
Received 2 February 2023, accepted 8 March 2023, date of publication 16 March 2023, date of current version 23 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3257857

Online Active Learning Framework for
Data Stream Classification With
Density-Peaks Recognition
KUANGYAN ZHANG , SANMIN LIU, AND YANFEI CHEN
School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, China

Corresponding author: Sanmin Liu (sanmin.liu@ahpu.edu.cn)

This work was supported by the University Natural Science Research Project of Anhui Province under Grant KJ2021A0516 and Grant
2022AH050972.

ABSTRACT This paper considers a practical scenario — data stream classification, and uses online active
learning (OAL) to assist the classifier. Most active learning are proposed based on label uncertainty, but the
methods based on representativeness are faced with difficulties in stream scenarios. The sampling criteria
based on representativeness are usually fixed, which makes it difficult for them to work effectively in
dynamic sample spaces, especially for concept drift streams. This paper devises a novel OAL framework
based on sample representativeness. The framework uses local nearest-neighbor relation to measure the
representativeness of unlabeled samples and divides the maximum influence space of the representative
sample. We also develop an independent mechanism to identify and store short-term cluster fragments to
ensure the integrity of information. The framework is deployed to the online environment and adapts to
any incremental learner. Simulation experiments on multiple datasets and classifiers show that our method
can help primary classifier deal with data stream environment effectly. Compared with other online active
learning, the method can achieve more stable accuracy and better anti-noise ability under fewer budget.

INDEX TERMS Data stream classification, online active learning, density-peak clustering, cluster
fragmentation.

NOMENCLATURE
t Time stamp.
xt Instance at time t .
yt Ture label of instance xt .
ds Data stream.
B Budget for label cost.
f Classifier or learner for active learning.
C Cluster based on density reachability.
BatchSize Size of cache latest instances.
Nxi Set of nearest neighbors for xi.
Axi Number of neighbor association for xi.
h Altitude threshold.
x ′ Tagged peak sample.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

N ′
xi Sample set of influence range for xi.

Rxi Neighbor influence range for xi.
SE Extended instance set.
RC Representative instance set in C .
CluFrat Cluster fragmentation set at time t .

I. INTRODUCTION
With the increasing scale and complexity of network, data
stream mining has already been the focus of machine learn-
ing [1], [2]. It is widely used in practical domains such
as signal processing [3], social media [4], abnormal stream
detection [5], and other scenes. Unlike static machine learn-
ing, data stream owns the characteristics of high-speed, con-
tinuous, changeable, infinite, and so on [6], [7]. Because
of these characteristics, the distribution of data constantly
changing in a potential and uncertain way. This phenomenon
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is usually referred to as concept drift [8]. For streams with
variable distribution, constructing an adaptive classifier is
a crucial topic in data streaming mining, and it is of great
significance inmachine learning algorithms and experimental
processes [9].

There are many unlabeled samples in real-time data and
sufficient manually labeled data are challenging to meet, this
causes the insufficient labeled instances for current pattern
recognition systems [10], [11]. For example, in the industrial
IoT, the classifier detects and diagnoses faults through sen-
sor data, the difficulty lies in the annotation of each event
by experienced workers, and this process is usually time-
consuming and laborious [12]. In intrusion detection sys-
tem, data must be processed efficiently to maintain a secure
network environment. Due to the large number and scale
of network connections, manual labeling of all connection
data is expensive and impractical. Therefore, the systemmust
perform detection and update accurately and efficiently under
conditions of label scarcity. In similar scenarios, selection
and labeling samples under a limited budget have well utility
in building well-performance classifiers, so the application
of active learning and unsupervised learning have become
important topics.

Human learning paradigm inspires active learning: Firstly,
purposefully explore areas that have not yet been learned;
Secondly, optimize the learner by querying the sample label
to achieve self-optimization and long-term learning [13].
In order to select samples with high value, information (also
known as discriminativeness) query and representativeness
query are the current mainstream means for selecting unla-
beled samples [10], [11], [16]. The first is to select the
information-rish samples to reducing the potential classi-
fiers as soon as possible [14], [15]. The second is to select
representative samples and reduce the redundancy between
training samples [17], [18]. Most strategies seek represen-
tative samples by constructing the input pattern for overall
data. However, the performance of the methods is reduced in
the data stream environment because the preset data pattern
changes at any time.

As an effective unsupervised learning method, density-
based clustering (DBC) can identify the distributed character-
istics of sample space [15], [19]. However, traditional DBC
algorithms rely heavily on the constraint: each candidate
cluster has only one density-peak. In a variable data stream
environment, a cluster may have 0 or more density-peaks,
and peaks are surrounded by samples with lower density. The
distance between peaks with high density is relatively sig-
nificant. Therefore, peaks can not be distinguished under the
fixed distance of the neighbor [20]. Driven by the above con-
siderations, our cognition is to mine highly local information
and find potential density-peaks in the cluster, representing
other samples of local space to the greatest extent.

