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ABSTRACT We present a fully automated method for carotid artery (CA) outer wall segmentation in
black blood MRI using partially annotated data and compare it to the state-of-the-art reference model.
Our model was trained and tested on multicentric data of patients (106 and 23 patients, respectively) with
a carotid plaque and was validated on different MR sequences (24 patients) as well as data that were
acquired with MRI systems of a different vendor (34 patients). A 3D nnU-Net was trained on pre-contrast
T1w turbo spin echo (TSE) MR images. A CA centerline sliding window approach was chosen to refine
the nnU-Net segmentation using an additionally trained 2D U-Net to increase agreement with manual
annotations. To improve segmentation performance in areas with semantically and visually challenging
voxels, Monte-Carlo dropout was used. To increase generalizability, data were augmented with intensity
transformations. Our method achieves state-of-the-art results yielding a Dice similarity coefficient (DSC)
of 91.7% (interquartile range (IQR) 3.3%) and volumetric intraclass correlation (ICC) with ground truth of
0.90 on the development domain data and a DSC of 91.1% (IQR 7.2%) and volumetric ICCwith ground truth
of 0.83 on the external domain data outperforming top-ranked methods for open-source CA segmentation.
The uncertainty-based approach increases the interpretability of the proposed method by providing an
uncertainty map together with the segmentation.

INDEX TERMS Auto-segmentation, carotid MRI, vessel segmentation, U-Net, uncertainty regularization.
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I. INTRODUCTION
Stroke is the second leading cause of death and a leading
cause of disability in adults worldwide [1]. Carotid artery
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(CA) atherosclerosis is one of the major causes of stroke
as it can lead to the formation of an embolus from an
atherosclerotic plaque or hypoperfusion due to narrowing
of the CA lumen. Current risk assessment and treatment
decision strategies for patients with carotid artery stenosis
due to the presence of a carotid plaque who suffered a recent
transient ischemic attack (TIA) or stroke are based on the
degree of CA stenosis [2]. However, recent studies have
shown that plaque morphology and composition can improve
stroke prediction [3], [4], [5], [6].

Modern medical imaging techniques, such as ultrasound
(US), computed tomography angiography (CTA), and mag-
netic resonance imaging (MRI) help shed light on CA plaque
characteristics in a non- or minimally-invasive manner. MRI,
especially when combiningmultiple contrast weightings with
a reference black blood T1-weighted scan, can provide exten-
sive information about the CA, plaque morphology, and even
plaque subcomponents in 3D without the adverse effects of
radiation dose on the patient [5], [7]. One of the challenges
of MRI is the fact that manual CA plaque characterization
is time-consuming and subjective [8]. Therefore, there is a
demand to automate this process.

In the last decades, several research groups reported on
various methods to enable automated plaque characterization
on multi-contrast MRI by segmenting plaque components.
Computer vision approaches such as shape fitting, active
contours, and level sets, in combination with simple machine
learning methods such as classification and clustering, were
attempted early on [8], [9], [10], [11], [12], [13], [15], [16],
[17], [18], [19], [20], [21], and [14]. In more recent years,
convolutional neural networks (CNN), including U-Net, have
gained increasing attention [22], [23], [24], [25], [26], [27],
[28]. Whereas in early works, mostly area or volume differ-
ences were used as segmentation evaluation metrics, [10] was
one of the first to report traditional segmentation scores such
as Dice Score Coefficient and Hausdorff distance.

When analyzing the many techniques that have attempted
to characterize CA plaque and its subcomponents, it becomes
clear that the levels of automation are widely disparate. Even
though plaque characterization methods are automated, they
require CA localization first, and this step is performed man-
ually. In some studies, readers need to delineate the outer
wall and lumen on every MRI slice [8], [14], [15], [16],
[17], [22]. In other studies, plaque characterization needs
manually pre-cropped regions containing the CA or lumen
seed points in every slice as an input [9], [23], [26], [27].
Sometimes even additional delineation of a muscle region
is needed for intensity re-scaling [9], [15], [16]. While there
are some studies where the CA was located using the lumen
seed points in the distal slices alone, or in different CA
branches [11], [12], [13], [18], [19], user interaction is still
necessary, and no studies show robustness to seed posi-
tioning. A couple of publications report on automated CA
localization, but the detection area is limited to manually
selected slices [10]. These approaches are time-consuming

and introduce inter- and intra-reader variability. Moreover,
with a multi-contrast approach, different MRI scans should
be co-registered, which is at the moment performed in a
semi-automated manner. Therefore, to increase the speed,
robustness, reliability, and reproducibility of advanced quan-
titative CA analysis, while decreasing cost and clinical
burden, automated detection and segmentation of the CA
on black blood MRI sequences remains an unmet clinical
need.

