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ABSTRACT The genes data produced by microarray experiments is complex in terms of dimensions and
samples. It consumes a lot of computation power and time when it is processed for a disease analysis while
working with an expert system. At the same time, data can help doctors identify a patient’s health condition if
it is presented in a meaningful way and processed on time. Several methods have been proposed to reduce the
dimensions of medical microarray data and optimize its search space with minimal accuracy loss. However,
the discretization of continuous gene-values in the process of dimension reduction is failed to preserve the
inherent meaning of genes. Also, ensuring high accuracy and interpretability in the reduction process may
result in extra processing time, which is unfavorable for time-critical applications. To overcome these issues,
in this paper, we propose a dimension reduction method in conjunction with a fuzzy expert system (FES)
optimization approach, while keeping an accuracy-interpretability-speedy tradeoff in mind. To accomplish
this, we use a fuzzy rough set on f-information to identify meaningful genes without changing their original
values. We propose a conditionally guided particle swarm optimization for faster knowledge acquisition,
where the velocity is adjusted based on a predefined update probability, resulting in a faster search. A big
data processing architecture is designed using the Hadoop ecosystem along with a MapReduce-equivalent
algorithm of the proposed method for speedy processing, enabling parallel processing on microarray data
to reduce dimensions and perform classification through knowledge extraction. The proposed method is
thoroughly tested on eleven microarray datasets by considering accuracy-interpretability-speed tradeoff.
The results show that the proposed method is effective in identifying disease-causing genes while also
understanding the patient’s genetic profile with only a few operations and a small amount of CPU time.
Statistical tests are also run to validate the proposed method’s efficacy in comparison to other methods.

INDEX TERMS f-information, fuzzy expert system, microarray data, particle swarm optimization.

I. INTRODUCTION
Instead of clinical or morphological data, physicians have
started using deoxyribonucleic acid (DNA) data for individ-
ual patients, to provide a ‘‘personalized medicine’’ based on
each patient’s unique genetic profile [1]. Next decade, doctors
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will routinely use our DNA to diagnose and treat our health
conditions [2]. To this end, deoxyribonucleic acid microar-
rays (DNA-mircoarrays) [3] are a portion of an auspicious
group of big medical data that is being used for reviewing
and analyzing genetic material. However, DNA-mircoarrays
are extremely large and complex to analyze for diagnosis
and treatment. With this perspective, dimensionality, scarcity,
and disparity are the three practical difficulties faced by
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physicians when seeking a targeted therapy using a patient’s
gene expression [4]. An expert system can assist a physician
to understand the molecular variations among the genes that
are responsible for a disease. On this account, it is challenging
to select the disease-causing genes from a vast genes pool in
a DNA-microarray and construct an optimized expert system,
to predict, diagnose, or treat a disease.

Several approaches used mutual information (MI) and
f-information (FI) to identify relevant genes from microar-
ray data. Our past approaches utilized mutual information
(MI) [5], [6] for appropriate genes selection, guaranteeing a
decent tradeoff between impartiality and discernment. But,
these approaches could not completely address the issue
of finding relevant genes by eliminating redundant genes
and intimating an assortment of dismissed genes. On this
account, f-information (FI)—as used by Maji [7]—is an
encouraging substitute to MI for genes selection. Despite
its effectiveness, the criterion function of FI divides con-
tinuous gene-expression values into numerous disconnected
segments when estimating the marginal and joint probabil-
ities. The discretization of continuous gene values during
dimension reduction using MI and FI is failed to preserve
the inherent meaning of genes. This misleads the original
genetic meaning of the microarray data and produces more
false positives.

To overcome the issues of using standalone MI or FI for
gene selection, researchers combined multiple approaches.
MI is combined with the rough set by Foithong et al. [8] to
estimate the criterion function in crisp approximation spaces.
Yet, the system was unsuccessful for ill-defined boundaries
between gene-expression values. Contrarily, parzen-window
and histogram-based MI [9] selects the relevant genes by
estimating the density of unbroken numerical values of genes.
But, this approach was only suitable for short attributed
records. Recent approaches [10] and [11] combined the fuzzy
and rough sets to deal with vague values and pacts with
approximation spaces, to select suitable genes without dis-
cretization. As a result, in this paper, we combine the concepts
of fuzzy and rough sets tomodify the fundamental meaning of
FI, calculating the relevance and redundancy between genes
without dividing their expression values into discrete parts.
The genes are ranked based on computed values of modified
f-information (MFI).

After a successful dimension reduction of microarray
data, which means the most relevant genes are selected, the
selected genes are fed into Fuzzy Expert System (FES) to
produce rules for disease diagnosis, prediction, or treatment.
Knowledge acquisition is the key task performed by an FES
whose objective is to find suitable fuzzy ‘‘if-then’’ rules
and membership functions (MFs) from the data, to perform
better decision-making. In this regard, an ideal FES can
be formed by an optimization approach like genetic swarm
algorithm (GSA), ant-bee algorithm (ABA), particle swarm
optimization (PSO) [12], and others. The genetic swarm
algorithm (GSA) [5] improved the classification accuracy of
the FES, yet at the cost of interpretability. The ‘‘if-then’’

rules produced by the GSA are lengthy and complex, mak-
ing it difficult for physicians to understand. The approach
based on an ABA [6] addressed the interpretability-accuracy
tradeoff using modified representation and hybrid problem-
specific methods. Although a compact rules set with better
comprehensiveness was produced, the use of more compound
operations with more tunable control parameters consumed
more CPU time.

To reduce processing time, PSO is a popular optimization
algorithm with a few adjustable parameters, and it locates
the optimal point more quickly than other algorithms while
designing FES. A PSO-based approach [12] has been exposed
to experiential and hypothetical surveys by numerous inves-
tigators [13] to progress its learning skill. In the PSO-based
approach, velocity is considered a crucial feature that deter-
mines the resolution and restricts the movement size and
direction of each particle. Velocity clamping [14] process
controls the movement of a particle in the search space.
During this process, the position of a particle is not guided,
resulting in a poor exploration and exploitation capability.
Even though a guided velocity modification was included
in [15], it is still domain-dependent and unable to govern a
particle for an exclusive search of a solution pool.