Unlike static data clustering, clustering fragments are dif-
ficult to handle in incremental clustering and data stream
mining [16]. They usually appear, grow and disappear in the

evolution process of the stream. The traditional strategies
with representativeness query only focus on the regions with
dense distribution and consider the instances in the sparse
area as outliers. Therefore, the design leads to information
loss and clustering fragmentation in the sparse region. If the
cluster fragment is a component of an important concept
that needs to be learned in the future, or more samples are
added to the cluster fragment over time, and more complete
concepts will be formed. Our cognition is to save short-term
fragmentary clustering and learn it when the concept becomes
mature.

According to the above expound, the objective of our strat-
egy is to improve the traditional sampling method with repre-
sentativeness query. We developed an altitude measurement
method and a searching representativeness instance method
to effectively achieve instances that can fully represent the
whole community. We integrate the methods into the data
stream classification, called Online Active Learning with
Density-peaks Recognition (OAL-DpR). In the training pro-
cess, the classifier adapts to the concept drift by passively and
incrementally updating. In addition, the OAL-DpR also adds
a method to identify and save potential information (cluster-
ing fragmentation), which is helpful to mining dynamic data
steam. Generally, the contributions are as follows:

1) Online active learning with representativeness: To
solve the limitations of traditional sampling strategy
with representativeness in data stream environment,
we first apply the density-peaks recognition method to
online active learning and remeasure the information
accuracy of instances in local regions;

2) Information retention mechanism: We recognize the
incomplete clusters (fragmentation) in the dynamic
sample space through the altitude of these instances,
and set up a separate memory space to store the pieces
of information and query the growth of these in the next
iteration;

3) A novel scheme for data stream learning: In this article,
we develop a batch-incremental scheme and apply the
density-peak recognition task to online machine learn-
ing to solve the lack of representativeness query in the
existing active learning.

The organization of paper is shown as follows: Section II
expounds the related works about OAL and DBC. The
OAL method with density-peaks recognition is presented
in Section III. The experiment scheme and result are dis-
cussed in Section IV. Finally, drawing the conclusion in
Section V.

II. RELATED WORK
As far as we know, OAL-DpR is the first algorithm that
combines density-peak clustering with online active learning
to solve the label-scarcity stream classification. Given the gap
between the related fields, we introduce the research progress
of the two areas separately in this section.
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A. ONLINE ACITVE LEARNING
Facing the limitation of label-scarcity in data stream
classification, the current mainstream research directions are
semi-supervised learning, transfer learning and active learn-
ing. Semi-supervised learning does not rely on external inter-
action and automatically uses unlabeled data to improve
learning performance and avoid waste of data resources.
Transfer learning tries to solve the target domain contains
only a small number of labeled samples by using the exist-
ing knowledge in different fields. Active learning was first
proposed by Angluin of Yalu University to solve the label
scarcity in machine learning [13]. The uncertainty is the most
critial research object in the early period, such as the distance
between the decision boundary and samples [14], [21], infor-
mation entropy, and expected error [22], [23]. Later, scholars
joined the samples with representativeness to the training set
as a supplement to the uncertainty [17], [18], [21], [24], [25].

Most algorithms query the input sample patterns through
clustering or conditional filtering and select the instances that
maximize the classifier’s generalization. These algorithms
not only need to deal with the scarcity of labels but also solve
the concept drift and outliers that invariably affect the stability
of learners due to changes in the data collection environ-
ment and equipment losses. The different query engines are
designed to purposefully measure the information value and
representativeness of samples, then label the samples with
valuable [6], [10], [11], [16].

Bougueria et al. [6] believed that the uncertain query
threshold of the query engine should also be adjusted when
the sample space of the stream changes. The threshold was
reduced when the concept drift occurred and remained high
for the rest of the time. The integrated learning frame-
work based on active sampling is proposed in [10]. The
sampling engine gradually reduces the uncertainty thresh-
old when the distribution drifts. It prioritizes querying the
most uncertain instances and dynamically allocates the query
cost. Mohamad et al. [11] proposed bi-criteria query strate-
gies: label-uncertainty and density-based standard. The sec-
ond criteria show the actual distribution by weighting the
labeled samples to alleviate the problem of sampling devia-
tion. Zhang et al. [14] think that when the decision boundary
of the time sequence changes, the boundary points in the
dense area reflect the actual data distribution to a great extent.
Zhang puts forward an OALmethod with detecting boundary
and outlier based on [11], which combines the sample space
information, and theoretically alleviates the problem of sam-
pling deviation.

In recent research, pool-based active learning methods
have been gradually introduced into online active learn-
ing [7], [15], [25], [26]. These methods assist sampling by
assuming a priori distribution of the sample space or pre-
clustering, which reduces the impact of outliers the sam-
pling bias caused by uncertainty strategies to some extent.
An online active sampling method based on kNN is pro-
posed in [15]. This method defines the local uncertainty
and chooses instances in each batch. To achieve sampling in

unbalanced class data, a double-layer mixed labeling strat-
egy is proposed in [7]: uncertainty sampling is implemented
based on information margin and adjusted threshold, then the
instances of minority category are learned from the latest
data blocks using the imbalance strategy. An evolutionary
approach (ESBMAL) is proposed in [20]. The active learn-
ing task was modeled as a multi-objective problem that is
solved by a genetic algorithm. Reference [26] selects valuable
instances iteratively in each data blockwith uncertainty value,
label correlation, and label sparsity.