There are a number of challenges related to CA segmen-
tation. First of all, currently popular deep learning-based
semantic segmentation approaches show robust perfor-
mance but require large amounts of fully annotated training
data [29]. In most datasets, only the symptomatic CA is delin-
eated. Moreover, in most cases, only the internal CA is delin-
eated meaning that in addition to the external branch of the
symptomatic CA and the entire asymptomatic CA, vertebral
arteries are also not delineated. Even though those arteries
are not of high clinical interest, for a deep learning network
they are essentially the same objects as the CA. Other neck
arteries are also present on the slice, and if their external walls
and lumens are clear on the image, being unlabelled, they
can confuse a segmentation model. Second, multi-contrast
MRI often experiences a domain shift caused by different
acquisition protocols [30]. Therefore, models trained on the
data from some particular scanner and acquisition protocol
might not be performing well on the data from slightly differ-
ent acquisition settings. Third, MRI is expressed in arbitrary
units [31]. Therefore, segmentation by thresholding char-
acteristic physical density units, such as Hounsfield units,
is problematic. Fourth, ground-truth segmentation is usually
performed on the reference MR sequence, and the other
black blood sequences are rigidly coregistered in a semi-
automated manner, which might cause co-registration issues
related to patient movement. Finally, Most modern deep
learning applications do not provide uncertainty estimations
of the segmentations and retail ‘‘black boxes’’ regarding the
interpretability of the outputs. Nevertheless, at the moment,
the demand for interpretable methods is growing [32]. At the
moment, there are several studies aimed to perform the whole
CA segmentation [27], [28], [33], but they all used the data
from the same domain for both training and evaluation of their
models.

To address these issues, we aimed to develop an automated
method for common and internal CA detection on black
blood MRI which would be robust against image quality
and acquisition protocol variations and could be trained on
partially segmented data, as well as providing uncertainty
estimates of the segmentations generated. For this, we trained
a nnU-Net [34], known for its high semantic segmenta-
tion performance in similar tasks [35], on lateral halves of
T1-weighted (T1w) scans containing CA outer wall contours.
After an nnU-Net model was trained to perform semantic seg-
mentation of CA on 3D MRI scans, an additional U-Net was
trained on 2D patches, containing the CA contour, to refine
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the output contours in anatomically challenging slices such
as bifurcation areas and increase the generalizability of the
method on the external data. To refine segmentation in
visually challenging voxels, we incorporated an uncertainty
component into the loss function using Monte-Carlo dropout
during training. Within this study, we hypothesized that the
proposed workflow would be able to segment CA on black
blood MRI robustly regardless of black blood sequence,
contrast media, or MRI vendor. Our secondary hypothesis
was that these nnU-Net refinements will improve the seg-
mentation. We refer to the refined segmentation network as
‘‘U-CarA-Net’’ (short for ‘‘U-Net-based carotid artery seg-
mentation’’), and the network with added uncertainty regular-
ization as ‘‘UR-CarA-Net’’ (short for ‘‘U-Net-based carotid
artery segmentation with regularization’’).

We tested U-CarA-Net and UR-CarA-Net on the training
data as well as on data from an external center. Addition-
ally, we tested the method on the regular T2w TSE scans
and post-contrast T1w TSE scans. We performed an abla-
tion study comparing the segmentations produced by the
backbone nnU-Net, U-CarA-Net, and UR-CarA-Net. Our
contribution in this work lies in the implementation of a fully
automatedmodel for the segmentation of CA in two clinically
relevant MRI sequences which can be trained on partially
labeled data as only the symptomatic CA was delineated -
and the addition of an uncertainty estimate of the segmen-
tations. The code is open-source and available at GitHub:
https://github.com/lavrovaliz/ur-cara-net [36].

II. METHODS
A. METHOD OVERVIEW
The main steps of the proposed method are:

1) Splitting the image of the neck through the central
medial plane and keeping only the halves contain-
ing ground-truth CA segmentation, keeping right side
halves and reflecting left sides to preserve the anatomy;

2) Training a 3D nnU-Net on lateral halves of T1w TSE
images, containing ground-truth CA contours, for CA
segmentation;

3) Training the U-CarA-Net on 2-channel 2D patches
localized along the CA centerline localized by the
nnU-Net;

4) Training the UR-CarA-Net on 2-channel 2D patches
localized along the CA centerline using U-CarA-Net
weights as initial weights.

The pipeline is illustrated in Figure 1. A detailed description
of the steps is presented in the next sections.

B. MRI SCAN SPLIT
As ground-truth segmentations were available only for the
symptomatic side, we split all the scans with the central
median plane to deal with the missing contra-lateral segmen-
tation. For training and validation, we selected the halves
containing the ground-truth segmentations. To preserve the

anatomy for the nnU-Net model, we keep the right side halves
untouched and the left side halves are reflected relative to
the median plane assuming lateral symmetry of the neck is
not disturbed significantly with the minor deviations in the
positioning of the patients.

