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ABSTRACT Artificial intelligence is becoming increasingly important in the air combat domain. Most air
combat research now assumes that all aircraft information is known. In practical applications, however, some
aircraft information, such as their position, attitude, velocity, etc., can be incorrect or impossible to obtain
due to realistic limitations and sensor errors. In this paper, we propose a deep reinforcement learning-based
framework for developing a model capable of performing within visual range (WVR) air-to-air combat under
the conditions of a partially observable Markov decision process (POMDP) with insufficient information.
To deal robustly with such a situation, we use recurrent neural networks and apply a soft actor-critic (SAC)
algorithm to cope effectively with realistic limitations and sensor errors. Additionally, to raise the efficiency
and effectiveness of learning, we apply the curriculum learning technique to restrict the scope of exploration
in state space. Finally, simulations and experiments show that the proposed techniques can deal with practical
problems caused by sensor limitations and errors in a noisy environment while also being efficient and
effective in reducing the training time for learning.

INDEX TERMS Air-to-air combat, limitation and error of sensors, recurrent neural network, reinforcement
learning, soft actor-critic.

I. INTRODUCTION
The necessity of unmanned combat air vehicles (UCAVs)
in various countries is increasing with the development of
artificial intelligence (AI), integrated sensors, and communi-
cation technologies. Hence, the importance of the air combat
model, which plays a key role in UCAVs, is increasing.
Future warfare is shifting to ‘‘mosaic warfare,’’ which utilizes
low-cost unmanned aerial vehicles (UAVs). For example,
if the classical manned fighting formation can be improved
into a manned-unmanned complex fighting formation, each
well-trained human pilot can operate the command fighter
while simultaneously controlling several unmanned fighters
operated by the combat models. Thus, well-trained human
pilots can operate several unmanned fighters, including their
ownship (which refers to one’s own aircraft), eventually con-
tributing to the effective operation of a fighting formation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Hence, the Defense Advanced Research Projects Agency
(DARPA) is developing a human-level air combat model to
advance and build trust for air combat through theAir Combat
Evolution (ACE) program.

Various kinds of research to develop an air combat model
have been performed using minmax tree search, behavior
tree, a virtual pursuit point technique based on a genetic fuzzy
tree, etc. [1], [2], [3]. However, there are various kinds of
limitations in the case of such rule-based air combat algo-
rithms. In the functional aspect, aircraft characteristics such
as rules and gain should be defined to develop an air combat
model that can perform any specified task. In the performance
aspect, developing the rules for optimal performance in a
high-difficulty mission such as air combat is challenging
because such rules are based on the appropriate hypothesis
of the algorithm and the expert knowledge of the developer.

Recently, with the development of deep reinforcement
learning (DRL), research using this has been applied to
various challenging fields and has resulted in significant
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successes, such as AlphaGo [4], AlphaStar [5], and Falco [6].
In particular, several studies use DRL to generate aircraft
maneuvers for air combat [7], [8], [9]. In some cases, some
studies simplify the complex air combat environment and
then learn the maneuver to avoid obstacles using reinforce-
ment learning [10]. In contrast to this approach, our work
aims to develop a model that is good enough to chase and
shoot down the fighter, not to avoid obstacles, at the same
level of mechanical properties and control input/output of
the fighter in a within visual range (WVR) engagement
environment.

Most aircraft maneuver generation for air combat research
assumes that all information about the ownship and target is
known [11], [12]. However, in practical applications, some
information, such as the position, attitude, and velocity of
the ownship and target, can be incorrect because of sen-
sor performance limitations, errors, and weather conditions.
Furthermore, because of the failure to pursue the opponent,
it is sometimes impossible to obtain information about the
target. Therefore, to apply the air combat model to the actual
aircraft, it should be necessary to consider the limitations
and errors of the integrated sensors with which the aircraft is
equipped.

Some studies have been conducted on sensor errors [13].
The 3-dimensional environment was considered; however,
the fidelity of the control model remains at the level of
kinematics and does not reflect practical characteristics, such
as sensor limitations and errors, by adapting themethodology
to consider noise in the state value.

In this paper, a DRL framework for developing an air
combat model with a high-fidelity physical model capable
of performing air-to-air combat under partially observable
Markov decision process (POMDP) environments while con-
sidering the limitations and errors of sensors is proposed.
We consider two kinds of sensors: radar and visual sensors.
We assume that the radar system can detect the opponent
precisely in the forward direction of the ownship, and the
visual sensor can detect the opponent in all directions in a
close combat situation. To robustly deal with the situation
where there is no information about the opponent because it
exists beyond the scope of sensors, we utilize long short-term
memory (LSTM) and apply the soft actor-critic (SAC) [14]
algorithm to cope with sensor errors effectively. To evaluate
our proposed combat model, we call it SAC-LSTM, which
follows the network architecture mentioned in Section IV,
in contrast to SAC-FC, which only builds on fully connected
layers.