In a word, most of the studies are concentrated in the
following ways: (1) quantifying the uncertainty of classifier
on sample information; (2) reducing the impact of sampling
deviation through prior knowledge of distribution; (3) select-
ing the representative samples by measuring the accuracy of
local spatial information.

B. DENSITY-PEAK CLUSTERING
DBSCAN is one of the most influential algorithms of
DBC [27]. It derives clusters connected by the relationship
with maximum density reachability. Therefore, DBSCAN
can cluster dense data sets of arbitrary shape only using two
appropriate parameters: ϵ and MinPts. Being insensitive to
noise and outliers is the most practical feature of DBSCAN.
However, DBSCAN has limited effect in data with vary-
ing density-distribution (VDD) or multiple domain-density
maximum (MDDM) [16], [25]. Samples will be misallocated
to adjacent clusters when constant Delta distance are used,
which leads to the loss of sample information and cluster
fragmentation. Recently, the study based on density-peak has
made a lot of improvements on the basis of DBC.

The authoritative density-peak algorithm is Clustering by
Fast Search and Finding of Density Peaks (CFSFDP), which
was proposed by Rodriguez et al. [8]. His core idea is that the
cluster center is surrounded by samples with lower density,
and the distance between the peak is relatively prominent.
CFSFDP detect arbitrary shape clustering in low complexity
and non-iterative way. The concept of Fuzzy Density Peaks
Clustering was developed by Bian et al. [30]. It expresses
the density of points as the coupling of the fuzzy distance
between data and adjacent data. Cheng et al. [28] proposed
a Minimum Spanning Tree based on Local Density-peak
(LDP-MST). LDP-MSTfirst organizes all data into a directed
acyclic graph, then converts the root nodes in the directed
acyclic graph into a minimum spanning tree according to the
shared neighborhood distance between the root nodes. After
removing the unnecessary edges, each minimum spanning
tree is considered a cluster. A faster LDP-MST method is
proposed in [29], which is not conducive to running on high-
dimensional and large-scale data.

For data distribution with varying densities or changes
constantly, the DBC algorithm faces the limitations of sparse
information loss and cluster fragmentation. Building an adap-
tive strategy based on neighbor selection is a common way
to solve this problem. Chen [16] proposes Domain Adaptive
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Density Clustering (DADC), which uses adaptive density
measurement to extract cluster peaks and merge fragment
clustering. DADC includes three steps: domain adaptive
density detection, automatic cluster center recognition and
automatic cluster integration. Du et al. [31] calculated local
density based on kNN and principal component analysis, and
proposed a high-dimensional data-intensive region recogni-
tion method. Kamali et al. [32] proposed the density clus-
tering method of neighborhood distance entropy consistency
(NEDC) and took NEDC as an essential criterion for merging
potential subclusters.

III. ONLINE ACTIVE LEARNING FRAMEWORK FOR
CLASSIFICATION WITH DENSITY-PEAKS RECOGNITION
To solve the lack of strategies for selecting representative
samples in OAL, the paper proposes a method for data stream
classification called OAL-DpR. The whole framework is
shown in Fig.1. It realizes iterative update of the classifier
through four steps.

Step 1: Two-layer clustering learning. The spatial neigh-
bor information of the batch samples is mined through pre-
clustering with DBSCAN and the Measurement Method of
Sample Altitude (MMSA). The peak samples in the cluster
are selected to provide priori-knowledge for processing each
cluster;

Step 2: Multi-peak cluster identification. The goal is to
classify clusters with different peaks. Each category performs
various operations: the cluster fragments are stored in the
following iterative learning, and the clusters containing the
cluster peaks are further processed in Step 3.

Step 3: Search for representative samples and knowledge
extraction. An efficient representative sample search method
(RSSM) is proposed in this process. This method reduces the
redundancy between the extracted samples and the data pool
using the distribution characteristics of spatial objects;

Step 4: Incremental training of the classifier. Oracle labels
the representative samples and submits them for incremental
training. The classifier trained with representative samples
has a more vital generalization significance.

In the main body of this section, we first introduce some
preliminary knowledge. Then in Section III-B, we give the
details of Step 1, including the definition of neighbor associ-
ation and density-peak in this paper. Next, in Section III-C,
we introduce the multi-density-peak clustering identification
in Step 2 and the RSSM in Step 3. Then we discuss howOAL-
DpR works in the online environment. Finally, we describe
the key parameters and complexity analysis.

A. PRELIMINARIES
The paper defines the stream ds as a set of continuous data
with infinite length:

ds = {(x1, y1), (x2, y2), . . . , (xi, yi), (xi+1, yi+1), . . .} (1)

where xi = {ai1, a
i
2, . . . , a

i
l}is a eigenvector of instance at time

i, l is the dimension of the feature vector. yi = {1, 2, . . . , c}
is the label collection, c is the number of sample labels.

In the data stream classification task, most of the sample
labels yi cannot be obtained directly. Therefore, the goal is
to select samples from the pool (batch mode) for labeling
under limited annotation resources. Traditional active learn-
ing usually set budget B to control the number of samples. B
is generally charged as a percentage, the ratio of the labeled
to candidate samples. OAL-DpR selects valuable informa-
tion through spatial distribution knowledge without setting
label preselection in advance. Therefore, OAL-DpR need not
specify the B̂ for annotation in advance to affect the whole
sampling result.

