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ABSTRACT This paper presents an extensive literature review on Binary Neural Network (BNN). BNN
utilizes binary weights and activation function parameters to substitute the full-precision values. In digital
implementations, BNN replaces the complex calculations of Convolutional Neural Networks (CNNs) with
simple bitwise operations. BNN optimizes large computation and memory storage requirements, which
leads to less area and power consumption compared to full-precision models. Although there are many
advantages of BNN, the binarization process has a significant impact on the performance and accuracy of the
generated models. To reflect the state-of-the-art in BNN and explore how to develop and improve BNN-based
models, we conduct a systematic literature review on BNN with data extracted from 239 research studies.
Our review discusses various BNN architectures and the optimization approaches developed to improve
their performance. There are three main research directions in BNN: accuracy optimization, compression
optimization, and acceleration optimization. The accuracy optimization approaches include quantization
error reduction, special regularization, gradient error minimization, and network structure. The compression
optimization approaches combine fractional BNN and pruning. The acceleration optimization approaches
comprise computing in-memory, FPGA-based implementations, and ASIC-based implementations. At the
end of our review, we present a comprehensive analysis of BNN applications and their evaluation metrics.
Also, we shed some light on the most common BNN challenges and the future research trends of BNN.

INDEX TERMS Binary neural network, convolutional neural network, deep learning, optimization
approaches, quantization, systematic literature review.

I. INTRODUCTION

IN recent years, Convolutional Neural Network (CNN)
achieved massive success in various aspects of image
classification [1], [2], object recognition [3], [4], object
detection [5], speech emotion recognition [6], [7], and clas-
sification of noisy non-stationary signals [8]. The standard
CNN models use 32-bit floating-point arithmetic operations
that require complex computations exhausting high power
and large memory capacity. These problems make CNN
inappropriate for limited sources platforms. To handle the
CNN drawbacks, compression techniques appeared like
parameter quantization [9] and parameter pruning [10], [11].
Quantization is a process to represent the weights of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen

neural network with low-precision formats, like integers or
even binary numbers. Therefore, it is an efficient solution to
provide a light implementation of CNN [12]. The maximum
quantization level is to use a 1-bit representation, which is
called binarization, in which the weights and activations are
binary values. In BNN, all layers are binarized except the first
and the last layers to keep the model accurate. BNN uses
simple binary operations instead of the complex operations
used in the full-precision counterpart.

This study aims to conduct a systematic literature review
to propose an up-to-date comprehensive view of the BNN.
This review keeps track of Kitchenham’s guidelines [13]. The

contributions of this survey are as follows:
1) Conducting a systematic literature review that presents

the state-of-the-art in BNN through the data obtained
from 239 research studies.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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2) Presenting a comprehensive review of three BNN
optimization approaches: accuracy optimization,
compression  optimization, and  acceleration
optimization.

3) Exploring the various application domains that
utilize BNN implementations and their evaluation
metrics.

4) Identifying current challenges in BNN design and the
future trends in BNN research.

The paper is organized as follows. Section II reports
the methodology of the survey. Section III discusses the
previously conducted surveys. Section IV analyzes the
findings of the systematic literature review. Finally, section V
presents the conclusion of the survey.

Il. SURVEY METHODOLOGY

We follow Kitchenham’s guidelines [13] to conduct our
survey, as depicted in the following sub-sections. We begin by
listing the research questions. Next, we explain the selection
method, which includes the definition of the search string and
the inclusion and exclusion criteria.

A. RESEARCH QUESTIONS

The research questions (RQ) are designed to express the
fundamental data for the BNN review. The first three ques-
tions are necessary to understand the BNN background. The
fourth question explains the BNN optimization approaches.
The fifth question reports the existing BNN framework. The
sixth question clarifies the applications of BNN and their
evaluations. The last question identifies the challenges and
the suggested future work of the BNN.

« RQI1: How is BNN defined in the literature, and why is
it appropriate for source-limited devices?

« RQ2: Which is the pioneering research in BNN?

e RQ3: How is BNN trained?

o RQ4: What are the different approaches to optimize the
performance of BNN?

o RQ5: What are the types of BNN frameworks?

o RQO6: What are the applications that utilize BNN? What
are the used datasets in these applications and their
evaluation metrics?