To address the aforementioned issues in establishing an
optimum FES, in this paper, we designed a conditionally
guided PSO (CGPSO) algorithm—with suitablemodification
to PSO—to formulate an optimum FES, to get the diag-
nostic response faster with improved accuracy and better
interpretability with a big data processing platform. In addi-
tion to velocity clamping, we presented a simple and novel
indicator for evaluating the velocity of each particle in PSO.
The proposed CGPSO evaluates particle velocity using an
updated probability, thereby eliminating randomly nominated
particles and concentrating the main exploration near the
global best. The proposed CGPSO frequently changes the
search direction, hence producing a better exploration and
exploitation capability for rapid extraction of the fuzzy ‘‘if-
then’’ rules and MFs.

Each ruleset and MF extracted by CGPSO from the dataset
is fired using a fuzzy inference procedure to find out the num-
ber of correctly classified samples that in turn used to find
the fitness value. Even though the Mamdani inference system
used in our previous work [5], [6] has widespread acceptance
due to its intuitive nature, many studies have proven that the
inference procedure followed in Tagaki, Suguno and Kang
(TSK) [16] is compact and computationally efficient. The
author suggests using the TSK inference procedure in this
work because our goal is to make qualitative thinking faster
to reach a definite conclusion. Because the TSK procedure
works well with adaptive optimization techniques, it is rec-
ommended for the proposed CGPSO-based FES that is adap-
tive in terms of velocity updation to ensure a definite output.

Apart from dimension reduction of genes data and FES
optimization, there is also an obligation of advanced tools
and technology to process the big microarray data, efficiently.
Existing approaches [17] lack such tools and technologies,
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and they did not disclose the algorithmic details for the imple-
mentation on a patient’s genetic profile. On this account,
we came up with an advanced Hadoop-based architecture
equipped with MapReduce-based algorithmic details of the
proposed dimension reduction method and FES design,
to analyze data in a faster way for time-critical decisions.

The key contributions of this article are summarized as
follows.

1) Initially, we introduced the accuracy-interpretability-
speedy tradeoff that has to be considered while design-
ing an FES. We pointed out gaps in existing research,
neglecting this tradeoff.

2) We proposed a dimension reductionmethod to filter out
the biologically meaningful genes from the microarray
data. By the proposedmethod, wemodify f-information
by combining fuzzy with rough set theory to select
relevant genes—from a pool of genes—for disease
analysis.

3) We developed a solo algorithm to handle the standalone
objective function with less tunable parameters. To this
end, a novel conditionally guided particle swarm opti-
mization (CGPSO) with TSK inference procedure is
proposed for an ideal FES design, to find accurate as
well as interpretable fuzzy ‘‘if-then’’ rules and MF in a
faster manner.

4) Finally, we designed a big data processing frame-
work with Hadoop ecosystem and MapReduce pro-
gramming paradigm to handle a large microarray data.
Deliberately, a MapReduce-equivalent algorithm of
the proposed approach is implemented on the design
framework.

5) At the end, the overall system is thoroughly inves-
tigated to meet the accuracy-interpretability-speedy
tradeoff. The system is evaluated to relevant genes
selection, precise, linguistic, and fast fuzzy modeling.
The proposed system is compared with state-of-the-art
research and statistically validated.

The rest of the article is organized as follows. Sec-
tion II discusses the preliminary concepts that may help
in understanding the overall proposed system. Section III
highlights various components of the proposedMFI-CGPSO-
based FES. Whereas, Section IV explains the architec-
ture to implement these components in a faster way using
the Hadoop framework. The simulation experiments, gene-
expression datasets used in the experiments, and the out-
comes are presented in Section V. Finally, the article is
concluded in Section VI.

II. PRELIMINARIES
A. ACCURACY-INTERPRETABILITY-SPEEDY TRADEOFF IN
FUZZY EXPERT SYSTEM
Accuracy maximization and complexity minimization are the
two main goals of a fuzzy expert system. The former is con-
cernedwith the correctness of the sample classification, while
the latter is concerned with the interpretability of the rules set.

FIGURE 1. Accuracy - interpretability - speedy tradeoff.

In essence, these two objectives are opposed. Approaches to
precise fuzzy modeling aim for accuracy while also attempt-
ing to improve interpretability. Meanwhile, linguistic fuzzy
modeling sets interpretability as the objective and tries to
improve the accuracy.

In the medical context, doctors need to process data very
quickly to take decisions for gene therapy-based personalized
medicine. Furthermore, in the big data arena, data must be
analyzed during processing rather than after storage. As a
result, the issue of fast knowledge extraction must be consid-
ered in the accuracy versus interpretability tradeoff, as illus-
trated in Figure 1. Fast fuzzy modeling tries to improve the
accuracy and interpretability in less CPU time. The precision
of an FES can be enhanced by fine-tuning the MFs.

Our previous GSA [5] focused only on the accuracy of
FES with a large number of complex parameters. To this end,
setting the ideal value for many adjustable control param-
eters was cumbersome. Another approach ABA [6] tried
to improve the interpretability at the cost of accuracy with
problem-specific representation and algorithms; however, the
convergence was very uncertain. Furthermore, our previous
approaches executed two algorithms concurrently to achieve
the desired goal, which consumed more CPU time and was
problematic for a time-critical analysis. As a result, in this
paper, we propose a solo algorithm with a novel modification
to PSO of adjusting the velocity based on update probability
to acquire prime rules set and membership-function points.
As a result, the proposed conditionally guided PSO (CGPSO)
is very fast in locating the optimal points in the search space
with improved accuracy and interpretability.

B. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is a popular optimization method that preserves a swarm
of particles’ positions to represent candidate solutions for
a problem. Each particle position in a swarm has a vari-
able velocity that it uses to move around the exploration
space. Using a fitness function, each position in the swarm
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FIGURE 2. Depiction of velocity and position updates in PSO.

is evaluated for its contribution to the problem. Reiteration
results in the creation of a new pool based on the following
two calculations:

vg+1
i = wiv

g
i + c1rand ∗ (pbest − sgi ) + c2rand ∗ (gbest − sgi )

(1)

sg+1
i = sgi + vg+1

i (2)

here vgi represents velocity of ith particle at iteration g, vg+1
i

is the velocity of ith particle at iteration g + 1, sgi is the
position of ith particle at iteration g, sg+1

i is the position of
ith particle at generation g + 1,w is the inertia weight, c1 is
the self-confidence factor and c2 is the swarm confidence
factor, pbest is the particle’s individual best, and gbest is
the global best. Equations (1) and (2) appraise the velocity
and position for every particle iteratively, until reaching the
optimal condition. Figure 2 depicts the velocity and position
updates in conventional PSO. Our proposed approach adopts
the conditional velocities—which are moderate based on an
arbitrary threshold—while using PSO to achieve faster opti-
mization and best accuracy. We named this version of PSO as
‘CGPSO’.

III. DESIGN OF MFI-CGPSO-BASED FUZZY EXPERT
SYSTEM
A schematic depiction of the major tasks involved in
the proposed MFI-CGPSO-FES to combat the accuracy-
interpretability-speedy tradeoff is shown in Figure 3. Initially,
the preprocessing is performed to handle missing values and
noise in the data. The dataset is then normalized to remove
outliers. MFI ranks each gene in the microarray data and
chooses the best ones for FES construction. The top genes are
then used by the proposed CGPSO algorithm to construct an
optimized FES. Finally, one of the existing inference systems
is used to compact the FES, further reducing processing time.
Each of the tasks is thoroughly discussed in the following
subsections.

A. PREPROCESSING AND NORMALIZATION
The dataset should be preprocessed to removemissing values,
and noise [18]. Missing values are filled in this process using
the attribute mean of all samples from the same class. The
noisy data is smoothed out using binning. During gene selec-

FIGURE 3. Flowchart to design CGPSO-based fuzzy expert system.

tion, higher-valued genes (in terms of expression value) may
tend to suppress the influence of lower-valued genes. To min-
imize the effects of magnitudes among gene expressions, the
dataset is normalized [18] to set each gene-expression value
in the range of 0 to 1 using (3), Where xn is the normalized
value, x is the actual value, xmin and xmax are the minimum
and maximum expression values of a gene, respectively.
StartingValue is the new minimum value (0), considered in
the range (0,1).

xn =
(x − xmin) ∗ range

xmax − xmin
+ StartingValue (3)

The datasets considered in this work are already processed
to free from outliers for making them available in the public
repositories.

B. MODIFIED f-INFORMATION
In general, f-information [7] calculates the relevant and
redundant genes through discretization of the continuous
gene-expression values. During analysis, the original mean-
ing of genes is lost due to discretization. Although the rough
set constructs characteristics relationships to describe the
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uncertainty in gene-expression values, it considers two equal
continuous gene-expression values to be different due to
the crispness in the lower and upper approximation spaces.
To overcome these problems, this paper proposes a modified
way of computing f-information by combining the concept of
fuzzy with rough set theory [10], [11]. The fuzzy set replaces
a rough equivalence relation with a flexible fuzzy similar-
ity relation, resulting in fuzzy approximation spaces that
address the vagueness and coarseness nature of uncertainties
found in continuous gene-expression values. The procedure
for the selection of the top-ranked genes using modified
f-information (MFI) with the help of hybrid fuzzy rough set
theory is formulated as follows.

Procedure: genes selection using MFI
Input:
G = Gene Expression Value of Microarray Data
m = no. of samples, n = no. of genes, c = class label
Compute:
π =membership value,P= positional value,FM = FEPM

matrix
Output:
Gsig = significant genes, Gsev = severance genes
Gran = rank for genes, Gmng = meaningful genes
Steps:
1) Read G, and partition into three gene groups Low (L)

and Medium (M ) and High (H ), using the mean (µ)
such that Gene Low is GL ⊆ G < µ, Gene Medium is
GM ⊆ G = µ and Gene High is GH ⊆ G > µ.

2) CalculateMean (µL , µM , µH ) and Standard Deviation
(σL , σM , σH ) for each group GL , GM and GH .

3) Calculate for each genes-group (L,M ,H )

2(1 − ||G− µL|M |H ||)2,
σL

2
≤ ||G− µL|M |H || ≤ σL|M |H

πL|M |H = 2(1 − ||G− µL|M |H ||)2,

0 ≤ ||G− µL|M |H || ≤ σL|M |H

0, otherwise

4) Calculate P for each genes-group (L,M andH )

PL|M |H =
πL|M |H

πL + πM + πH

5) Calculate

FM =

PL
PM
PH


6) Significant genes are found using

Gsig =

∣∣∣∣∣∣ 1nl
nl∑
j=1

(PGL ∩ PCL ) −
1

(nl)2

nl∑
j=1

PGL .

nl∑
j=1

PCL

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1nh
nh∑
j=1

(PGH∩PCH )−
1

(nh)2

nh∑
j=1

PGH .

nh∑
j=1

PCH

∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1
nm

nm∑
j=1

(PGM∩PCM )−
1

(nm)2

nm∑
j=1

PGM .

nm∑
j=1

PCM

∣∣∣∣∣∣
here nl|h|m is the number of genes in the corresponding
group,G is the expression value and c is the class label.

7) Severance genes are found using

Gsev

=

∣∣∣∣∣∣ 1nl
nl∑
j=1

(PrelL ∩ PremL ) −
1

(nl)2

nl∑
j=1

PrelL .

nl∑
j=1

PremL

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1nh
nh∑
j=1

(PrelH ∩ PremH ) −
1

(nh)2

nh∑
j=1

PrelH .

nh∑
j=1

PremH

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
nm

nm∑
j=1

(PrelM ∩ PremM )−
1

(nm)2

nm∑
j=1

PrelM .

nm∑
j=1

PremM

∣∣∣∣∣∣
here nl|h|m is the number of genes in the corresponding
group, rel is relevant genes and rem is remaining genes.