B. MEASUREMENT METHOD OF SAMPLE ALTITUDE
Most DPC methods are based on three perfect hypotheses:
1. density peak is arounded by the samples with lower den-
sity; 2. there may be multiple peaks in a cluster; 3. there is a
significant distance between different density peaks. For the
samples xi, its local density ρi can be defined:

ρi =

∑
j

χ (dij − dc) (2)

where dc is the cut-off threshold, if dij−dc < 0, χ (dij−dc) =

1, else χ (dij − dc) = 0. Therefore ρi means the number of
samples that are close to xi. Another feature of xi is the Delta
distance δi. By calculating the shortest distance between xi
and others samples withmore significant density, δi is defined
as:

δi = minj:ρj>ρidij (3)

For the maximum-density sample, δi = maxjdij. The sam-
ples with high ρ and δ are peak, and the remaining data will be
classified into the nearest cluster. Therefore, clustering effect
of DPC is primarily determined by the calculation method of
density peak. Like the density-based clustering algorithm, dc
is the variable that needs to be initially set. It is uncertainty
in the VDD data, and the best dc is usually fuzzy. To avoid
the influence due to the uncertainty of preset parameters, the
concept of sample altitude is proposed in this section.

For the convenience of description, we let Nxi as the set
of the neighbors for xi in cluster C . Neighbor recognition is
based on Euclidean distance.

a: DEFINITION 3.1 (NEIGHBOR ASSOCIATION NUMBER)
Given xi as a sample inC , its neighbor association numberAxi
is the number that xi belongs to the Nxj of any other sample
xj in C . The formula is described as follows:

Axi =

∑
xj∈C

5(xi ∈ Nxj ) (4)

In (4), 5 is the indicator function that outputs 1 if the in-
equation is true, or else outputs 0. Axi reflects the number of
samples with xi as a neighbor in the cluster.

The expression of neighbor association number is similar
to the altitude in geography: the samples in the cluster have
different heights due to the degree of spatial density. To make

27856 VOLUME 11, 2023



K. Zhang et al.: Online Active Learning Framework for Data Stream Classification With Density-Peaks Recognition

FIGURE 1. Workflow of online active learning based on density-peak recognition.

the method more effective in showing the difference in alti-
tude in the cluster, we hope that the scale of the cluster will
not be too small. Note that the nearest-neighbor relationship
in this paper is asymmetric. The number of Nxi for xi depends
on the priori distribution of spatial objects. Therefore, there is
a case that one sample becomes the neighbor of multiple sam-
ples, and there is a case that one sample is not the neighbor
of other samples.

The steps of the measurement method based on the neigh-
bor association are shown in Fig.2. Each sample inC has been
numbered in order. First, we traverse each sample xi to get its
nearest-neighbor set Nxi . When the scale is appropriate, it’s
sufficient to set the size of Nxi to 2. Next, the information
of each sample is retained in the form of two tuples. The
elements of the two tuples are the serial number and sample
altitude, defined above. Finally, we use different colors to
represent samples. The darker the color, the greater the alti-
tude value of the sample. The sample altitude measurement
method based on asymmetric nearest-neighbor is described
as Algorithm 1.

Algorithm 1Measurement Method of Sample Altitude
1: require: density-peak cluster C ;
2: ensure: two-tuples (i,Axi ) of each sample in C ;
3: for each xi ∈ C do
4: researching for the two nearest-neighbors Nxi ;
5: statistical the times of xi was nearest neighbor;
6: output (i,Axi );
7: end for

C. REPRESENTATIVE SAMPLE SEARCH METHOD BASED
ON LOOP SEARCH PEAK
In the active learning stage, we aim to find an optimal
classifier that can generalize the unknown data well. Fur-
thermore, to avoid the classifier being retrained after new
samples are added to the label set, it is necessary to consider

empirical risk in sampling, which minimizes the upper bound
of active learning risk constraints [17]. The upper bound can
be approximated by the sum of the difference between of
the discriminative and the adequately designed regularization
term.

For a given distribution p(x, y), the goal of active learning is
to train a classifier f ∈ F which is based on a lower expected
riskR(f ), F is the function space.R(f ) is given as follow:

R(f ) = E(x,y)∼p(x,y)L(f (x), y) (5)

with L(f (x), y) is loss on train data. Wang and Ye [23] pro-
vide active learning risks related to expected risks based on
the empirical risks of the query sample set: given a kernel
function K (xi, yi), it uses a nonlinear relationship φ(x) for
mapping samples to kernel Hilbert space Q.

A labeled set S with size n and Q with size q which are
mixed with labeled and unlabeled samples, q ≪ n, then the
probability of following is over 1 − τ :

R(f ) ≤ R̂Q(f ) +MMQφ(S,Q) + C(F , q, τ ) (6)

with MMQφ(S,Q) is the empirical estimation term of S,
C(F, q, τ ) is term for complex terms of functions. In the
description of the risk boundary of active learning, the second
item limits difference in distribution between the labeled and
all samples, it’s as similar as possible. In other words, the
higher the representativeness of S, the small the value of this
term and the more stringent the risk of active learning.

a: DEFINITION 3.2 (PEAK SAMPLE)
The peak sample xp is the sample with the highest altitude
in C and the Axp exceeds h, where h is the altitude thresh-
old. Other samples whose altitude exceeds the threshold are
potential peak samples.