Moreover, to increase the efficiency and effectiveness of
learning, we apply the turn circle-based curriculum learning
technique, which restricts the scope of exploration in state
space and is based on the idea that humans learn gradually
from simple to complex concepts. It has been proven to be
effective in reducing training time. In addition, it induces
feedback of a reward signal in an environment where the
reward function is rare, helping to balance between exploita-
tion and exploration.

Finally, various simulations and experiments show that the
proposed algorithms can deal with practical problems caused
by sensor limitations and errors while also being efficient and
effective at learning.

In summary, our paper provides the following
contributions:

• The introduction of a novel air combat maneuver gen-
eration framework. The model generated using the
framework effectively performs air combat in a WVR
engagement environment that considers the limitations
and errors of sensors.

• An evaluation of SAC-FC and SAC-LSTM in an engag-
ing environment that takes account of the limitations
and errors of sensors. Experiments confirmed that
SAC-LSTM has better performance.

• Validation of our proposed turn circle-based curriculum.
Models learned using the curriculum recorded higher
performance and were learned faster.

The rest of the sections of the paper are organized as
follows: In Section II, backgrounds are explained, and the air
combat simulation environment is described in Section III.
The air combat DRL framework under POMDP circum-
stances is proposed in Section IV. Section V describes the
experimental training and test results for the performance
of the combat model through simulation analyses. Finally,
Section VI discusses the results and describes further work.

II. BACKGROUNDS
This section describes the background information required
for this study.

A. REINFORCEMENT LEARNING
Markov decision process (MDP) refers to a sequential deci-
sion process to satisfy the property of the state function of
the next step, which depends only on the current state and
action and is affected by the reward function [15]. According
to the standard notation, the MDP can be expressed as a
4-tuple< S,A,P,R >. Each component means a state s ∈ S,
an action a ∈ A, the transition probability P(s′|s, a) when an
action is performed in the state, the probability of moving on
to the next state, and the reward function r(s, a).

Reinforcement learning (RL) refers to the process in which
an agent performs an action in a given MDP environment
based on the trial-and-error learning process and receives a
reward based on the performance of the action [16]. Algo-
rithms for learning agents are divided into on-policy and off-
policy algorithms. In on-policy algorithms, policy functions
are learned directly; in off-policy algorithms, they are not, and
most of them are learned by estimating action-value functions
(the Q Function). The optimal Q Function Q∗(s, a) for the
current state and action is calculated as the expectation value
of the sum of the optimal Q Function considering the action
a′ obtained by reward r(s, a), next state s′, and the transition
probability distributionP. In this case, themax function of the
Bellman equation cannot be dealt with in a problem related
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to the control of continuous space. To solve this problem, the
actor-critic structure is designed to learn Q functions through
the critic network and policy functions through the actor
network simultaneously.

The SAC is known as the state-of-the-art actor-critic struc-
tured reinforcement learning algorithm. The deep determinis-
tic policy gradient (DDPG) is a deep reinforcement learning
algorithm that deals with control in continuous space. How-
ever, this algorithm has a problem of overestimation specific
to the actor-critic structure [17]. Twin delayed DDPG (TD3)
introduces two critic networks, Q1 and Q2, and alleviates
the above-mentioned problem by bootstrapping the Q value
with an algorithm that selects the minimum value among
them [18]. However, the above two algorithms make it diffi-
cult to challenge control of continuous state and action spaces
because the action value corresponding to the state value is
mapped deterministically. To solve this problem, the action
value needs to be estimated stochastically.Moreover, the SAC
algorithm adapted the objective function to include a term that
induces entropy to be maximized, as shown in (1).

J (π ) =
T∑
t=0

E(st ,at )∼ρπ [r(st , at )+ αH (π (at |st ))], (1)

where H is the desired minimum expected entropy and α is
the temperature function.

If the learning proceeds by adding terms that maximize
entropy, it was confirmed that the agent could become better
at exploration and stronger against noise [19]. In addition,
it has the advantage of being able to learn several state–action
pairs close to the optimal policy function. Therefore, SAC is
known to create policies in the POMDP environment that can
strongly respond to unobserved reward functions or adversar-
ial variations in reward functions.

The goal of RL is to find the state-action pairs that produce
the maximum values of the reward function. To achieve this,
agents must strike a good balance between exploiting pre-
viously acquired knowledge and exploring state and action
spaces they have not visited. However, if the environment
gives rare feedback on the reward signal, the magnitude of
the agent’s update will become weak, making it difficult
to induce effective learning. To solve this problem, several
papers have created and applied curriculum using knowledge
of the domain of RL, solving sparse reward problems, or lead-
ing to the stabilization of learning by balancing exploration
and exploitation [20]. Since the state space and action space
of the air combat environment used in our study are large,
and the reward signal received by chasing an enemy fighter
is rare, we designed the curriculum mentioned in Section IV
to make learning effective.