« RQ7: What are the challenges and future work of the
BNN?

B. SELECTION APPROACH

We conducted our literature review using the following
search engines: IEEE Xplore, Google scholar, ArXiv, Science
Direct, ACM Digital Library, Springer Link, and Web of
Science. The selection approach is divided into the following
two parts:

1) DEFINITION OF THE SEARCH STRING

These are the keywords that are utilized to obtain the research
results. We used the search strings for each search engine to
examine the title, abstract, and keywords of the papers. The
search strings are depicted in Table 1.
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2) INCLUSION AND EXCLUSION CRITERIA
These criteria specify the related studies to the research
questions.
1) Inclusion Criteria
o We focus on the studies that provide explanations
of BNN concepts, improvement approaches, and
applications.
o« We comprise the review and survey studies to
comprehend the current research trends.
2) Exclusion Criteria
o Papers that are not published in the English
language.
o Papers that introduce approaches not related to
BNN.
« Repeated studies that have journal and conference
versions.

The primary search found 2,392 papers, with 194 from
IEEE Xbplore, 1,890 from Google scholar, 115 from ArXiv,
101 from ScienceDirect, 82 from ACM Digital Library,
10 from Springer Link. After the repeated papers are removed
and the inclusion and exclusion criteria are applied, the final
selected papers are illustrated in Table 1. The survey time
frame is between 2016 and September 2022. Figure 1 shows
the paper selection approach process.

lIl. RELATED WORK

Few surveys on BNN have been published in the last few
years. This section discusses the relevant reviews on BNN and
illustrates the differences between our study and the previous
surveys.

Khoshavi et al. [14] review the effect of soft errors on
BNN, which occur due to compression techniques used that
decrease the model size on the memory. Another study
explored some BNN applications that are suitable for edge
computing [15].

Simons et al. [16] demonstrated the BNN fundamentals
and its benefits during the training and inference phases.
The survey covered some architectures that improve the
BNN performance. Moreover, the paper reviewed hardware
implementations on FPGA, a short brief about ASIC
implementations, and focused on image classification as
an application. Additionally, surveys in [17] and [18]
summarized the BNN background, and optimization methods
including minimizing the quantization error, improving the
network loss function, reducing the gradient error, and
network structure. Besides, they mention some of the BNN
applications.

Our review differs from the existing reviews from three
perspectives: 1) Methodology: we conduct a systematic
literature review on BNN that follows Kitchenham’s guide-
lines [13]. While the previous surveys have no clear
methodology. 2) Comprehensiveness: the number of studies
and scope of the reviewed work that is analyzed in this survey
is higher than previous work. 3) Analysis: we provided a
comprehensive analysis of optimization approaches that were
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TABLE 1. Search strings and their results.

Search Engines Search Strings Primary Final Selected
Results Result

IEEE Xplore "BNN" or "Binary Neural Network" or "BNN training" or "Binary Neural | 194 97
Network" and "optimization techniques" or "Binary Neural Network" and "Hard-
ware implementation”

Google scholar Title: ["BNN" or "Binary Neural Network" or "BNN training" or "Binary Neural | 1,890 56
Network" + "optimization techniques" or "Binary Neural Network" + "Hardware
implementation"]

ArXiv Abstract ["BNN" or "Binary Neural Network" or "BNN training" or "Binary | 115 58
Neural Network" and "optimization techniques” or "Binary Neural Network" and
"Hardware implementation"]

Science Direct "BNN" or "Binary Neural Network" or "BNN training" or "Binary Neural | 101 8
Network and optimization techniques" or "Binary Neural Network and Hardware
implementation”

ACM Digital Library | [All:"BNN"] or [All:"Binary Neural Network"] or [All:"BNN training"] or | 82 12
[All:"Binary Neural Network" and "optimization techniques"] or [All:"Binary
Neural Network" and "Hardware implementation”]

Springer Link Topic: ["BNN" or "Binary Neural Network" or "BNN training" or "Binary | 10 8
Neural Network" and "optimization techniques" or "Binary Neural Network" and
"Hardware implementation"]

I 239 Studies
- L4 : L4
| Primary Search | Check the Inclusion | Review Papers )
] . Conculsion
2,392 Studies Criteria

Remove the
duplicates

L |

FIGURE 1. The papers selection approach process.

not covered in the previous survey, such as compression and
acceleration approaches.