C. CA SEGMENTATION WITH nnU-NET
To perform the initial CA segmentation, we trained a
3D full-resolution nnU-Net [34] on T1w TSE data. The
method described performs data pre-processing and adapts
its training and data augmentation parameters according
to the properties of the training data. We used the stan-
dard settings from the original implementation including
a combination of Dice similarity coefficient (DSC) and
cross-entropy as a loss function, stochastic gradient descent
with Nesterov momentum as an optimizer, poly learning rate
schedule with an initial learning rate of 0.01, and training on
1000 epochs.

D. SEGMENTATION REFINEMENT
Using the nnU-Net trained to segment CA in black blood T1w
TSE carotid scans, we were able to localize the CA centerline
and get the CA contour information. To refine the contours,
given there could be cases of slight co-registration errors
in the data from the different sequences, we trained a 2D
U-Net [37] to segment the CA on square MRI slice patches,
moving along the CA centerline.

For every slice, the patch center was placed into the center
mass of the nnU-Net outcome. As a 2-channel input for
the U-CarA-Net, we used corresponding patches of the T1w
slice and the nnU-Net softmax output. The nnU-Net softmax
output gives information about the reference segmentation
as well as uncertainty information by labeling voxels with
values between 0 and 1.

After the U-CarA-Net is trained, we re-trained it in the
following manner to improve its performance, calling it
UR-CarA-Net. Besides utilizing a 2-channel input, we incor-
porated uncertainty information into the loss function as
suggested in [38] to improve probability calibration in the
‘difficult’ region. We generated the uncertainty estimate
using Monte-Carlo dropout during training. We trained the
model with dropout and after every epoch, we sampled out-
comes obtained on the validation data from the current epoch
and previous N-1 epochs. Then we calculated the value of
the loss function composed of the weighted segmentation loss
and uncertainty regularization component, where segmenta-
tion loss had DSC and cross-entropy components.

In the following, P ⊂ R2 denotes the set pixels of a
patch, θ ∈ � are the parameters of the model, yp repre-
sents the ‘‘ground-truth’’ label of the pixel p ∈ P, yp,θ the
segmentation prediction for the pixel p ∈ P with a model
with parameters θ , and yp =

∫
θ∈�

P(yp|θ )P(θ |D)dθ is the
Bayesian average estimate for the pixel p ∈ P approximated
drawing sets of weights 2 ∈ � using Monte-Carlo dropout
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FIGURE 1. Method overview; MRI - magnetic resonance imaging, GT - ground-truth segmentation, SoftMax - nnU-Net SoftMax output, MC dropout -
Monte-Carlo dropout, STD - standard deviation, Seg Loss - segmentation loss, UR - uncertainty regularization; all the models have binary outputs: CA and
non-CA, models outputs are presented in purple-yellow segmentation map; the presented contours have several colors: green - ground truth, yellow -
nnU-Net, blue - UR-CarA-Net.

with N2 times sampling on the training dataset D:

LTOTAL = wDSCLDSC + wBCE tanh(
γBCELBCE

2
))︸ ︷︷ ︸

Segmentation

+ wUNC tanh(
γUNCRUNC

2
))︸ ︷︷ ︸

Uncertainty

(1)

where tanh : x →
ex−e−x

ex+e−x is an hyperbolic tangent,
LTOTAL is the final loss function, the segmentation loss con-
tains weighted DSC lossLDSC and cross-entropy lossLBCE ,
RUNC is our proposed uncertainty regularization component,
the corresponding weights are wDSC , wBCE , and wUNC , and
scaling factors are γBCE and γUNC . The loss functions and
regularization component are calculated as the following:

LDSC = 1 −
s+ 2

∑
p∈P ypyp

s+
∑

p∈P yp +
∑

p∈P yp
, (2)

LBCE = −

∑
p∈P

yplog(yp) + (1 − yp)log(1 − yp)), (3)

RUNC =

∑
p∈P

1
N2

∑
θ∈2

(yp − yp,θ )2. (4)

where s is a smoothing factor.
We implemented hyperbolic tangent as a scaling function

to cross-entropy and uncertainty components since they have
ranges of values different from each other and DSC. Both
components have 0 as a minimal possible value, and the
highest value depends on the image size in the extreme case.
We used hyperbolic tangent to scale the values of these com-
ponents in the range of [0, 1].

A new loss was implemented for training the U-CarA-Net
model since we assumed that the learning curve plateau was
reached. As we intended to improve the performance of a
model trained to solve a particular task, we assumed that
the U-CarA-Net weights were close to the optimal point
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in the parameter hyperspace. Therefore, for UR-CarA-Net,
we decreased the learning rate to find a solution close to the
U-CarA-Net weights.