A stable cluster can be described as a community, and a
community can have multiple representatives. We hold that
most samples in the cluster can be represented by the peak
samples in the cluster. We set the altitude threshold h of the
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FIGURE 2. An illustration of the measurement method of sample altitude.

lowest peak sample to obtain a better representation of peak
samples. If the highest altitude in cluster C is less than h, the
highest sample can’t be the peak sample.

To express the influence range of peak samples, we pro-
pose the influence range of samples and define clustering
fragments. We will further propose a representative sample
selection method based on loop peak search.

In Section III-B, we obtain the altitude of each sample.
If there is a peak sample in the C , mark it as xp. We set the
altitude threshold h of the lowest peak sample to obtain better
representativeness of peak samples. If the highest altitude AC
in C is less than h, the sample with the highest altitude can’t
be marked as a peak sample.

b: DEFINITION 3.3 (SAMPLE SET OF INFLUENCE RANGE)
Given a sample xi in C , N ′

xi is the influence range set of xi,
which can be described: for any sample xk ∈ C , if xj ∈ C ,
and {xi, xk} is the subset of Nxj , xk ∈ N ′

xi . N
′
xi is the nonempty

subset of the set C .

c: DEFINITION 3.4 (NEAREST-NEIGHBOR INFLUENCE
RANGE)
Given a sample xi in C , the nearest-neighbor influence range
Rxi of xi is the space which containing only N ′

xp and xp.
The Fig.3 shows the influence range sample set N ′

A and
the nearest neighbor influence area RA of point A. Due to the
2 nearest-neighbor sample set NB of point B is {A,C}, so C
is included in N ′

A. Similarly, point B, D, E is also included in
N ′
A. NF and NG include point A, so F and G are included in

N ′
A. In summary, N ′

A = {B,C,D,E,F,G}, and samples that
only include N ′

A and point A is the nearest-neighbor influence
range RA, which is marked with red dotted line.

Through the above analysis, we can find the spatial range
region Rxi for any sample xi. While xi is closer to the density
center of the cluster, the spatial range Rxi is larger, so we
choose the peak sample xp in C as a representative sample to
cover the influence range sample set N ′

xp of xp can’t cover all
samples inC . Therefore, we query whether there is a subpeak
sample x ′

p in the remaining sample setC ′, whereC ′
= ∁CN ′

xp .
It should be a local or overall community space. However,
in most scenarios, the noted that x ′

p ∩ N ′
xp = ∅, x ′

p is the
subpeak sample ofC that meets the altitude threshold. Before
finding the next subpeak sample x ′

p each time, it is necessary

FIGURE 3. Example of sample set of influence range and
nearest-neighbor influence range.

FIGURE 4. Identification process of single density-peak cluster and multi
density-peaks cluster.

to remove the obtained peak sample, subpeak sample, and
their influence range sample set from C . Different from the
traditional strategy with representativeness sampling to select
the center or the edge of the cluster, we divide the sample
cluster into one or more ranges and scattered samples.

We label the density-peak cluster with no subpeak samples
as a single-density-peak cluster and the cluster with subpeak
as a multi-density-peak cluster. Fig.4 shows the identifica-
tion process of single-density-peak and multi-density-peak
clusters. We propose a representative sample search method
(RSSM) by searching iteratively. Fig.5 illustrates the oper-
ation of the methods. The result of MMSA is used as the
starting condition of RSSM, which makes it convenient for
us to search for peak samples quickly. The whole process is
to explore the remaining space which is not affected by the
representative samples in the cluster.
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FIGURE 5. An Illustration of the representativeness sample search method.

First, search for xp that meets the altitude threshold h
while having the highest altitude in C . Then, search for xp’s
influence range sample set N ′

xp , and mark xp as a repre-
sentative sample. In the remaining sample space C ′, query
whether there is a subpeak x ′

p in C
′. Find x ′

p’s influence range
sample set N ′

x ′
p
. We mark x ′

p as a representativeness sample.

Then get C ′′ by removing N ′

x ′
p
from the sample set C ′ and

continue to find out whether there are subpeak samples that
meet the altitude threshold in the remaining sample set C ′′.
If no samples meet the altitude threshold, exit the search
process. For the samples set Cs not selected into the scope
of influence, based on historical experience, select the two
samples with the largest distance from Cs, and add them
to the representativeness sample set. And these samples are
called extended samples SE . In the follow-up experiments,
we compared the experimental results on whether or not to
add SE . Our historical experience can bring better experi-
mental results and a more significant labeling budget to the
machine learning process. Algorithm 2 gives the process of
RSSM with searching iteratively.