8) Genes are ranked based on a high significance (rel-
evancy) with a low severance (redundancy) value to
select only the top-scored non-redundant and relevant
genes to reduce the computation cost in the big data
arena. For that MFI is calculated as a magnitude differ-
ence betweenGsig andGsev. TheMFI values are ranked
(Gran), and the top genes are selected as meaningful
genes (Gmng).

MFI = |Gsig − Gsev|

Gran = min(MFI )

Gmng = Top(Gran)

C. CONDITIONALLY GUIDED PARTICLE SWARM
OPTIMIZATION (CGPSO)
In the traditional PSO, the amount and direction of the
velocity usually determine the space and track of a particle’s
motion. If the velocity of a particle exceeds the determined
allowable speed boundary during its update, it will be set to a
higher rate of velocity. In general, the effect of momentum on
particle movement allows for faster convergence and greater
diversity in the search space. On the one hand, allowing
velocities to increase increases the probability of a parti-
cle leaving the prominent search space, which may degrade
performance. Smaller velocities, on the other hand, fail to
fully investigate the feasible solutions for additional improve-
ments. These considerations lead us to a conditionally guided
PSO (CGPSO), where moderate velocities are produced (not
too higher, not too smaller) using an arbitrary threshold
value . This is completely random and being compared
with predefined updated-probability to control the velocity
updating process consistently, throughout the optimization
process to bring out faster exploration and exploitation ability
in PSO. Figure 4 depicts the scenario of selecting the velocity
conditionally in CGPSO.
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FIGURE 4. Conditional adaptive velocity updation in CGPSO.

The CGPSO runs as a standard PSO up to the updating
of pbest and gbest . Thereafter, for every particle position and
velocity, an arbitrary floating number is created between zero
and one, and compared with the defined updated-probability
. If the floating number is greater, the previous velocity

of the particle is modified using the velocity updating equa-
tion (1), to obtain a new velocity. Otherwise, the previous
velocity of the particle is set to zero and then modified
using (1). As elaborated in Figure 4, there is two-position;
one in green color, calculated using velocity updated from
the previous velocity, whereas the other one in orange color,
calculated using the velocity updated from zero. A kind of
adaptive selection mechanism [19], [20] is followed where a
position is preferred which is closer to the gbest , to cope up
with the bound-constrained continuous search spaces. This
conditional velocity updating method is similar to a mutation
operator in a genetic algorithm and helps to suppress the
movement of a few arbitrarily selected particles, causing a
prime search around the overall best value. Furthermore,
it also helps in determining the solution pool for a faster
optimization process.

D. IMPLEMENTING CGPSO FOR FES
Defining the solution variables (rules set and membership
function (MF)) and constructing the objective function are
the two major tasks of implementing CGPSO to design the
best FES. To encode the solution variables of the FES, the
range of expression values of an individual gene is segregated
into parts to identify the linguistics. In general, three to seven
fuzzy partitions are appropriate. As shown in Figure 5, our
method partitions the input gene into three regions as low
‘L’, medium ‘M ’, and high ‘H ’. A trapezoidal MF is used
to cover L & H , while a triangular MF is used for M .
Three points are usually needed to plot each MF, thus, nine
(3×3) points (P1,P2,P3,P4,P5,P6,P7,P8,P9) are required
to encode the position of a particle in the swarm. P1 and
P9 are permanent to signify the limits of the gene-expression
value. The optimal values for the other points are found
between the limits [P1,P9] for P2, [P2,P9] for P3, [P2,P3]
for P4, [P4,P9] for P5, [P5,P9] for P6, [P5,P9] for P7, and
[P7,P9] for P8. Suppose, if five partitions are considered,

FIGURE 5. Input genes partitioning in fuzzy space.

FIGURE 6. Representation of particle’s position in group.

then fifteen (5 × 3) membership-function points (P1 to P15)
are needed to represent the solution.

In this way, a single rule consists of three sections, rep-
resented by R, Ii, and O. R denotes the rule selection,
I1, I2, I3, . . . .., In denote the linguistics of the gene expres-
sions, and O denotes the class label. Using these indications,
a particle’s position in the group is given, as shown by
Figure 6. The MF portion of gene 1 (L/M/H ) flows to the
I1 (1/2/3) part of every rule (1, 2, ..,MNR) in rule-portion
to obtain the membership grade value as per the inference
procedure. For example, if the expression value read from the
data for gene 1 is 4.2, then as per the Figure 6, this value is
between P4 and P5 of medium partition (M ) of gene 1. Since
the I1 of rule 2 holds ‘2’ to represent the medium partition,
it gets fired to give its corresponding membership grade.

Representing the rules set as integers and the MF as float-
ing points avoids the hamming cliff problem, and is suitable
for the amorphous expression values of genes. Moreover,
using the class label as a rules-set variable keeps away the
situation of having more than two rules firing for the same
predicted class. During the CGPSO, each position in the
group is appraised by formulating an objective function using
(4).

fmin = (m− Cc) + (k ∗ SNR) (4)

Here m is the total number of samples, Cc is the number
of correctly classified samples, SNR is the selected number
of rules from the maximum number of rules (MNR), and k
is a constant used to amplify the small value SNR. From (4),
it is evident that the component (m−Cc) calculates the error,
while the CGPSO tries to minimize it to improve the accuracy
of the system. The component (k ∗ SNR) attempts to produce
a compact rules set where the interpretability and production
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speed are more decently addressed by the proposed single
conditional velocity updating operation, as compared to exist-
ing approaches [5], [6] where a higher number of complex
operations and adjustable parameters were used.

E. INFERENCE PROCEDURE
After an optimized rules set by CGPSO, it is important to
choose a better inference procedure to finalize the rules set,
meeting the objective of speed, efficiency, and accuracy.
We know that theMamdani inference system used in state-of-
the-art research [5], [6] have widespread acceptance due to its
intuitive nature. But, many other studies have proven that the
inference procedure produced by Sugeno and Kang (called
TSK [21]) is compact and computationally efficient [16].
Since our goal is to make qualitative thinking in a faster man-
ner to arrive definite conclusion, we suggest using the TSK
inference procedure [21] with CGPSO. Furthermore, because
the TSK procedure works well with adaptive optimization
techniques, it is recommended that it be used in conjunction
with the proposed CGPSO-based FES—as the CGPSO is
adaptive in terms of velocity updation—to ensure a definite
output. The TSK procedure results in the production of a
lesser number of rules by replacing each fuzzy set with the
function of input genes. TSK method performs faster as well
as better than the Mamdani procedure in classifying com-
plex ultra-high dimensional microarray data in the medical
context.