III. EXPERIMENTAL SET-UP
A. IMAGING DATA
This model-building procedure was registered at OSF.io
(10.17605/OSF.IO/VPT2B). We used imaging data acquired
within the PARISK study (clinical trials.gov NCT01208025)
in Amsterdam Medical Center (center 1), Erasmus Medical
Center (center 2), Maastricht University Medical Center+
(center 3), and University Medical Center Utrecht (center 4)
[2]. PARISK is a large prospective multicenter study to
improve recurrent stroke risk stratification based on multi-
modality carotid imaging in symptomatic patients with mild
to moderate CA stenosis. Inclusion criteria were a transient
ischemic attack (TIA), amaurosis fugax, or minor stroke
(modified Rankin scale≤3) of the CA territory, CANASCET
stenosis <70% of the ipsilateral internal CA detected on
Doppler US or CTA, and no indication for a revasculariza-
tion procedure. Exclusion criteria were a probable cardiac
source of embolism, a clotting disorder, severe comorbid-
ity, standard contraindications for MRI,. Written informed
consent was obtained from all patients before enrolment.
MRI was performed on 3T whole-body scanners. Centers 1,
3, and 4 used an Achieva TX scanner (Philips Health-
care, Best, The Netherlands) with an eight-channel phased-
array coil (Shanghai Chenguang Medical Technologies Co.,
Shanghai, China). Center 2 used a Discovery MR 750 system
(GE Healthcare, Milwaukee, MI, USA) with a four-channel
phased-array coil with an angulated setup (Machnet B.V.,
Roden, Netherlands). Apart from the difference in hard-
ware and MRI protocols, the main difference is in acquired
and reconstructed voxel sizes. More information is available
in [2].

For this study, we used pre-contrast T1w TSE MRI. Addi-
tionally, we validated the models on T2w and contrast-
enhanced T1w (T1w CE) TSEMRI. The scans were acquired
with the same reconstructed slice thickness of 2 mm and
contained up to 15 slices, centered on the CA bifurcation.
The acquisition plane for all the protocols was transversal.
The MRI protocols were described previously [2] and are
summarized in Table 1. We selected patients for whom
the described sequences were available. Therefore, our data
contained 13, 115, 25, and 34 patients from centers 1, 2, 3,
and 4, respectively.

B. IMAGE PRE-PROCESSING
The slices from centers 1, 3, and 4 were cropped to a
512 pixels × 512 pixels matrix by removing 8 border pixels
from each side. The slices from center 2 were resampled with
cubic interpolation to an in-plane 0.3 mm× 0.3mm pixel size
and reshaped to a 512 × 512 matrix. The reshaping was per-
formed by padding. Intensity normalization was performed
by subtracting the minimum intensity and dividing it by the
intensity range for every slice.

TABLE 1. MRI scan parameters.

C. EXPERIMENTS
We trained and evaluated three CA detection and segmenta-
tion models: the baseline nnU-Net and U-CarA-Net with and
without uncertainty component in the loss function. All the
models were trained, validated, and tested on the same data,
for both U-CarA-Net models the same data augmentation
transformations were applied to the same slices.

The patients from centers 1, 3, and 4 were split in a
center-stratified manner into training, validation, and test sets
in the proportions of 0.70, 0.15, and 0.15, respectively. Train-
ing and validation sets were used while training the models.
Data from the test set were used to evaluate the performance
scores. Data from center 2 were used for external testing. The
summary of the resulting data split can be seen in Table 2.

All the data we had, we could separate into 4 domains.
The pre-contrast T1w TSE data from centers 1, 3, and 4 were
split into training, validation, and test sets and represented
the development domain (referred to as DD). The scans from
the training and validation sets were used to train the CA
detectionmodels and tune hyperparameters. Themodels were
evaluated on the data from 3 domains different from the
development domain:

1) post-contrast T1w TSE MRI from the patients of
centers 1, 3, and 4 test sets (referred to as D1),

2) T2w MRI from the patients of centers 1, 2, and 3 test
set (referred to as D2),

3) T1w FSE from center 2 (referred to as external
domain, ED).

To investigate the generalizability of the models trained on
the DD, they were evaluated on D1, D2, and ED to assess
the center-specific impact of a different vendor, and different
acquisition and reconstruction protocols. A summary of the
data domains we used in this study is presented in Figure 2.

D. EVALUATION
To evaluate the results, we used common segmentation met-
rics such as the DSC and Hausdorff distance (HD). These
scores are traditionally reported in segmentation studies and
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TABLE 2. Patients split into training, validation, and test sets.

give an understanding of the overlap and distance between
the segmented areas. Additionally, we used problem-specific
metrics. As for our task, it is important to preserve the center-
line of the segmented area, so we used the center line Dice
similarity coefficient (clDSC) to evaluate the models [39].
As we are dealing with uncertain reference annotations in
D1 and D2, we utilized the normalized surface distance
(NSD) [39], [40] as an uncertainty-aware score with a tol-
erance of 2 voxels as this is the average contouring dis-
agreement we calculated from the manual annotations. Even
though we suggest a fully automated method, we still assume
an expert interaction in the cases where the method fails.
To assess a value of a possible expert correction, we evaluate
the relative added path length (relAPL), which is the length
of the contour that has to be drawn while editing a segmenta-
tion [41] reported relative to the ground-truth contour length.