IV. SURVEY FINDINGS

This section summarized the results of the extracted
data from the selected studies to answer the research
questions.

A. RQI1: HOW IS BNN DEFINED IN THE LITERATURE,

AND WHY IS IT APPROPRIATE FOR SOURCE-

LIMITED DEVICES?

BNN is a neural network that can use 1-bit for data
representation. Therefore, values of -1 (0) and 1 can be
used for both weights and activations rather than 32-bit
in a full-precision counterpart, which reduces the memory
footprint. Another benefit of using the binary values is using
binary XNOR operations and pop-count as alternatives to
the dense matrix multiplication operations. Consequently,
BNN can save much more area and power consumption as
it provides a significant performance acceleration. All these
features make the BNN suitable for source-limited devices.
However, the binarization process causes large information
loss. To alleviate this loss, the first and the last layers are not
binarized to avoid performance degradation.
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B. RQ2: WHICH IS THE PIONEERING RESEARCH
OF THE BNN?
The leading work in BNN research began with the
BinaryConnect [19], which developed a deep neural net-
work (DNN) using binary weights {—1,41} in forward
propagation and utilized the real values for updating the
gradients in backward propagation in the training phase.
While the BinaryConnect applies binarization for weights,
and the activations are still represented by full-precision.
Consequently, multiplication and accumulation processes are
replaced by fixed-point adders to reduce the area and the
power consumption. As an extension of the BinaryConnect,
The Binarized Neural Networks (BNN) which use binary
weights and activations published in [20] is considered
the first BNN. The BNN in [20] achieved a 32 times
compression ratio on weights and 7 times faster inference
speed, using a custom GPU, compared to BinaryCon-
nect on small datasets like MNIST [21], CIFAR-10 [22],
and SVHN [23] datasets. However, experimental results
revealed that this training technique was not appropriate
for large datasets like ImageNet [24] and caused accuracy
degradation.

To enhance the performance on large-scale datasets,
XNOR-Net [25] was proposed. XNOR-Net [25] is dif-
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FIGURE 2. Binary convolution in BNN.

ferent from BinaryConnect and BNN [20] in the bina-
rization technique and layer order. The authors utilized
binary weights and activations but applied scaling factors
to increase the accuracy and decrease the quantization
errors. The XNOR-Net [25] achieves 32 times lower
memory savings and 58 times faster convolutional operations
compared to the full-precision counterpart. This method
achieved a better trade-off between compression ratio and
accuracy.

C. RQ3: HOW IS BNN TRAINED?

The BNN training process composes of forward propagation
and backward propagation. In forward propagation, the input
is fed to the input layer and passes through mathematical
operations until reaching the output layer. The main math-
ematical operation in this process is convolution. Also, the
forward propagation represents the model inference. In back-
propagation, when the output is produced, it is compared with
the actual value to determine the error. Then, the parameters’
values are updated. The back-propagation is used to fine-tune
the network parameters.

BNN utilizes binary weights and activations by employing
the sign function to realize binarization. This scheme
exchanges the full-precision convolution operation with
XNOR and pop-count operations.

During the forward-propagation, the binary weights (Wgiy)
and binary activations (Agi,) are calculated by using the
sign function of their corresponding full-precision (WRreal),
(AReal), respectively. The sign function is specified by the
following equation [20]:

1, ify>0,
—1, otherwise.

sign(y) = [ ey
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FIGURE 3. Forward and backward propagation functions in BNN.

Subsequently, the binary weights and activations are given
by:

Wgin = sign(WReal)-
Agin = Sign(AReal)- 2)

The full-precision convolution process is performed using
the multiplication and accumulation processes that occur in
the “neurons’. The equivalent process of the convolution in
BNN is the XNOR operator followed by pop-count [25] to
get the convoluted pixel value, as shown in Figure 2. The
convolution without bias can be represented by the following
formula:

Z = f(popcount(XNOR(Wgin, Agin))),
Wi, Ai € {—1, 1}Vi. 3)
where Z is the output of the convolution layer, and f(.) is the
activation function represented as a sign function in forward

propagation and hard tanh in backward propagation as shown
in Figure 3.
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FIGURE 4. BNN optimization approaches.