B. REINFORCEMENT LEARNING UNDER POMDP
ENVIRONMENT
In a real-world environment, it is rare for an agent to receive
full information on the system state. Additionally, certain ele-
ments may affect the following states and multiple timesteps.

In other words, the Markov property does not work well
in this environment. Therefore, it is necessary to design a
framework that applies a POMDP environment to provide
only partial information about the state of the system [21].
According to the standard notation of POMDP, it can be
represented as a 6-tuple< S,A,P,R, �,O >. S,A,P, and R
are the same state, action, transition, and reward functions as
MDP. In the POMDP environment, the agent can no longer
access the entire system state; instead, only the observation
function o ∈ � is allowed to be accessed. This observation
function is generated by the probability distribution o ∼ O(s)
for the entire state function.

Various research studies have created a POMDP environ-
ment by imposing restrictions on the environment used in
the existing MDP environment [22], [23], [24]. To make
POMDPs, [25] proposed a method that makes states partially
masked, [22] proposed to drop random frames, and [26]
proposed to add random noise to states. Because of POMDP’s
non-stationary and suboptimal characteristics, it is diffi-
cult for agents to learn in a POMDP environment. There-
fore, the recurrent neural network was adapted into a struc-
ture that can store information from a previous point in
time in memory and utilize it to solve this limitation of
POMDP.

Among the methods using recurrent layers, LSTM [27]
and gated recurrent units (GRU) [28] are generally used.
These methods increase the complexity of the network and
simultaneously increase the error-proneness of DRL algo-
rithms. Because of the nature of the LSTM, which controls
the ability to remember or forget depending on the need for
information, it has been utilized in environments requiring
recurrence. Yang and Nguyen [29] compared performance
by adding a vanilla recurrent neural network, LSTM, and
GRU as recurrent modules to DDPG, TD3, and SAC. As a
result, models built on LSTM and SAC showed the highest
reliability and best performance.

The deep recurrent Q-network (DRQN) [22] extends the
deep Q-network (DQN) algorithm and explains how to sam-
ple episodes and hidden states from the experience replay
buffer to adapt the LSTM layer. Additionally, the recurrent
replay distributed DQN (R2D2) [30] algorithm provides an
approach to sampling sequences in the replay buffer, ini-
tializing hidden states, and solving the problem of blur-
ring information over time. The recurrent deep policy gra-
dient (RDPG) [25] manages the replay buffer efficiently and
presents an approach to how the recurrent layer is utilized in
continuous space. Meng et al. [26] implement an approach to
attaching the LSTM layer to the TD3 algorithm as a method
of concatenating the LSTM layer individually with the fully
connected (FC) layer.

There is also an approach to utilizing Transformers for
reinforcement learning [31], which has shown remarkable
success in Natural Language Processing and Computer
Vision [32]. However, it is unsuitable for our task because
of the inherent computation complexity that extends quadrat-
ically to the length of the input sequence and the instability
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that arises when applied to the problem of controlling contin-
uous actions [33].

III. AIR COMBAT SIMULATION ENVIRONMENT
In this research, we have trained air combat agents in the F-16
engagement environment [34]. For the F-16 control physical
model, a high-fidelity open-source aerodynamicmodel called
JSBSim [35] is used. A Python class that provides the Ope-
nAI Gym Env API wraps the simulation environment, which
includes the two JSBSim models [36].

In the MDP environment, available features consist of
JSBSim outputs, including simulation time and health points
(HP) for both aircraft. The physical model output consists
of position, posture, speed, acceleration, previous control
values, aircraft information, etc. Control inputs are four con-
tinuous values that drive roll, pitch, rudder, and throttle. The
physics engine is simulated at 60 Hz, while the learning input
is limited to 10 Hz in consideration of the sensor, network,
and mission computer performance in real-world operation.
In other words, an agent’s input values were equally input to
the physical model six times.

FIGURE 1. Weapon Engagement Zone.

We consider only a machine gun as a fighter-mounted
weapon because the research goal is to train a combat model
that satisfies advanced maneuvering performance, excluding
the performance of sensors and/or weapons. Fig. 1 shows the
weapon engagement zone (WEZ). The WEZ is defined as
an effective range within 500 ft to 3,000 ft and an effective
angle within 2◦ in the same way as previous research [34].
When the aircraft is located within theWEZ, HP is reduced in
proportion to time according to equation (2) in consideration
of the probability of being hit according to the distance.

dwez =


0 r > 3000ft;
3000− r
2500

500ft ≤ r ≤ 3000ft;

0 r < 500ft,

(2)

where r is the distance between the ownship and the target.
For example, damage at 500 ft is 1/s, and our system evaluates
damage every 100 ms; thus, 0.1 damage is accumulated at
every step.