Algorithm 2 Representative Sample Search Method
1: require: C :density-peak cluster;
2: ensure: RC : representative sample set of C ;
3: if (peak sample xp in C ) do
4: search for xp’s influence range sample set N ′

xp in C ;
5: add N ′

xp to RC ;
6: C ′

= ∁CN ′
xp

7: while(∃ subpeak samples x ′
p in C

′) do
8: search the sample set N ′

x ′
p
of x ′

p in C
′;

9: C ′
= ∁CN ′

x ′
p

10: add s′p to RC ;
11: end while
12: end if
13: select SE to add to RC in C ′;

D. ONLINE ACTIVE LEARNING FRAMEWORK
Sampling strategies with sample similarity usually select
instances in the cluster’s center or edge. However, the
design will face bottlenecks when processing multi-peak
clusters or variable density distribution. RSSM rebalances the

distinction and representativeness bymeasuring the similarity
and differences from the attributes of samples. In this section,
we apply MMSA and RSSM to the data stream classification
task and describe how to deal with clustering fragmentation.

a: DEFINITION 3.5 (CLUSTER FRAGMENTATION)
xp is highest in cluster C , if Axp < h, C is called clustering
fragmentation.

To maintain the short-term concept, we set up an inde-
pendent space named information retention to save the frag-
mented information. The retention will be added to the data
pool in the next iteration. The growth of incomplete informa-
tion is queried by maintaining the spatial objects in two peri-
ods, and MMSA and RSSM are used to extract the samples
with annotation value query. The information retention of the
previous iteration will be freed after this round of iteration.

Algorithm 3 describes the process of OAL-DpR. The algo-
rithm realizes a round of iterative cycles of classification
tasks in four steps. The processing of new samples in the
time-series data uses batch-based learning to store short-term
historical samples. Add the latest sample xt in the time series
to the current batch. If the number of samples in the batch
reaches threshold, start a round of iterative active learning
sampling process.

E. COMPLEXITY ANALYSIS
The time and space complexity of OAL-DpR is analyzed in
this section, respectively.

1) TIME COMPLEXITY
Generally speaking, OAL-DpR consists of 3 parts: classifier
prediction label, querying for representative samples, and
classifier update. Let’s make the following notation: Tp is the
time for predicting the latest samples’ label, Tu is the time
for updating classifier with labeled label instances, Tq is the
query time per iteration. Let n be the size of stream, α is the
actual dimension scale, therefore, the overall time complexity
can be approximate to O(n ∗ α(Tu + Tq) + n ∗ Tp).

2) SPACE COMPLEXITY
Since OAL-DpR uses batch processing to store the latest
samples, the cache space is freed after each iteration. At the
same time, we have opened up a space for information
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Algorithm 3 Online Active Learning With Density-Peak
Recognition
1: require: ds: data stream; h: altitude threshold;BatchSize:

size of batch;
2: ensure: acc: accuracy of classifier;
3: initialize classifier f ;
4: for each xi ∈ ds do
5: f predict the label of xi;
6: add xt to the current batch St ;
7: if(St .size == BatchSize) do
8: St = St ∪ CluFrat−1
9: precluster to obtain the initial clusters;
10: Algorithm 1 is used in each cluster;
11: add clusters without peak to the CluFrat ;
12: Algorithm 2 is used to obtain the set RSt
13: Oracle label all samples in RSt ;
14: f .incremental training(RSt );
15: CluFrat .clear;
16: end if
17: end for

retention, assuming the size is IRSize. Let Sf be size of space
to store classifiers. Therefore, the overall space complexity
approximates to O(IRSize+ BatchSize+ Sf ).

IV. EVALUATION EXPERIMENT
Evaluation of OAL-DpR proposed in the section, and the
evaluation criteria are as follows: OAL-DpR can reduce the
label budget while the classifier performance is stable; the
accuracy of the classifier trained by OAL-DpR is within
an acceptable range compared with supervised learning and
other active learning algorithms. The experiment is divided
into three stages. Firstly, the performance of OAL-DpR
is compared with standard active learning algorithms on
multiple data sets and classifiers. Then, the sensitivity of
fundamental parameters is analyzed: BatchSize and altitude
threshold h. Finally, the robustness of OAL-DpR is discussed
based on noisy data. OAL-DpR and comparison algorithms
are realized in the Massive Online Analysis (MOA) soft-
ware [33], it’s an open platform for time series wining. All
evaluation processes are performed in MOA and Eclipse,
we recorded the accuracy and budget of each process.

A. EXPERIMENTAL SETUP
1) EXPERIMENTAL SCHEME
To reduce the deviation caused by classifier category in the
process of evaluating the applicability, HoeffdingTree [9],
PaireLearners [34], OzaBagAdwin [35], NaiveBayes, and
ADACC [34] are used in this paper. ADACC, PaireLearners,
and OzaBagAdwin are ensemble learning classifiers. The
classifier is updated after each iteration and predicts the new
samples in the next iteration.

2) DATASET DESCRIPTION
We set up synthetic datasets and four real datasets. The
description for each dataset is shown in Tab.1.

TABLE 1. Description of each dataset.

The synthetic dataset is generated based on the mov-
ing hyperplane, and the concept of time change is simu-
lated through the transformation of hyperplane direction and
position in two-dimensional space. A sequence of instances
are generated from the equation

∑l
i=0 aixi = a0, where

a0
∑l

i=1 ai and l suggests the number of dimensions.When∑l
i=0 aixi ≥ a0,the class label of instance (x1, x2, . . . , xl)

is +1 and −1 otherwise. We have created two datasets with
different number of attributes, and add 5% and 10% noise
samples respectively.

