR
(above 15%)

V. CONCLUSION AND FUTURE WORK
The IIoT is an intelligent system made up of interconnected
components of machine parts designed to boost production in
industrial settings. As a result, self-governing communication
inmission-critical IIoT-based networks necessitates decision-

making procedures during communication. Therefore, in this
research, we developed an NF-based strategy to pro-
vide stable and reliable communication across all devices.
To solve communication problems, the suggested model
implements ingenious decision-making mechanisms. The
presented model surpassed the two most relevant current
approaches in several aspects and yielded positive results for
standard QoS measures as a consequence of the fine-tuning
experiments. The NF inference engine, hailed as a cutting-
edge mechanism for selecting the intermediate routing hard-
ware and identifying packet losses brought on by wireless-
generated defects, is responsible for this impressive degree of
functionality. We intended to test the proposed methodology
under high mobility conditions, particularly to determine its
reliability in such scenarios. In addition, we also planned to
consider the limitations of the proposedmodel (i) the process-
ing time of the NF system and (ii) exceeding observation of
PLR (above 15%).
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