There are three engagement termination conditions: first,
when any aircraft is hit and its HP becomes 0; second, when
the altitude of any aircraft drops below 1,000 ft; and third,
when the engagement time exceeds 300 seconds. The victory
conditions are when the enemy is shot down or goes down,
or when the HP prevails after 300 seconds have elapsed. In the

opposite case, it is judged a loss, and if the HP is the same
after 300 seconds, it is judged a draw.

IV. AIR COMBAT REINFORCEMENT LEARNING
FRAMEWORK
In this section, the overall learning environment and pro-
cesses applied to learning aerial combat models based on
reinforcement learning will be described in detail.

Figure 2 shows the overview of the air combat model learn-
ing framework proposed in this study, which consists of vec-
torized air combat simulation environments and a recurrent
SAC module, including a replay buffer. The environment has
two dynamic models: ownship and target. They get an action
at from the actor of the SAC module and atarget from the
rule-based behavior model, and they output the aircraft states
sownship and starget , respectively. The simulator generates a
reward rt and an observation ot using the states, consid-
ering the configured sensor characteristics. The trajectories
(ot , at , rt ) are stored in the replay buffer, and fixed-length
sequences of trajectories are sampled for the critic.

A. OBSERVATION AND ACTION SPACES
The design of the state space is important in terms of learning
efficiency and effectiveness. In the vision-based reinforce-
ment learning used in Atari games, DM-30, etc., the network
parameters that extract key features from downscaled screen
images are trained simultaneously with vision processing
models such as convolutional neural networks (CNN) [37].
However, in the case of air-to-air engagement, it is not neces-
sary to consider complex surrounding environment informa-
tion because it is a wide 3D space of up to 20 km or more.
On the contrary, it may be effective to use the feature values
preprocessed through various sensors.

The JSBSim for each aircraft outputs features such as posi-
tion, attitude, and velocity in the global coordinate system.
The ownship information at timestep t includes altitude (alt ),
attitude (ψt , θt , φt ), speed (V⃗t = [ut , vt ,wt ]), acceleration
(A⃗t = [Axt ,Ayt ,Azt ]), remaining fuel (ft ), previous four
control inputs (at−1), and ownship HP (oHPt ):

oownship,t = [alt , ψt , θt , φt , V⃗t , A⃗t , ft , at−1, oHPt ]. (3)

The relative target information at timestep t includes aspect
angle (AAt ), antenna train angle (ATAt ), heading cross-
ing angle (HCAt ), relative distance (dt ), relative speed
( ⃗dVt = [dut , dvt , dwt ]), relative acceleration ( ⃗dAt =
[dAxt , dAyt , dAzt ]), and target HP (tHPt ):

orel,t = [AAt ,ATAt ,HCAt , dt , ⃗dVt , ⃗dAt , tHPt ]. (4)

The learning network to convert the absolute coordinates of
the two aircraft into relative coordinates can be considered;
however, this can cause a significant decrease in learning
efficiency. In this study, the basic geometry information was
converted to the relative coordinate of the ownship based
on the combat manual. Fig. 3 shows the basic geometry
between two aircraft and indicates components of relative tar-
get information. According to the geometry, we constructed
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FIGURE 2. Air combat model learning framework.

FIGURE 3. Geometry of fighters.

the observation by concatenating ownship information and
relative target information:

ot = [oownship,t ||orel,t ], (5)

where || is the concatenation operator. The action space is the
maneuvering commands of the aircraft:

at = [Aileront ,Elevatort ,Ruddert ,Throttlet ]. (6)

Note that, in a POMDP situation, if the target is out of the
sensor’s range, data related to the target will not be provided.

B. POMDP ENVIRONMENT DESIGN
In a real-world engagement, it is difficult to accurately mea-
sure target information, such as position, posture, and speed,
due to sensor errors. In addition, when the target is beyond
the detection area, there is also a situation in which the
target’s position must be predicted. We designed a POMDP

FIGURE 4. POMDP environment design.

WVR engagement environment to reflect these real-world
characteristics of sensors.

Figure 4 illustrates the POMDP environment with two
types of sensors: a visual sensor capable of detecting short
distances, such as a camera, and a radar sensor capable
of detecting relatively narrow but long-range signals in the
forward direction. rV and eV represent the detection range
and error rates of the visual sensor, and rR, θR, and eR rep-
resent the detection distance, angle, and error rate of the
radar sensor, respectively. The detection ranges of the visual
and radar sensors were set to vary between values known
from the sensor’s specification and assuming more severe
conditions. When a target is detected in the detection area,
an error proportional to the target’s range rT is injected into
the target-related observation.When the detection areas of the
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two sensors overlap, a smaller error is used. If there is a target
beyond the detection area, the target-related information is set
to 0.