IV. MULTILAYERED ARCHITECTURE FOR FAST
PROCESSING OF MICROARRAY DATA
In addition to microarray dimension reduction and FES opti-
mization, we need advanced hardware systems and tools to
speed up the process. To accommodate this need, we came
up with a multilayered architecture, as shown in Figure 7,
to process large medical datasets in a faster way. Initially, the
complex medical dataset—which might be in a raw form—
is taken as an input source for feature reduction and clas-
sification. In the next ‘preprocessing and filtration’ layer,
missing values are identified in the data and filled using pre-
processing and normalization operation. Furthermore, at this
stage, any unnecessary data that could not be normalized is
filtered. The data in the form of gene-expression values is
processed at the next layer to select the top-ranked genes
using MFI. CGPSO is used to analyze the core (i.e., relevant)
genes, resulting in a knowledge base that is then used to
build an FES-based genetic model. Finally, the built model
is used for testing, which includes labeling. Because model
development is a large, complex, and time-consuming pro-
cess that includes preprocessing and filtration, gene selec-
tion, fuzzy system modeling, and CGPSO processing, it is
handled by the Hadoop ecosystem, which is equipped with
the distributed file system ‘HDFS’ and the MapReduce pro-
gramming paradigm. Hadoop is a very powerful tool that has
a distributed file system ‘HDFS’ and distributed and parallel
programming environment ‘MapReduce.’ The data is divided
into several chunks and stored on various data nodes using

FIGURE 7. Multilayered architecture to process big medical data.

FIGURE 8. MapReduce programming model to process big medical data.

HDFS. The parallel processing on each of the chunks is
performed using the MapReduce mechanism. The algorithm
is implemented in theMapReduce environment using themap
and reduce functions. The map function goes through each
chunk line by line and returns a result for each line. The
reduce function collects all of the results for a given dataset.
There is also a combiner that collects all the inputs from
each chunk and merges them. The division of the dataset
into chunks, storing chunks into multiple data nodes using
HDFS, and processing them using the MapReduce mecha-
nism remarkably increases the efficiency of the system while
handling big medical data.

For better performance, we implemented both the
MFI-based genes selection process and CGSPO-based FES
optimization using multiple map and reduce functions.
As previously stated, the map function processes the data
line by line and returns a unique result for each line based on
the code written in the map function. The results of the map
function are passed to the corresponding reduce function,
which compiles the results and produces an aggregated result.
Depending on the system’s complexity, multiple map and
reduce functions may collaborate. We used the two-layered
map and reduce mechanism, where the first level output by
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Reducers-1 is used as input for the next level of mapper
Mappers-2 for further processing, as shown in Figure 8. The
completeMapReduce process for finding top-ranked genes is
presented below as a pseudo-code in algorithm 1.

Algorithm 1MapReduce Algorithm
map1(Key Gene, Value GeneValues)
1: for each g in Gene do
2: sum = sum+ GeneValue
3: m = m+ + // number of samples
4: end for
5: emit(Key Gene, Values (sum,m))
6: end map1
reduce1(Key Gene, IterableValues (sum,m))
1: for each sum_val in sum do
2: cum_sum = cum_sum+ sum_val.get()
3: cum_m = cum_m+ m.get()//count sample values
4: end for
5: Calculate µ(cum_sum, cum_m)
6: end reduce1
map2(Key Gene, IterableValues (GeneValues, µ))
1: Calculate GH ,GM ,GL based on µ

2: for each g do
3: if GeneValues ∈ GH then
4: sum_GH |GL |GM = sum_GH |GL |GM+

GeneValue
5: sum2_GH |GL |GM =

sum2_GH |GL |GM + GeneValue2

6: m_GH |GL |GM =m_GH |GL |GM + 1 //increment
7: end if
8: end for
9: emit(Key Gene, Values (sum_GH |GL |GM ,
sum2_GH |GL |GM , m_GH |GL |GM ))

10: end map2
reduce2((Key Gene, IterableValues
(sum_GH |GL |GM ,sum2_GH |GL |GM ,m_GH |GL |GM ))
1: for each val_sum_GH |GL |GM ∈ sum_GH |GL |GM do
2: cum_sum_GH |GL |GM =

cum_sum_GH |GL |GM+val_sum_GH |GL |GM .get()
3: cum_m_GH |GL |GM =

cum_m_GH |GL |GM + m_GH |GL |GM .get()
4: end for
5: Calculate µ_GH |GL |GM , σ_GH |GL |GM , πH |L|M ,
PH |L|M , FM , Gsig, Gsev, Gmng

The map function takes input as a key and value pair.
In our case, themap1 function computes the basic parameters,
which are the sum of genes and the number of samples, using
gene-ID as a key and gene values as a value attribute. Themap
function generates the gene-ID as a key and the sum of values
and the number of samples as value attributes for each line for
each gene and transfers them to the reduce1 function via the
emit function call. All of the gene-IDs are used as keys in the
reduce1 function, and the corresponding values are used as

value attributes. reduce1 aggregates all the sums and number
of samples and then calculates µ for each gene-ID. At next
level, the map2 function is called for each reduce1 output.
map2 takes the gene-ID as a key and gene values and corre-
sponding µ values as a value parameter.

The map function determines the values of GH , GL , GM
based on µ value for each of the genes. Later, it calculates
the basic parameters for each GH , GL , GM . It calculates sum,
sum2, number of samples for each of GH , GL , GM . The
map function is executed on each line of the source data and
generates all of these outputs for each individual line. Finally,
the reduce2 function aggregates all the map2 outputs and
computes other parameters that are used in finding top-ranked
genes, such as µ_GH , µ_GL , µ_GM , σ_GH , σ_GL , σ_GM ,
Gsig,Gsev,Gmng, etc.