Forest Coverage Type (FCT ) contains the actual for-
est coverage type of 30m ∗ 30m cells obtained from the
resource information system of the United States Forest Ser-
vice (USFS).
Electricity is the electricity price change of an electric-

ity market in New South Wales over a period of time. All
instances are distributed in two categories. Each instance has
8 attributes and category labels indicating the rise and fall of
electricity prices.
Phoneme is a set of phoneme sample collected by a sound

sensor, which is used to distinguish between nasal sound
(Class 0) and oral sound (Class 1).

Wall-Following Robot Navigation (WFRN ) is collected
when SCITOS G5 robot passes through the room clockwise
along the wall. Each sample contains 24 attribute values
obtained by the sensor around its waist, as well as 4 categories
that judge the robot’s action as forward, slight turn to right,
sharp turn or slight turn to left.

B. SIMULATION EXPERIMENT
To evaluate the effect of OAL-DpR, the standard online active
learning methods are selected to compare with OAL-DpR in
sampling ratio and classification accuracy of the classifier.
The strategies involved in the comparative experiment are
Fixed Uncertainty (FU), Variable Uncertainty (VU), Ran-
domly Variable Uncertainty (RVU) [37], and Selective Sam-
pling (SS) [37]. The active learning strategies of comparison
use the training method of batch processing. These strategies
select sample query labels with a fixed ratio in each iteration
and use them for incremental learning, and the percentage is
set to 15%. To more conveniently evaluate the experimental
results of each comparison strategy, we add supervised learn-
ing (SL) to the comparison experiment. The altitude threshold
h in the OAL-DpR is set to 4 and the BatchSize is set to 100.
The number of initialization set is 1% of the total samples.

The comparison of accuracy on the five classifiers is shown
in Tab.2. In each line, the two with the highest accuracy are
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TABLE 2. Comparison of accuracy on experiment datasets(%).

shown in bold and the ones with the highest accuracy are
underlined. Rank.Avg and Rank.Var are the average rank and
rank variance of the algorithms, respectively. Tab.4 shows the
sampling ratio of OAL-DpR on each data set. OAL-DpR sam-
pling is only related to the dataset and the fundamental param-
eters in OAL-DpR. The ratios are not affected by the classifier
category and are unchanged in each dataset. From the results,
the classification accuracy obtained by SL is the best, but
other strategies also receive acceptable classification results.
OAL-DpR proposed by us is a more effective method of all
strategies. It is also less than different strategies compared
with SL accuracy error. It shows that our representation-
based sampling method is helpful to active learning. The
results in Tab.4 show that the overall sampling ratio of OAL-
DpR is also lower than the sampling ratio of the comparison
algorithm, and the average labeling ratios are lower than 15%.

According to the results in Tab.2, FU is the most unstable
strategy among comparison strategies. It leads to the col-
lapse of classifiers on large-scale data sets such as FCT and
Electricity, which is also the disadvantage of a single strategy.
The improved RVU and VU can better adapt to the dynamic
space, which also shows that it’s not enough to only rely on
the classifier to select the labeled samples. From the results of
comparison, the classification of VU and RVU are similar and
better than FU. As an effective method in random sampling
algorithms, SS uses decision boundary analysis and percep-
tron to determine the current instance selected for annotation.
The results show that SS can achieve a good classification
effect.

Due to representativeness sampling havng low require-
ments for initial training, it is more suitable for online
environments than uncertain sampling when initialization is
insufficient. However, when the sampling strategy of the
latter can select high-information instances, a classifier based
on these samples often performs the effect closer to the
supervised classifier. The results also showed that the clas-
sifier trained with SL is not always the best, for example,
in Phoneme andWFRN . The classifier trained with an active
learning strategy is better than supervised learning. Generally
speaking, the classifier based on active learning has better
generalization ability in unknown fields with less training
samples. Due to the correlation between samples, training
more meaningless samples won’t necessarily bring more ben-
efits to the classification model. On the contrary, it may cause
overfitting of the classifier. Therefore, we need to take note
of data distribution when dealing with continuous and messy
data distribution.

C. ABLATION EXPERIMENT
In Algorithm 2, the extended dataset SE is selected from
the remaining samples when the iteration cycle exits and
adds to the representativeness of samples. This process is
based on historical experience. To prove the effectiveness, the
classification results ofOAL−DpR′ without extended sample
SE are compared on the same classifier and dataset. The initial
samples are set to 1% of the total samples, h is set to 4, and
BatchSize is set to 100. The experimental results obtained by
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FIGURE 6. Effect of h change on classification accuracy.

training different classifiers with OAL-DpR andOAL−DpR′

are shown in Tab.3, and Tab.4 shows the sampling ratio of
OAL-DpR and OAL − DpR′ on each dataset.
From the results, OAL-DpR is better than OAL − DpR′.