C. REWARD FUNCTION
The sparse reward problem is the major performance degra-
dation factor in reinforcement learning. We additionally
designed dense rewards as guides to achieve the goals effi-
ciently. The reward functions applied in this study can be
divided into five types: shooting down, WEZ, control zone,
Crash, and control stabilization. The explanations for each are
as follows:

1) SHOOTING DOWN
Shooting down reward function Rshooting_down(HPownship,
HPtarget ) rewards +500 if ownship shoots down the target, and
-500 if ownship shot down.

2) WEZ
WEZ rewards induce the target to enter the ownship’s WEZ
and the ownship not to enter the target’s WEZ. We defined
two WEZ rewards: Rshoot (range,ATA) is the effective shoot-
ing reward, and RbeHit (range,AA) is a penalty when the target
shoots the ownship. The agent gets rewards for every step
according to equations (7) and (8).

Rshoot =

 (5+5×
3000− r
2500

) r<3, 000ft and ATA ≤ 1◦;

0 otherwise.
(7)

RbeHit =

{
−5 r < 3, 000ft and AA ≥ 179◦;
0 otherwise.

(8)

Because this shooting reward is sparse and difficult to
get in early learning phases, we added another continuous
WEZ relative reward, Rwez_dot (range,1wez_to_target) ∝
1wez_to_target

range to be rewarded every step. There are two fea-

tures of Rwez_dot . The first is to adjust the amount of reward
received adaptively according to the distance by using a
single function, and the second is to use the distance between
the WEZ and the target instead of the distance between the
aircraft bodies. In many studies related to WVR engage-
ment, distance and/or ATA reduction rates are used for WEZ
induction. In our best experience, when the rewards are com-
posed only of these items, the ‘‘overshoot’’ problem contin-
uously occurs. We solved the minimum and maximum WEZ
range and overshoot issues simultaneously using this reward
function.

3) CONTROL ZONE
The reward functions relative to the control zone consist of
two sparse and dense rewards for occupying the target’s tail
and gaining the upper hand. Fig. 5 shows the process for
attaining control zone rewards.

The two sparse rewards are RCZ_ATA(ATA, range), which
is intended to allow the ownship to look at the target, and

FIGURE 5. Control zone rewards.

RCZ_AA(AA, range) to catch the target’s tail. These rewards
are designed such that the agent can receive them as follows:

RCZ_ATA =

{
0.1 ATA≤1◦ and 3, 000ft≤range≤5, 000ft;
0. otherwise,

(9)

RCZ_AA =

{
0.1 AA≤15◦ and 500ft≤range≤5, 000ft;
0. otherwise.

(10)

Dense rewards for attaining control zone consisted of
Rdelta_angle(1ATA,1AA) for preempting an advantageous
position compared to the target and Rtarget_tail(range,
1target_tail_to_ownship) for biting the target’s tail.
Rdelta_angle compares the ATA reduction rate with the AA
reduction rate at every step and gives a reward if the ATA
reduction rate is greater and a penalty if it is vice versa.
A virtual stick tail was created from 3,000 ft to 5,000 ft behind
the target to bite the target’s tail. Additionally, if the ownship
was closer to or farther from the tail, rewards or penalties,
depending on the distance, were given, respectively.

4) CRASH
We also configure the reward functions for the fall with sparse
and dense rewards. There are two sparse rewards: 1,000
points as a penalty when the ownship falls and 10 rewards
when the target crashes. The target falling down reward is set
to be small because the agent can get rewards easily regard-
less of their maneuvering performance if the target has low
control performance. The dense reward for fall prevention is
designed such that when the ownship is below 2,000 ft in
altitude, the closer the aircraft gets to 1,000 ft, the greater the
penalties.

5) CONTROL STABILIZATION
In the consideration of the application for the actual aircraft,
the reward function of control value stabilization is applied
to minimize the mechanical or electronic load of the actual
aircraft. When considering the dynamic characteristics of
fighters, the greater the change in the roll command, the
greater the penalty becomes.
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D. NETWORK ARCHITECTURE
In this study, there are two major problems to be solved by
applying recurrent networks. The first is a multi-task prob-
lem. The feedforward network infers only the fragmentary
observation values at the current step. Thus, it may not be
possible to know the various patterns that can be known
only by looking at the previous trajectory. The second is the
POMDP problem. In an actual combat situation, due to the
performance limitations of onboard sensors such as radar,
the target information may not be obtainable or errors may
be included in the measured information. We tried to solve
these problems by learning to memorize important observed
patterns among previously received observations through the
recurrent network.

FIGURE 6. Network architecture.

A schematic illustration of the policy and value networks is
shown in Fig. 6. The actor network receives an observation ot
and outputs the next action at at time t . at and ot are input
to the critic network to obtain a Q-value. At this time, the
internal memory of each network is updated at every step.
Each network consists of a recurrent branch in charge of inter-
nal memory and a feedforward branch. The former branch
is modeled as a layer of LSTM units to analyze maneuver
patterns and copewith situations where the target wasmissed.