V. SIMULATION EXPERIMENTS AND EVALUATION
This section presents the details of experiments performed to
validate the performance of the proposed MFI-CGPSO-FES
approach—while considering the accuracy-interpretability-
speedy tradeoff—using eleven gene-expression datasets. As a
result, the proposed modeling approach’s performance is
evaluated and compared to state-of-the-art methods in terms
of relevant gene selection, precision and perfection of the
FES modeling, and accuracy of the designed expert system.
In addition, the statistical validation of the proposed method
is performed using several parameters and compared with
state-of-the-art research.

A. SIMULATION ENVIRONMENT
All the simulations were implemented using MATLAB
7.11 in Intel Core i5 processor with a speed of 2.80GHz and
4 GB of RAM. Hadoop ecosystem is used along with the
MapReduce programming paradigm in MATLAB. In addi-
tion, to study the biological relevance, the GO Sim package
of ‘R’ software [22] was used.

B. GENE-EXPRESSION DATASETS
Existing approaches [5], [6], [12] were tested only on six
microarray datasets and found to be non-claimable for other
medical data. To confirm the robustness and scalability of
the proposed method, five additional datasets on prostate,
ovarian, breast, pancreatic, and lung cancer were included in
the study. Table 1 display information about all of the datasets
used in the simulation, sorted by dataset size. The datasets
are summarized by the total number of genes (n) a dataset
contains, total samples (m), the size of the dataset in terms of
number genes-values (i.e., n × m), total class-wise samples
(mc), and the disease it has classified (category labels).

C. RELEVANT GENES SELECTION
Reminding Section III-B, we identified relevant genes using
MFI. For demonstration, values of fuzzy equivalence class
(FEC) and fuzzy equivalence partition matrix (FEPM) for
the individual gene ‘PDX1’—considering 52 samples or
patients—in the pancreatic cancer dataset are presented in
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TABLE 1. Details of microarray datasets.

Table 2. The values are grouped as low, middle, and high,
calculated by the MFI procedure in Section III-B. Similarly,
FEC and FEPM matrices are formed and a genes-group
significance value is computed for each of the other genes.
In the pancreatic cancer dataset, the ‘PNLIPRP2’ showed
the highest significance value ‘0.4157’, and was nominated
as the most significant gene. Next, the gene-gene severance
between the most significant gene ‘PNLIPRP2’ and all the
other genes is quantified. The outcomes of genes-group sig-
nificance Gsig and gene-gene severance Gsev are presented in
Table 3. At the end, genes are ranked based on Gsig and Gsev
values, aiming at maximizing Gsig and minimizing Gsev. The
MFI values for the first-thirty genes of the pancreatic cancer
dataset are presented in Figure 9.
The gene’s relevancy is determined based on their ranks.

Selecting a higher number of relevant genes negatively
impacts the tradeoff between significance and severance [5],
[6], [7], [8], [9], [10], [11]. As a result, at the CGPSO stage,
we hardly considered the top ten genes to be relevant for
expert system design. Table 4 lists the relevant genes chosen
for each of the eleven datasets. However, these are not the
final selected genes, as the CGPSO conditional statement
provides the final meaningful genes with linguistics for their
expression values.

D. PRECISE, ACCURATE, AND FAST FUZZY MODELING
The proposed MFI-CGPSO-based fuzzy medical expert sys-
tem modeling is very fast and has a rich convergence behav-
ior. It yields a very precise expert system model that is both
accurate and general to any related problem. We present
the results of our experiments to demonstrate the compact-
ness and convergence behaviors, generalization and cor-
rectness, interpretability, and efficiency of the proposed
method.

TABLE 2. FEC and FEPM values for PDX1 gene.

TABLE 3. Significance and severance values for prostate cancer dataset.

FIGURE 9. MFI values for pancreatic cancer dataset.

TABLE 4. Details of genes nominated by MFI.

1) CGPSO CONFIGURATION
To achieve an optimum fuzzy-based expert model to diagnose
the disease, CGPSO is initially configured with a hybrid
string (real and integer) to encode the MF and rules set.
Each rule requires twelve integer numbers (one for R, ten
for I1, I2, . . . , I10, one for O) in the solution pool. Seven
membership-function points are used for each linguistic vari-
able of the selected relevant genes. As a result, 70 floating-
point numbers (i.e., 7 points × 10 relevant genes) are
employed to come up with a compact rules set, starting from
five to ten rules. In short, with ten rules, one hundred and
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90 (10 rules × 12 integer numbers + 7 points × 10 relevant
genes = 190) variables var are randomly initialized as a
particle’s position in the swarm. For each particle position, the
velocity is randomly initialized between zero to Vhigh, where
Vhigh is computed by (5).

Vhigh =
maxLimiti − minLimiti

2
, i ∈ 1 . . . var (5)

The size of the initial swarm space is kept within the
range of 10-40. Each position in the swarm was evaluated
by fitness function fmin, computed by (4), while changing the
iterations from 10 to 100. The constant k varies from three
to eight, depending on the selected number of rules SNR.
Around 50 independent experiments were conducted by vary-
ing the update-probability from 0.1 to 0.9, to examine the
convergence performance of every particle inside the swarm,
iteratively. Forty-three trials produced the best results for all
the datasets with a swarm size of 25 and 70–110 iterations on
0.6 u.

2) COMPACTNESS AND CONVERGENCE
All of the designed fuzzy-based expert systems for dis-
ease diagnosis are very compact and accurate with the
above-mentioned CGPSO settings. As an example, the
designed expert system to confirm pancreatic cancer resulted
in the selection of only seven genes and four fuzzy rules,
as shown below.

1) If CELA2A is low and PPDPF is high, it is a tumor.
2) If FAM3B is high and C8orf22 is medium, it is a tumor.
3) If REG1A is low and is PBCA medium, it is normal.
4) If CELA2B is medium, it is normal.

Interestingly, the accuracy of the system is 98.07%. CGPSO
found seven out of ten relevant genes to be highly responsible
for cancer detection. Furthermore, the linguistic values for all
seven genes are simple, allowing the physician to easily read
the patient’s genetic profile.