Finally, we computed the clinical metric used in cardiovas-
cular clinical practice, the root-mean-square error between
the ground truth and automatically segmented volumes
(VRMSE). To measure the agreement between ground-truth
and automated segmentations, we calculated the intraclass
correlation (ICC) and performed Bland-Altman analysis for
the CA volumes. For the non-normal distributed scores,
we reported median values and interquartile ranges (IQR).
For the differences in the scores, statistical significance was
assessed using the two-sided Wilcoxon test.

To better gauge the performance of our model in different
conditions, we investigated the influence of the slice location
and image quality on 2D segmentation scores. As previously
described evaluation scores assess segmentation quality in the
whole 3D scan, to compare the segmentation performance
in different anatomical parts of the CA, we calculated 2D
DSCs in common and internal CA. We were dealing with
multiple data domains originating from contrast media pres-
ence, different acquisition protocols, and equipment, result-
ing in different levels of noise and intensity bias, which,
from the digital imaging point of view, resulted in different
image contrast. Therefore, we compared 3D DSCs obtained
for D1, D2, and ED scans, having the contrast within and
beyond DD contrast values. As a contrast evaluation metric,
we chose Michelson contrast, which characterizes areas with
non-uniform textures and is used in medical imaging [42].

To evaluate the effects of adding uncertainty informa-
tion, we compared the baseline model (nnU-Net) with
U-CarA-Net and UR-CarA-Net. All the models were trained
on the whole training and validation datasets with only the
symptomatic CA labeled. All the pipelines used the same
trained nnU-Net model, both U-CarA-Net and UR-CarA-Net

models had the same architectures. Evaluations were per-
formed on the test data.

E. IMPLEMENTATION DETAILS
We used the same architecture of U-Net as a backbone model
for both U-CarA-Net and UR-CarA-Net. The input shape was
64 × 64 × 2 since we had 2 channels and a square patch
size of 64 pixels × 64 pixels. A patch size of 64 × 64 was
selected since 64 is the smallest power of two which exceeds
the root square of the maximum CA area in training data
slices. Convolutional layers (Conv2D) with a kernel size of
3 pixels × 3 pixels were followed by batch normalization for
faster training and to reduce overfitting. The first Conv2D
consisted of 16 filters. In the contracting path, a number of
filters were duplicated in every other Conv2D, resulting in
256 filters in the bottleneck Conv2D layer. In the expanding
path, the number of filters was halved in every Conv2D. All
the activation layers after batch normalization layers were
exponential linear units (ELUs) for simplicity and general-
izability, and to avoid the vanishing gradient and dying node
problems, except for sigmoid activation in the last conv2D for
pixel-wise CA probability prediction for a non-linearly sepa-
rable problem. Activation layers were followed by 2D max-
pooling layers downsampling the input with a 2 × 2 window
and a stride equal to the pool size selecting the max value
from the window. Every max-pooling layer was followed by
a dropout layer to prevent overfitting and enable uncertainty
regularization component in UR-CarA-Net. Every transposed
Conv2D (Conv2DTranspose) had a kernel size of 3 pixels ×

3 pixels, strides of 2 pixels × 2 pixels, and the same number
of filters as an upcoming Conv2D. The initial learning rate
of the Adam optimizer was reduced by a factor of 0.1 after
3 epochs of non-improvement of the loss function.

We trained the U-CarA-Net for 100 epochs with a batch
size of 64. The dropout rate was 0.05. The initial rate of
the Adam optimizer was 0.001, it was reduced by the fac-
tor of 0.1 while the learning curve was on a plateau for
3 epochs, and the lowest bound for the learning rate was
10-5. We trained UR-CarA-Net using U-CarA-Net weights
as the initial weights. The dropout rate was 0.1 to increase
its influence on the uncertainty regularization component.
We used the same batch size and learning rate-reducing strat-
egy as for U-CarA-Net. However, the initial learning rate of
the Adam optimizer was set to 10−9, and the lower bound
for the learning rate was 10−15. Small values of the learning
rate were used since the baseline model (U-CarA-Net) was
already trained to solve the task, hence, only refinement was
needed. Therefore, it was important not to move far in the
hyperparameter space. Weights for the loss functions compo-
nents and scaling function factor were set to wDSC = 0.5,
wBCE = 0.5, wUNC = 1, γBCE = 1, and γUNC = 1. These
values were estimated empirically while experimenting with
different weighting factors using weights from [38] as a
reference.

To avoid overfitting and increase the robustness of
the model to different hardware, and reconstruction and
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FIGURE 2. Data domain description.