E. TURN CIRCLE-BASED CURRICULUM LEARNING
We applied a curriculum learning technique to improve learn-
ing performance. In deep reinforcement learning, effective
learning can be performed by successively approximating the
state space using deep neural networks. However, the process
for finding effective maneuvers against a target fighter with
high-level maneuvers in the nearly infinite observation and

FIGURE 7. Turn circle-based curriculum learning.

action spaces does not converge despite applying the naive
deep reinforcement learning technique. In this study, the
observation space at the early stages is limited such that the
agent can learn the maneuver to shoot down the target within
a limited time. The learning proceeds step by step, gradually
releasing the limit of the observation space as the learning
progresses. For the agent to experience more diverse observa-
tions, the curriculum consists of two steps: 1) difficulty level
determination; and 2) formation determination.

1) DIFFICULTY LEVEL DETERMINATION
The difficulty of engagement can be defined by how easily
the agent can shoot down the target, and we determined it by
using the attitude between the two fighters, especially ATA
and AA.

Figure 7 visually shows the proposed turn circle-based
curriculum learning. At first, ATA and AA were started at
0◦, and when the success conditions were satisfied, the two
angles were increased, and finally, when they rotated to 180◦,
learning was terminated.

Algorithm 1 Turn Circle-Based Curriculum Learning
1: for angle α← 0◦ to 180◦ do
2: if 15◦ ≤ α ≤ 165◦ then
3: range r ← 6,000ft × cos(90◦ − α)+ noise(0∼1,000ft)
4: else r ← random(500ft 1,000ft)
5: Set environment aircrafts with (ATA← α,AA ← α, r)
6: end if
7: if α ≤ 30◦ then
8: Add environment done condition (AA > 90◦)
9: end if

10: win_ratio← 0%
11: while win_ratio < 70% do
12: Collect set of trajectories Dk with max sequence length
13: Replay buffer D← D ∪ Dk
14: Update the networks using D with the recurrent SAC.
15: Update win_ratio with 30 episodes.
16: end while
17: end for

Algorithm 1 summarizes the curriculum procedure. A typ-
ical fourth-generation fighter is known to form a turn circle
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with a maximum maneuverability of 6,000 ft. We designed
the curriculum such that the agent sequentially learns how to
win in the most difficult defensive basic fighter maneuvers
(BFM) formation with ATA and AA of 180◦ starting with
the least difficult offensive BFM formation where the agent
has ATA and AA of 0◦. The observation space is limited to
improve learning performance. At the beginning of learning,
when the angle is less than or equal to 30◦, the episode ends
and starts anew if the ownship is located in front of the target’s
3/9 line.

2) FORMATION DETERMINATION
When the distance and angle are determined in the stage
of difficulty level determination, the detailed positions and
postures of fighters are taken to enable the agent to explore
the observation space to the extent possible. The JSBSim
dynamic model is also modeled to consider the influence
of the environment, such as gravity and altitude. Therefore,
even when the two fighters have the same ATA and AA,
the difficulty and maneuvering performance can be differ-
ent depending on whether they are level on the ground,
ascending, or descending. In consideration of this, one of
the three formations of forward, upside, and downside is
arbitrarily determined as the initial formation, as shown in
Fig. 8. Furthermore, even if ATA and AA are the same, rolls
can be set differently. We arbitrarily set the rolls of the two
fighters to allow them to start in all possible postures, each
corresponding to a specific ATA and AA.

FIGURE 8. Formation determination.

3) TARGET MANEUVERING
The maneuvering performance of the target is important
because it becomes the baseline of the learning agent’s per-
formance. We adopted a rule-based aerial combat model
composed of decision and guidance modules as a target
model [38]. Fig. 9 depicts the top-level maneuver decision
flow chart developed by analyzing the BFM.

The decision module process input values based on the
positional relationship between ownship and target, and

FIGURE 9. Target maneuver decision flow chart.

informs what kind of combat situation the current state is.
Then, it determines the optimal maneuver using the behavior
tree made based on the tactical instructors and generates a
pursuit point. And the guidance module generates four inputs
to move the aircraft to the generated pursuit point. Similar to
previous studies, these modules were created using general
flight control techniques [1], [3].

The performance of the rule-based air combat model has
been verified through engagements with humans [39]. Two
Air Force pilots played five simulation battles each, and
the rule-based model won 10:0. Afterwards, vulnerabilities,
including DBFM and altitude drop, discovered through the
engagement with learning-based agents were supplemented.
Currently, the performance has been upgraded, and the latest
model shows a winning rate of 100% compared to the model
that faced the human pilots.

V. EXPERIMENT
This section discusses the results of the learning progress
and engagement performance of agents who have learned air
combat maneuvers in the POMDP environment.