During the design process of the expert system for pan-
creatic cancer detection, the optimal membership-function
points realized by the CGPSO for the CELA2A gene are
shown in Figure 10. The values of the membership-function
points are well adjusted and reasonable. This validates the
CGPSO’s faster-tuning capability, producing aMFwith a par-
tial mode connection and non-inclination toward the iterative
dynamic ranges’ boundary values within 100 generations.

The overall convergence behavior of the proposed CGPSO
in the learning/training process of the pancreatic cancer diag-
nosis is compared with state-of-the-art FES optimization
approaches, as shown in Figure 11. To justify the fair com-
parison, the relevant genes are selected with bothMI andMFI
procedures for all GA, PSO, GSA, ABA, and CGPSO opti-
mization approaches. The results show that any optimization
approach with MI-based genes selection performs worse than
one with MFI-based genes selection. The genes nominated
by MI may have been deprived due to discretization, and
more generations are required to build a knowledge base
that matches the input with the corresponding output class.

FIGURE 10. Optimal membership function formed by CGPSO for ‘CELA2A’
gene of pancreatic cancer dataset.

FIGURE 11. Convergence comparison of various approaches using
pancreatic cancer dataset.

As a result, even if you use an optimization method other
than CGPSO, we recommend using MFI for gene selection.
With the offered MFI-based genes-selection and CGPSO-
based optimization, we witnessed a faster convergence rate
from the beginning and an optimal solution at 70th iteration.
We noticed PSO and CGPSO both showed an abrupt increase
in the fitness value, whereas the GA, GSA, and ABA have
a steady rise due to a large number of complex operations.
In any case, regardless of whether MI or MFI is used to
select relevant genes, CGPSO outperforms GA, PSO, GSA,
and ABA approaches in terms of convergence behavior. The
proposed MFI-based CGPSO demonstrated slightly better
learning ability, with higher classification accuracy and fewer
rules.

3) GENERALIZATION AND CORRECTNESS
The generalization ability of the MFI-CGPSO-FES was val-
idated using the Monte Carlo cross validation (MCCV) [34].
For MCCV, S training sets {Tr }s(s=1,2,3,C,S) are randomly
formed by selecting records without replacement, from a
dataset D containing m samples. For each training set {Tr },
samples for the testing set {Te} are randomly chosen from
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TABLE 5. MCCV results using MFI-CGPSO-FES.

the remaining set {D − Tr }, meeting the ratio mT (s)
r : mT (s)

e .
In this paper, we fix the ratio 4:1, which means the size of
{Tr } is 4 times the size of {Te}. The error rate is computed
using (6).

∈̂MCCV (D({Tr }s)s=1,2,3,....,m) =
1
S

S∑
s=1

∈̂TEST

(D, ({Tr }s, {Te}s)) (6)

During the MCCV process, an individual FES is designed
for each training dataset {Tr }s by employing the proposed
MFI-CGPSO approach. Afterward, the FES is testing on
the corresponding training dataset {Te}s. Inaccurate classified
samples are counted at each of the S trials, and the average is
taken as an error rate using (6). Table 5 presents the MCCV
results for all the eleven datasets in terms of mean (µ) and
standard deviation (σ ) of error rates, considering S = 50 for
each dataset. The error rate, expressed in terms of mu and
sigma, is found to be the lowest in all iterations and across all
test data sets. The minimum error rate demonstrates the suit-
ability of MFI-based gene selection as part of our proposed
CGPSO-based FES.

4) INTEPRETABILITY
The measure of interpretability is the ability to understand
the operation of a fuzzy expert system. Many factors are used
to calculate it, including the number of input variables, the
number of fuzzy rules, the number of linguistic terms, and
the shape of the fuzzy sets. In this paper, we computed inter-
pretability in terms of the mean coverage of rules set (µC),
the number of variables (#V ), and the average number ofMFs
(µMF). Figure 12 compares the interpretability of our sys-
tem against state-of-the-art approaches, including GSA [5],
ABA [6], adaptable velocity modified PSO (MPSO) [20],
and Adaptable PSO (APSO) [19]. Overall, all the approaches
produced competitive coverage values. Because MPSO and
APSO are similar to the proposed CGPSO method in terms
of updating the velocity adaptively, they produce nearly the
same coverage value as CGPSO. The CGPSO, on the con-
trary, outperformed the GSA and ABA. The CGPSO pro-
duced a much smaller rules set with far fewer genes and MFs
than the GSA and ABA. However, our approach has slightly
inferior interpretability than MPSO and APSO in some of the

FIGURE 12. Interpretability comparison of CGPSO with other approaches.

cases. But, the computational overhead of MPSO and APSO
is far larger than the CGPSO.

5) EFFICIENCY
To analyze the efficiency aspect of the proposed FES mod-
eling approach, we look at the proposed method to average
processing time consumed on one gene value. We notice that
the CPU time consumed to process a single gene value is
less than 0.2 ms, except for col and bre datasets, as shown
in Figure 13. Since the whole process is implemented
on the big data processing platform, which is equipped
with parallel processing mechanism of Hadoop and MapRe-
duce, the average time decreases with the growing dataset
size. The designed big data framework efficiently processes
large datasets and makes algorithm implementation relatively
faster with larger datasets. Furthermore, when working with a
large dataset containing a large number of genes and samples,
the CGPSO’s chances of obtaining optimal value at an earlier
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FIGURE 13. Processing time of genes in the proposed big data
architecture.

stage are increased. In a nutshell, the results prove that the
proposed MFI-CGPSO-based expert system modeling with a
big data platform can handle massive datasets with a rate of
less than .01ms per gene value.