The gap in classification accuracy is between 5% and 10% in
most datasets. In Phoneme, the gap in accuracy is only 1% to
3%. According to Tab.4, the sampling proportion decreased
by 20% to 40% in the experimental datasets after removing
SE , about 20% in the FCT with a large number of multi-
density peak clusters, and 30% in the hyperplane synthetic
dataset.
SE is selected from the remaining sample set which is

not included in the influence range in each cluster, and two
samples are selected at most. Therefore, three samples will be
selected as representative samples from a single-density-peak
cluster, and n + 2 samples will be selected from n density-
peaks cluster. Obviously, OAL-DpR will discard fewer sam-
ples when the proportion of multi-peak clusters is high in
datasets. The sampling proportion of OAL − DpR′ will drop
to 1/3 of OAL-DpR when dealing with a single density-peak
cluster. In general, the OAL-DpR can improve the classifi-
cation accuracy compared to OAL − DpR′ but increase the
budget of labeling samples.

D. PERFORMANCE EVALUATION
1) SENSITIVITY ANALYSIS
In this section, NaiveBayes is used as a classifier for sensitiv-
ity analysis with key parameters h and BatchSize.
h : As shown in algorithm 2, the lowest altitude threshold

can be selected as the peak sample in any cluster. Set the
BatchSize to 100, and increase h from 2 to 6. Fig.6 shows
the accuracy of the classifier trained with OAL-DpR on the
experimental data set, and Fig.7 shows the sampling ratio.
With the gradual increase of h, the variation range of accu-

racy in each dataset is about less than 5%, and the sampling
ratio decreased on a slippery slope, dropping sharply in the
field of 2 to 4. Although the sampling ratio is relatively high
at the beginning, the accuracy of the classification model is
not significantly superior. It shows that training more samples
with low representativeness can’t effectively improve the per-
formance of the classifier, increasing the annotation budget.
The higher altitude threshold can filter out a large number

FIGURE 7. Effect of h change on sampling ratio.

FIGURE 8. Effect of BatchSize change on classification accuracy.

of samples with low representativeness, so as to obtain a
classifier with excellent performance at a low cost.
BatchSize: It’s the size of the cache space for the sampling

engine to save the time-series data. We set the h to 4 and grad-
ually increased the BatchSize from 40 to 200. Fig.8 shows
the accuracy of the classifier trained with OAL-DpR on the
experimental data set, and Fig.9 shows the sampling ratio.
Summarise from Fig.8 and 9 that the sampling ratio

decreases continuously in varying degrees with BatchSize
increases: the sampling proportion on FCT and WFRN is
about 20%, while 10% on other datasets; In Fig.9, the
sampling proportion also shows a significant downward
trend. When the cache space is ample, the number of iter-
ations will be reduced, which is the main reason for the
continuous decline of sampling proportion. At the same time,
with the increase of cache space, the update of the classifier
lags behind the change of sample space, so the classifier’s
performance decreases in varying degrees on each dataset.
However, the small cache space will increase the budget for
active learning. It is not easy to find appropriate representa-
tive samples through the nearest-neighbor relationship.

2) ROBUSTNESS ANALYSIS
This section verifies the robustness of OAL-DpR on noisy
datasets through experiments. The experimental dataset uses
SeaGeneration inMOA to generate 15 datasets, and the noise
ratio of each dataset ranges from 1.0% to 15.0%. The strate-
gies compared are VU , RVU , and SS; NaiveBayes is used as
the classifier; The h of OAL-DpR is set to 4, and theBatchSize
is set to 100. We prepared a boxplot to explore the accuracy
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TABLE 3. Accuracy of DpR and DpR′ on each dataset(%).

TABLE 4. Sampling ratio of DpR and DpR′on each dataset(%).

FIGURE 9. Effect of BatchSize change on sampling ratio.

FIGURE 10. Boxplot for different methods in datasets with different ratio
of noise.

changes of the four active learning strategies on 15 datasets.
Fig.10 shows the experimental result.

Summarise from the boxplot that OAL-DpR has the most
robust and stable anti-noise ability of all active learning
strategies. On the other hand, the VU strategy is the worst
in the comparison algorithm at each position. The active
learning method based on the density-peak can effectively
eliminate outliers bymeasuring the local density to reduce the
impact of noise samples on the sampling engine. Therefore,
the classification model based on OAL-DpR training has
better generalization ability and better robustness to noise
data. And the method based on uncertainty will be affected by
noise samples when detecting the sample information. Due to
the environment’s instability and the acquisition equipment’s
aging, the noise can not be avoided. Therefore, the models
with more robust to noise are usually more attractive.

V. CONCLUSION
An novel OAL method based on density-peak recognition is
proposed in this work. As far as our knowledge, it’s the first
time that density-peak has been introduced into the online
classification task. First, the information accuracy of the
sample in clusters is determined by the asymmetric nearest-
neighbor relationship, and representativeness samples are
iteratively selected in each cluster by dividing the influence
range of samples. In addition, OAL-DpR identifies and cap-
tures the fragmented information by dynamically saving
short-term cluster fragmentation. Finally, in the framework of
online batch mode, multiple classifiers and datasets are used
for simulation experiments. By comparing the existing and
commonly used strategies, OAL-DpR has the advantages of
high stability, accuracy, and robustness. To a certain extent,
it reduces the lack of a strategy for selecting representative
samples in the current active learning task.

For the future work, we will further discuss the adaptive
and incremental learning of machine learning under the con-
ditions of low sample annotation ratio and complex environ-
mental changes.
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