A. EXPERIMENTAL SETTINGS
In this experiment, we compare the learning effective-
ness and engagement capabilities of three types of agents:
SAC-FC learned with the SAC algorithm by applying only a
2-layer fully connected network, SAC-LSTM learned with
the SAC algorithm by applying LSTM, and SAC-LSTM-
no-curriculum excluded curriculum from SAC-LSTM.
Table 1 shows the details about the values or ranges for
parameters.

The specification of the machine used for learning is an
Intel Xeon Silver 4210 (10 cores, 2.2 GHz) processor and
Nvidia RTX 2080Ti GPUs. The results are confirmed by
learning up to 5 × 105 updates per agent. The learning time
for the two types of agents is similar, at about 21 days for
SAC-FC agents and 18 days for SAC-LSTM agents. The
number of samples used for one update is 64 times higher
in SAC-LSTM than in SAC-FC. For a fairer comparison
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TABLE 1. Hyperparameters.

between the two agents, additional experiments were con-
ducted while increasing the minibatch size of SAC-FC, but
the performance ended up being degraded. It is analyzed
that the SAC-FC has a longer total learning time than the
SAC-LSTM due to the greater number of times it is stored
in the replay buffer. SAC-LSTM collects and stores every
64 steps, whereas SAC-FC stores them individually. The
SAC-LSTM agents accumulated approximately 500 hours of
flight experience per day and a total of 9,000 hours of flight
experience over about 18 days. To maintain the target’s per-
formance, the rule-based model used as a target in learning is
designed by considering the situation inwhich all information
is known without error even in learning under the POMDP
environment. It helps to distinguish whether the agent can
learn to satisfy the engagement performance in a more severe
engaging situation.

The experiment results were summarized by engaging each
final learning agent versus the rule-based model in win-
draw-lose counts for 300 matches under the learning envi-
ronment. Winning rates were calculated using the following
equation:

WinRatio =
nw

nw + nd + nl
× 300, (11)

where nw, nd , and nl are the numbers of wins, draws, and
losses, respectively. The engagement between the two aircraft
was conducted by varying the heading angle of the fighter at
the starting point with random altitude, distance, and speed,
followed by a 300-second time-out. In detail, 100 matches
were conducted in DBFM, OBFM, and neutral situations,
respectively.

B. EXPERIMENTAL RESULTS
The experiment was conducted in two categories. First, the
detection area of the visual sensorwas gradually reduced; sec-
ond, the noise of the visual sensor was gradually increased;
and third, the existence of a turn circle-based curriculum was
changed.

1) RANGE LIMITATION RESULTS
This experiment confirmed whether each agent was success-
fully trained when the range of the visual sensor was limited
from 10 km to 5 km, 2 km, and 1 km. Fig. 10 shows the
experimental results of the visual range limitation. The graphs
show the achievement level of curriculum learning. The goal
of the curriculum is to progress to the final 180◦.
The results show that all SAC-LSTM models achieved

the final goal within a limited time. This means that even
when starting from the most unfavorable defensive BFM
situation, where ATA and AA are 180◦ apart, all models with
limited sensing range have a winning rate of over 70% against
the rule-based air combat model that uses all information.
In the cases of the 10 km and 5 km limits, it was confirmed
that the angle continuously increased up to 180◦. In WVR
engagements, the range between two fighters is rarely greater
than 10 km. Therefore, in the case of the 10 km limit, it can
be seen that the situation is similar to the MDP situation.
Also, considering that the F-16’s turn circle is about 6 km
in diameter, even if the sensor range is limited to 5 km, it will
be possible to engage in combat without missing the target
through selective maneuvering.

Conversely, in 2 km and 1 km experiments, the agents
inevitably miss the target. In the experiment with a 2 km
range constraint, it was confirmed that it progressed rapidly
up to 180◦, and in the case of the 1 km constraint, learning
progressed slowly from 50◦. However, it was found that the
levels increased rapidly from about 3 × 105 updates, which
indicated that the agent had acquired maneuvers to beat the
rule-based model in DBFM situations.

The SAC-FC agents showed a winning rate of more than
70% in OBFM and neutral situations in 10 km and 5 km
constraint experiments but did not progress the curriculum
to 180◦ in a limited time.
Figure 11 shows a comparison of win-draw-lose counts

obtained through the neutral engagement of the eight agents
versus the rule-based model (RM) in each POMDP environ-
ment learned. All four agents learned with SAC-LSTM in
all POMDP environments and obtained a win ratio higher
than 80%. In particular, the agents trained in 10 km and
5 km visible environments obtained 87% and 85%win ratios,
respectively. On the other hand, the SAC-FC agents achieved
an average 55.2% win ratio. The three agents learned in 2 km
or more visible environments got win ratios similar to or
higher than 50%; however, the agent learned in the 1 km
POMDP environment showed a 27.3% win ratio.