TABLE 3. Comparison of carotid artery (CA) segmentation performance of the baseline (nnU-Net), improved (U-CarA-Net), and proposed (UR-CarA-Net)
methods calculated on development domain (DD), first domain (D1), second domain (D2), and external domain (ED).

acquisition protocols, data augmentation was applied to all
the training slices. The transformations had a probability of
0.5 each and mostly simulated differences in intensity distri-
butions. The following transformations were performed: hor-
izontal and vertical flips, blurring with a kernel size ranging
from 3 to 7 pixels, Gaussian noise with 0mean and variance in
the range from 10 to 50, brightness and contrast variation by
25%, and gamma transformation with gamma ranging from
0.8 to 1.2. Every transformation parameter was a random
number from the uniform distribution of the corresponding
range. From every original slice used for data augmentation,
10 augmented slices were generated.

We utilized Keras 2.2.4 with a TensorFlow 1.14.0 backend.
All the training and testing were performed on one NVIDIA
GeForce RTX 2080 Ti.

IV. RESULTS
The resulting nnU-Net configuration can be found in the
debug file in the project GitHub repository [36].

As can be seen from Table 3, the overlap-based metrics,
such as DSC, clDSC, and NSD, are relatively high for all
the models and data domains. The highest medium DSC is
91.9% for the U-CarA-Net in DD, the lowest is 88.3% for the
U-CarA-Net in ED. The clDSC is above 97% for all the
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FIGURE 3. Bland-Altman plots for the models obtained on DD, D1, D2, and ED. The solid line represents the mean difference. The dashed lines represent
+1.96 standard deviations (top) and −1.96 standard deviations (bottom) from the mean.

models and all the data domains, even yielding amedian value
of 100.0% for nnU-Net in D2, the U-CarA-Net in DD andD2,
and the UR-CarA-Net in D2. NSD scores are significantly
higher than the corresponding DSC, exceeding 97% for all
the models and data domains.

The best performance among the data domains is achieved
on the DD. The common segmentation metrics (DSC, clDSC,
and NSD) yielded by the baseline model were relatively
high in D1, D2, and ED. Nevertheless, clinically relevant
volume-related scores, such as VRMSE, showed insufficient
segmentation in these domains, especially in ED yielding
a VRMSE of 1.26 compared to a VRMSE of 0.22 in DD.
Low values of ICC between ground-truth and auto-segmented
contours in D1 and ED show a poor agreement with the man-
ual segmentation. Contour refinement with the U-CarA-Net
improved segmentation scores for the DD and distance-based
metric HD for the D1 and D2. This resulted in the improve-
ment of VRMSE and ICC yielding better agreement with the
manual segmentation. Finally, contour refinement with the
UR-CarA-Net improved distance-based HD and relAPL for

all the data domains. It resulted in a lower VRMSE in D2 and
ED and in higher ICC for D1, D2, and ED. Moreover, for ED,
compared to nnU-Net, ICC increased by 0.30 and VRMSE
decreased by a factor of 2. Additionally, the UR-CarA-Net
application results in IQR drop for HD, NSD, and relAPL
in all the domains, as well as DSC and clDSC for DD,
D1, and ED. For the ED, all the metrics obtained with the
UR-CarA-Net show the best performance of this model and
the lowest IQRs. Nevertheless, for the DD data, the best
volume-based scores are still yielded with nnU-Net. The
most challenging data domain, even for the UR-CarA-Net,
was post-contrast MRI, where we could achieve an
ICC of 0.74.

Even though we noticed an improvement in the distance-
and volume-based metrics while using the proposed model,
overlap-based metrics have high values which are close to
each other. Also a statistical comparison of the interval-based
estimations of the metrics is shown. We compared the pro-
posed method (UR-CarA-Net) with the baseline (nnU-Net)
and improved (U-CarA-Net) ones on the ED. As we can
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FIGURE 4. Segmentation performance with regards to carotid artery (CA)
anatomy. Segmentation performance is measured in 2D Dice similarity
coefficient (DSC). CA anatomy is defined as common CA (CCA) or internal
CA (ICA). Data were presented as box plots, where boxes are representing
the interquartile range (IQR), extending from Q1 to Q3 and centered on
the median value. Upper whiskers represent the highest data point that is
less than Q3 + 1.5 × IQR. Lower whiskers represent the smallest data
point that is greater than Q3 − 1.5 × IQR.

see from results table, UR-CarA-Net significantly improved
DSC, NSD, and relAPL.

Bland-Altman plots in Figure 3 show, that even though all
the models are yielding absolute bias values close to 0 ml,

FIGURE 5. Segmentation performance with regards to the image quality
corresponding or not to image quality in development domain (DD) data.
Segmentation performance is measured in 3D Dice similarity coefficient
(DSC). Image quality is defined in terms of Michelson contrast lying
within and beyond DD values. Data were presented as box plots, where
boxes are representing the interquartile range (IQR), extending from Q1
to Q3 and centered on the median value. Upper whiskers represent the
highest data point that is less than Q3 + 1.5 × IQR. Lower whiskers
represent the smallest data point that is greater than Q3 − 1.5 × IQR.

the proposed method could decrease the absolute systematic
bias in DD by 0.07 ml, in D2 by 0.01 ml, and in ED by
0.40 ml. Nevertheless, for DD and D1 the lowest bias values
were yielded with U-CarA-Net. We can also see that the
implementation of U-CarA-Net and UR-CarA-Net increased
the segmented volumes in DD, D2, and ED.