The proposed MFI-CGPSO-based FES modeling is very
fast as compared to existing approaches. To fairly compare
the efficiency of the proposed FES modeling with state-of-
the-art methods, we tried both MI and MFI-based genes
selection, individually, as a prerequisite of the FES design
and optimization process. Figure 14 and Figure 15 present
performance comparison between the proposed method and
other state-of-the-art FES methods. The CPU time reflects
the processing time consumed in the whole modeling pro-
cess from a genes selection process to the final FES design.
Figure 14 shows the results of the first trial, where the genes
are selected using MI from all the datasets one by one, and
the optimization approaches—such as GSA, ABA, MPSO,
APSO, and our method CGPSO—are applied on the selected
genes to form an individual FES design for each dataset.
Whereas, Figure 15 presents the results of the 2nd trial, where
the genes are selected by the proposed MFI-based algorithm.
The corresponding fitness values selected by each method
during the FES optimization are shown in part (b) of the
figures for both trials. All of the methods performed well;
the PSO was slightly faster, but the CGPSO is even faster
due to its simplified operations, though it did not achieve
the GSA and ABA’s optimality. ABA produced interpretable
rules competitively but consumed more CPU time due to the
combinatorial operation in forming simple rules. Overall, the
proposed CGPSO with a single control parameter achieved
the desired fitness value quickly, using less CPU time, and
with more accuracy for all the datasets. Furthermore, the
novel idea of updating the velocity conditionally in CGPSO
also simplified the standard PSO operations, allowing the
rapid extraction of the rules set and MF from the data.

E. STATISTICAL VALIDATION AND COMPARISON
To further evaluate and justify our approach, we identified
differences in results produced by our method and state-of-
the-art research. On this account, we employed Wilcoxon’s
signed-rank test [12], and analyzed the effects of the proposed
MFI procedure against several information theory-based
genes-selection approaches [7], [34], [35], [36], [37], [38],

FIGURE 14. Performance comparison with state-of-the-art methods with
MI.

FIGURE 15. Performance comparison with state-of-the-art methods with
MFI.

[39] and other popular state-of-the-art methods [16], [40],
[41], [42], [43], [44], [45]. Using the same test, we compared
outcomes of the proposed CGPSO with other competitive
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TABLE 6. Results of Wilcoxon’s test for genes selection.

TABLE 7. Results of Wilcoxon’s test for knowledge acquisition.

FIGURE 16. ROC curve of CGPSO using all datasets.

FES optimization algorithms [5], [6], [12], [19], [20], [44],
[46] in the literature. Furthermore, to validation, the diag-
nostic capability of the designed expert systems, the true
positive rate (TPR) is analyzed against the false positive
rate (FPR) using the receiver operating characteristics (ROC)
curve. Also, the area under the ROC curve (AUC) is compared
for all the approaches.

Table 6 presents the result-summary ofWilcoxon’s signed-
rank test for all the genes-selection approaches. R+ indicates
ranks in the datasets where the first method is superior to the

TABLE 8. Comparison of AUC for CGPSO and other approaches.

second one. Whereas, R− indicates ranks with a conflicting
outcome. The null hypothesis (H) associated withWilcoxon’s
test was rejected (notified as Rj), since P < α = 0.01 in all
cases is in the favor of MFI due to the difference between R+

and R−. Consequently, the newly formed expressions in the
fuzzy approximation space—that are used to calculate the rel-
evance and redundancy values—seemingly improved all the
metrics, importantly the CPU time, when compared against
the information theory-based genes-selection approaches.
However, when compared to other methods, the proposed
MFI performs slightly worse, particularly when compared
to RF and GTA in terms of number of genes. Furthermore,
the proposed MFI process has the same accuracy as MBF
and SW. As a result, the resulting accepted hypothesis (rep-
resented as Ra). Although all genes-selection methods strive
for the same goal of effective dimension reduction, the pro-
posed MFI algorithm consumes less CPU time than any other
method due to less overhead and compounding operations.

Table 7 presents the comparison ofWilcoxon’s signed-rank
test results for all related FES optimization algorithms and the
proposed CGPSO.Wilcoxon’s signed-rank test demonstrated
that using a conditional statement with the PSO velocity
updating process improves interpretability significantly more
than GA, PSO, GSA, and ABA. Furthermore, random veloc-
ity updating quickly adjusts the MF and arranges the rules
set, resulting in a simple and effective classifier. The CGPSO,
on the contrary, generates more rules than bPSO and kFIS
while having less interpretability than APSO and MPSO.
Nevertheless, our proposed CGPSO is competitively faster
than bPSO, kFIS, APSO, and MPSO.

Finally, the diagnostic test is validated using the ROC curve
of the TPR against the FPR at diverse cut points. Figure 16
shows the plotted ROC curve for all the datasets used in this
experiment. The ROC curve for the proposed method was
closer to the upper left corner for all datasets, indicating that
the proposed method has a higher sensitivity/specificity rate
that is useful for a diagnostic-based decision support system.
Furthermore, in Table 8, the AUC produced by our system for
each dataset is compared to state-of-the-art systems. Despite
the good sensitivity and specificity potentials of the proposed
method, it produced slightly lower AUC values—although
the difference is negligible—for the Leu and Bre datasets
when compared with the GSA and PSO. Still, our approach
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demonstrated an ability to cover a wide area of nine datasets
without varying significantly.

Overall, the refinement strength of the nominated genes
and their linguistics provided by the proposed method is very
effective for detecting disease. Furthermore, all statistical
tests confirmed the proposed method’s ability to generate an
accurate, faster, and more interpretable FES for analyzing
microarray data to diagnose diseases.

VI. CONCLUSION
Understanding big microarray data and designing an accurate
expert system for disease diagnostic in a reasonable time,
while meeting the accuracy-interpretability-speedy tradeoff,
is one of the major challenges in bioinformatics. To meet this
challenge, this paper proposed af-information modification
by combining a fuzzy and rough set to identify relevant genes
in large amounts of microarray data. Furthermore, to design
the best fuzzy expert system, we propose a CGPSO for
faster knowledge acquisition, inwhich the velocity is adjusted
based on a predefined update probability, resulting in a faster
search. To accelerate the implementation of the proposed
method, a high-performance computing architecture based
on the Hadoop ecosystem that efficiently handles microar-
ray data is proposed. In extensive experiments with eleven
datasets, the proposed MFI-CGPSO-FES approach with very
few tunable parameters and complicated operations achieved
a reasonably speedy tradeoff, and successfully handle the
FES accuracy-interpretability conflict.
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