2) ERROR INJECTION RESULTS
In this experiment, we examine whether the proposed method
can complete learning even for sensor values that include
noise. To examine the effect of learning according to the
noise value, POMDP environments were produced in which
rV was fixed at 5 km, which is a realistic visual range obtained
from pilots, and eV was set to σ = 0.01, 0.1, and 0.2,
respectively. Fig. 12 shows the learning results of SAC-FC
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FIGURE 10. Range limitation experiment results.

FIGURE 11. Air combat evaluation results on range limitation environment.

FIGURE 12. Error injection results at 5km range limitation environment.

and SAC-LSTM agents in each POMDP environment. The
experimental results show that all SAC-LSTM agents were

trained up to the final 180◦. In the 0.01 and 0.1 POMDP
environments, it reached 180◦ without blockage, whereas in
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FIGURE 13. Air combat evaluation results on error injection environment.

the 0.2 POMDP environment, learning did not progress well
for a long time in a neutral formation near 100◦ and showed
a steep rise to 180◦, similar to the 2 km and 1 km POMDP
environments.

None of the SAC-FC agents could complete the curriculum
within the update limit. The final angles are similar in the
three environments. It seems that noise is less affected than
the range limitation, according to the characteristics of the
SAC algorithm, which is robust to noise.

The result of comparing win ratios indicates that the com-
bat models trained with the proposed framework are robust
to the errors of sensor measurements. As shown in Fig. 13,
all agents trained with SAC-LSTM showed higher winning
rates compared to agents trained with SAC-FC. The average
win ratio of the LSTM-based agents is 84.4%, whereas that
of the FC-based agents is 49.2%.

3) CURRICULUM LEARNING EFFECT EVALUATION
In this experiment, we investigated whether applying our
proposed curriculum improves efficiency and performance
in learning procedures. We compared SAC-LSTM and SAC-
LSTM-no-curriculum with the conditions of the POMDP
environment fixed. rV was set to 5 km, eV was set to
σ = 0.01. The SAC-LSTM-no-curriculum was learned
through episodes of neutral engagement situations starting at
random positions. Figure 14 shows the results of the evalua-
tion engagement in the learning process.

SAC-LSTM’s winning rate against RM rose rapidly and
eventually showed a higher winning rate compared to SAC-
LSTM-no-curriculum. This results support that our turn
circle-based curriculum robustly worked in various WVR
engagement situations.

4) MANEUVER ANALYSIS
We analyzed the engagement logs stored during learning
with the maneuver visualization tool and examined whether
the learned agent performed maneuvers that could be used

FIGURE 14. Turn circle-based curriculum learning effect evaluation.

in practice. According to the BFM manual, High/Low
Yo-Yo, Scissors, Lag/Barrel Roll, Defensive Spiral, etc., are
explained as maneuvers for WVR engagement. High Yo-Yo
is a maneuver in which the speed of the ownship is faster in
an offensive situation. Thus, if there is a risk of overshooting,
it slows down by rising and then descending. Low Yo-Yo is a
maneuver performed when the target is relatively far away in
an offensive situation. It increases speed through descent and,
simultaneously, reduces the size of the turn circle to enable
the ownship to get closer to the target’s tail. The Scissors are
rotational maneuvers to induce or prevent overshoot.

We discovered that the learning agents performed the basic
maneuvers according to the situation. Fig. 15 shows the tra-
jectories of some maneuvers. In the figure, the blue aircraft
is the training model, and the red aircraft is the rule-based
model.
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FIGURE 15. Basic maneuvers of the combat model.

FIGURE 16. One of winning patterns at defensive upside formation.

In addition, we examined the pattern in which the learning
model wins in defensive formations. Fig. 16 shows, as snap-
shots, the process of winning in the situation of the initial
defensive upside formation. It showed a winning pattern after
inducing the overshoot of the target through Rolling Scissors
and Barrel Roll Attack maneuvers.

VI. CONCLUSION
In this study, we proposed a framework for developing
RL-based air combat models in engagement environments
with realistic limitations and errors. The partially observable
environments were designed with radar-like and visual sen-
sors. The SAC algorithm was used as the learning algorithm,
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and a network architecture including LSTM was applied.
In addition, the curriculum learning was proposed to increase
the learning effectiveness by limiting the observation space.
Learning was conducted against the BFM manual-based
model. In POMDP environments, the ranges of the visual
sensor were limited to 10 km, 5 km, 2 km, or 1 km, and
the error-injected environments were producedwith Gaussian
noises σ = 0.01, 0.1, or 0.2. As the results of the experiments
show,winning rates of 75%ormorewere achieved against the
rule-based model in all POMDP environments. In addition,
the validity of the curriculum we applied was confirmed by
the high winning rate difference in the experimental results.
In future work, we plan to examine applicability to real
environments rather than simulation environments.
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