Figure 4 shows that 2DDSCs calculated in CCA are higher
than in ICA. The UR-CarA-Net application decreases the
range of DSC deviation, especially in ICA. Nevertheless, the
lowest 2D DSC values and the widest DSC IQR are observed
in D1 ICA, where U-CarA-Net and UR-CarA-Net do not
improve the segmentation performance.

According to Figure 5, segmentation performance drops
when theMichelson contrast is not within the range presented
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FIGURE 6. Segmentation of the ‘simple’ slices: blue contour — ground-truth, yellow contour — segmentation model, DSC — 2D Dice similarity
coefficient for 2D contour, GT — ground-truth segmentation; first line — T1w TSE from the development domain, second line — post-contrast
T1w TSE, third line — T2w, fourth line — external domain T1w FSE.

FIGURE 7. Segmentation of the ‘challenging’ slices: blue contour — ground-truth, yellow contour — segmentation model, DSC — 2D Dice
similarity coefficient for 2D contour in percentage; first line — T1w TSE from the development domain, second line — post-contrast T1w TSE,
third line — T2w, fourth line — external domain T1w FSE.

in the DD. In the D1, DSC is decreased by more than 20%,
but in the D2 and ED, UR-CarA-Net application reduces the

DSC variance for the scans with Michelson contrast values
outside of the DD values.
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Figure 6 shows segmentation results in the ‘simple’ cases.
These slices are taken from the different patients and data
domains. On these slices, the CA is clearly visible, it has
a sufficient area, and the anatomy is simple, without any
bifurcations and other CA branches present. The DSC values
calculated for the same slice but with different models are
similar.

Figure 7 shows segmentation results in ‘challenging’ cases.
The slices are taken from the different patients with 2 repre-
sentations from each data domain.

The segmentation challenges were caused by complicated
anatomy (DD, D1), low image quality (ED), or different
intensity distribution (D2). In these examples, the nnU-Net
contours do not cover the whole CA area, especially in the
bifurcation area or in the CA with stenosis. This results in
the non-smooth contours not covering the whole CA area.
In the DD case, the ICA was not a part of the contour.
In the D2 case, the CA had only some pixels segmented; in
the case of ED, it was not segmented. Implementation of the
U-CarA-Net and UR-CarA-Net increased the segmented
areas andDSCs. For caseA, even though the highest DSCwas
yielded with UR-CarA-Net, the model still did not segment
thewhole CA area, and the contour was not smooth. However,
the uncertainty map for this slice has high values in the pixels,
classified as false negatives, showing that additional attention
is needed. Finally, the UR-CarA-Net segmentation in the case
ED overlaps the CA area. Still, it has a curved shape, which
is reflected in the corresponding uncertainty map, having
many bright pixels along the predicted segmentation edges.
Nevertheless, DSC increased from 0.0% to 79.9%.

V. DISCUSSION AND CONCLUSION
In this work, we presented a method for CA segmenta-
tion on BB MRI. The robustness of Our proposed method
is more robust for different MRI protocols and acquisition
equipment. Even though we did not observe any signifi-
cant improvement testing our model on the data from the
development domain, volumetric ICC between ground-truth
and automated segmentations improved by 0.19, 0.03, and
0.30 in the contrast-enhanced, T2w, and different centerMRI,
respectively. Moreover, in the external domain data, DSC,
NSD, and relAPL improved significantly. Even though the
proposed method brought segmentation performance scores
in the external domain more in alignment with the ones
in the development domain, in the contrast-enhanced and
T2w MRI, the volumetric scores were lower. This can be
explained by the fact that according to the protocol, the
ground-truth contours are drawn on the T1wTSE data. There-
fore, they were drawn on development domain data and then
projected on contrast-enhanced and T2w MRI. Due to the
minor patient movement, some slight misregistrations were
possible. Additionally, in the T1w CE scans, contrast accu-
mulates in the highly vascularised outer vessel wall (adventi-
tial layer), which can cause a bias in the quantification of the
wall volumes. High clDSC and NSD scores were observed,
which did not change much between the models. Therefore,

CA centerlines and main areas segmented by the nnU-Net
did not change much, and contours were refined at the edges
resulting in the difference between the segmented volumes,
which proves our secondary hypothesis.