TABLE 2. The XNOR multiplication operation.

Binary mapped values Multiplication
operation
-1—=0 -1—=0 1—1
-1 =0 1—1 -1 =0
1—1 -1 =0 -1 =0
1—1 1—1 1—1

In back-propagation, the Straight-Through-Estimator
(STE) [26] is applied to update the gradient of the
cost function at the output, as the sign function is not
differentiable. The STE clips the gradients out of the range
{1,—1}. That means the STE applies the hard tanh function
to update the gradient during back-propagation. Similarly,
to binarize the activations the STE is applied in back-
propagation to obtain the values inside the interval [—1,1] and
0 otherwise. After having the binary values, the multiplication
process between the weights and the activations is reduced
to binary operation. The obtained signed binary values are
1 and —1. These values are mapped to 1 and 0. The XNOR
operator is applied to the binary mapped values to perform
the multiplication process as a dot product, as illustrated in
Table 2.

D. RQ4: WHAT ARE THE DIFFERENT APPROACHES TO
OPTIMIZE THE PERFORMANCE OF BNN?

While the BNN is faster in inference time and consumes
less power and memory footprint regarding the full-precision
counterpart, it suffers from information loss due to binary
values of weights and activations. Therefore, there are
many improvement approaches proposed to enhance the
BNN performance. Some of these approaches enhance the
accuracy, whereas others are used to compress and accelerate
the BNN [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38]. Figure 4 illustrates the classification of
the above-mentioned approaches, and Figure 5 shows the
percentage of the BNN papers in each optimization approach.
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These percentages are based on the number of papers on the
optimization approaches reviewed in this survey.

1) ACCURACY OPTIMIZATION APPROACHES

The accuracy optimization approaches are used during the
training phase to enhance the performance of the BNN.
The accuracy optimization approaches are categorized into
four categories: quantization error reduction for weights
and activations, special regularization that penalizes the
network parameters, gradient error minimization during
back-propagation, and network structure modification to
improve the network performance. Table 3 to Table 4
present a summary of various optimization techniques used
in the literature based on ImageNet and CIFAR-10 datasets,
respectively.

a: QUANTIZATION ERROR REDUCTION

In BNN, the binary values of both weights and activation
allow bit-wise operation, leading to an accuracy drop with
respect to the full-precision counterpart. Some research
work used quantization for weights like BinaryConnect [19],
Ternary Weight Networks (TWN) [39], Fine-Grained Quanti-
zation (FGQ) [40], Trained Ternary Quantization (TTQ) [41],
Incremental Network Quantization (INQ) [42], and Smart
Quantization (SQ) [43].

To decrease the error resulting from the extreme quanti-
zation, scaling factors can be applied after the occurrence of
the dot product, as in XNOR-Net [25]. XNOR-Net utilizes
channel-wise scaling factors for weights and activations.
While Zhou et al. [44] proposed DoReFa-Net, which applied
the quantization on weights, activations, and gradients.
The authors employed a constant scalar to scale all filters
instead of channel-wise scaling like XNOR-Net. Similar
to XNOR-Net, Hu et al. [45] introduced Binary Weight
Networks via Hashing (BWNH). BWNH mapped the binary
weights to a hash map multiplied by a scaling factor.
Li et al. [46] devised the High-Order Residual Quantization
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method (HORQ) based on the idea of the XNOR-Net as
binary operations, but it performed residual quantization.
This quantization method does recursive binary quantization
each time the residual error is calculated and then, performs
a new round of quantization to generate a group of binary
maps corresponding to different quantization scales. Another
training algorithm proposed in [47] applies the quantization
on both weights and activations by learnable scaling factors.
In [48], XNOR-Net++ utilized one learnable scaling factor
for both weights and activations. Also, ABC-Net [49]
introduced a linear combination of multiple binary weights
and multiple binary activations. The ABC-Net approximated
all the weights with scaling factors and applied other scaling
factors to approximate each channel’s weights. Li et al. [50]
provided a Fixed-Sign Binary Neural Network (FSB) that
learns the scaling factors for weights to be quantized but uses
a fixed sign for them.