In comparison to similar published work, [27] used a
3D U-Net to segment CA outer wall and lumen on the
PARISK data excluding EMC scans. The authors applied
Monte-Carlo dropout as well to assess the segmentation
uncertainty, yielding DSCs of 76.4% for the vessel wall and
88.5% for the lumen. The authors limited the scans by a
128 × 128 × 16 bounding box placed in the center of the
ground-truth segmentations. Alblas et al. [28] and Zhu et al.
[33] applied 3D U-Net for CA localization and 2D CNN
for CA segmentation method similar to ours that employs
the sequential application of two deep learning models for
1) 3D CA centerline detection and 2) 2D CAwall contouring.
They achieved a median DSC of 81.3% for the vessel wall on
the open-source dataset acquired with the sameMR protocol.
Zhu et al. [33] achieved DSCs of 89.68% and 80.29% for the
lumen and wall segmentation, respectively. They combined
deep learning and graph-based approaches and applied them
to the multi-sequence MRI acquired with the same protocols.
DSCs reported in the current study, obtained on the PARISK
data, exceed the values reported in the literature. But for a fair
comparison, the same dataset should be used.

Although several studies to develop CA segmentation
methods have been previously performed, we believe our
work still stands out as a fully automated pipeline. Moreover,
to our knowledge, it is the first study performing validation
in multi-domain and multi-center data. We showed that the
implementation of our method improves the segmentation
performance on the external data domain to the level of
the performance achieved on the development data domain.
To improve our segmentation performance, we introduced
three additional steps to the high-performing baseline model
(nnU-Net): 1) carotid MRI lateral split to deal with one-sided
annotations, 2) 2D contour refinement in a patch put into
the localized CA area using the original image and nnU-Net
softmax output, 3) introduction of an uncertainty component
to the loss function using Monte-Carlo dropout. The repro-
ducibility of this study is guaranteed by using carotid MRI
data from a national multicenter PARISK study which is a
highly recognized dataset. As all the patients had mild to
moderate CA stenosis, the models were trained on the target
patient cohort data, so they are robust to the pathological CA
shape variations. We separately applied the method to the
different BB MR sequences from the multi-contrast dataset
instead ofmerging all these data into different channels which
makes our method less demanding for the input data. Finally,
UR-CarA-Net does not utilize the uncertainty information
only in the training process but also enables uncertainty
map generation by activating the dropout layers during the
inference. Therefore, scans with high uncertainty scores can
be reviewed separately.

There are some limitations of the presented approach. First
of all, it is highly dependent on the baseline model (nnU-Net)
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used for the initial CA segmentation. After nnU-Net,
U/UR-CarA-Net scans the patches along the primarily seg-
mented CA. Therefore, if nnU-Net does not segment the
vessel or segments the wrong object in the scan, this error
cannot be corrected by our method. Moreover, as presented
in Figure 4, whereas CCA segmentation DSCs are relatively
high, there might be errors in ICA segmentation. Neverthe-
less, Figure 4 also shows that the proposed method improves
the ICA segmentation. However, these errors can be allevi-
ated by increasing the dataset size. The second limitation is
related to the blind lateral split of the MR scans into the right
and left sides. If the patient is not positioned perfectly in the
scanner, it results in a significant disturbance of the anatomy.
Nevertheless, we rely on the carotid MRI data correspond-
ing to the acquisition protocols where a patient is carefully
centered in the scan. The third limitation is in the application
of the 2D approach in contour refinement. We selected this
approach for several reasons: 1) by using a 2D input, the
training data size is increasing, 2) scanning 3D scans with
a cubic 3D U-Net window will require more computational
capacity, 3) reconstructed z-axis resolution is much lower
than in-plane resolution (2 mm vs 0.30 mm × 0.30 mm).
Finally, it is necessary to be careful in selecting the BB MR
sequences since the enhancement of the outer layer of the
vessel wall can cause a bias in volumetric measurements.

As the proposed method is the first step in CA plaque
characterization, in future work, we aim to build a model for
cardiovascular event prediction in patients with CA stenosis
to be able to stratify patients based on their risk of stroke.
Additionally, the results show that it is possible to use our
method for BB MR sequence automated co-registration by
segmenting CA on the scans of the same patient and minimiz-
ing the distance between the segmentations obtained on the
different sequences. The achieved state-of-the-art segmenta-
tion metrics of our method together with its interpretability
due to the uncertainty maps generation means the approach
can be used as an initial step in CA plaque analysis. It can
be followed by automated plaque components segmentation
with one of the existing methods and handcrafted or deep
radiomics applications for clinical outcomes prediction.

To conclude, in this first externally validated multi-center
fully automated CA segmentation study, our model showed
good segmentation performance (DSC of 91.7% (IQR 3.3%)
on the development domain scans and 91.1% (IQR 7.2%) on
the external domain scans), as well as an agreement with the
manual segmentation (volume ICC of 0.91 on the develop-
ment domain scans and 0.83 on the external domain scans).
Its application is also feasible for the other BBMRI, obtained
with other equipment or sequences. The suggested approach
can be used for the other tasks on partially labeled data. The
code is available on GitHub [36].
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