Besides the scaling factor as an optimization to alleviate
the quantization error, some researchers apply quantization
functions as in [51], Wide Reduced-Precision Networks
(WRPN) quantized both activations and weights by using a
quantization function and expanding the number of filters
in all layers. Similarly, Half-Wave Gaussian Quantizer
(HWGQ) [52] has been used HWGQ as a quantization func-
tion in the forward propagation and a clipped ReLU function
in the back-propagation. Also, Faraone et al. [53] applied
a quantization function for both weights and activations.
In addition, the authors improve the quantization by utilizing
scaling factors for each group of weights according to their
locations in the weight matrix. Another quantization function
is provided by Choi et al. [54] provided PArameterized Clip-
ping acTivation (PACT) function to quantize the activations.
This method used an optimized learnable clipping scale that
determines the activation function’s upper limit. Similarly,
Zhang et al. [55] proposed a learnable quantization for both
weights and activations. Also, Wang et al. [56] proposed
another quantization method called Two Steps Quantization
(TSQ) performed on two steps. The first step is the code
learning step, and the second step is the transformation
function learning. The first step used the sparse quantization
method to learn sparse and low-bit codes. The second one
is a non-linear least square regression problem with low-bit
constraints that can be solved iteratively. Yang et al. [57] used
a differentiable non-linear function to quantize both weights
and activations. This quantization function composed of a
group of Sigmoid functions. While Qin et al. [58] provided
Information Retention Network (IR-Net), which proposed
Libra Parameter Binarization (Libra-PB) in the forward
propagation to provide balanced quantization and reduce
the information loss of parameters. In [59], The authors
introduced bit-level sparsity quantization (BSQ) for mixed-
precision quantization that treated every bit of quantized
weights as an independent trainable variable. Also, it applied
scaling factors to the weights. Gong et al. [60] proposed
Differentiable Soft Quantization (DSQ), which is adjusted
during the training. DSQ detects the clipping range and
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FIGURE 5. The BNN optimization approaches percentage.

quantization approximation by utilizing a series of hyperbolic
tangent functions to approximate the staircase function to
low-bit quantization. ProxyBNN [61] aimed to minimize the
weights quantization errors by providing a proxy matrix.
This proxy matrix breaks the pre-binarized weights into a
linear combination of the basis and coordinates serve as
auxiliary variables. In [35], the authors shifted the activation
distribution to be unbalanced to enhance the accuracy of
BNN. Zhang et al. [62] applied quantization for both weights
and activations by a learnable quantizer to detect the clipping
and representation ranges. While Pham et al. [63] proposed
a symmetric quantizer named UniQ that allows learning the
step size by using the gradient descent procedure. Another
work reduces the quantization error; ReCU [64] revived the
dead weights and analyzed their effect through the rectified
clamp units.

b: SPECIAL REGULARIZATION

Some research works utilize specific regularization or
distribution loss to the global loss function to fine-tune
the network parameters in the account of the binarization
conditions like in [27], the authors proposed a regularization
term that drove the weights to be bipolar. The global loss
function can be described as follows:

LG =Lcr + ALpy, 4

where Lg is the gross loss, Lcr is the cross-entropy
loss, Lpr, is the distribution loss, and A is the parameter
which adjusts the regularization term. In [54], the authors
applied L2-regularization to clip the scale for activations
and parameter A used for weights in the loss function
to provide faster convergence. Similarly, Xu et al. [47]
used L2-regularization on weight scaling factors. While
Hou et al. [65] utilized a proximal Newton algorithm
with diagonal Hessian approximation to reduce the loss
due to binary weights. Ding et al. [66] used distribution
loss to modify the regularization of the activations and
allow differentiability. Additionally, in [62], the authors
used a KL-based distributional loss to regularize the output.
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BSQ [59] provided a bit-level group Lasso regularizer to
optimize the layer-wise weight precision and achieve the
mixed-precision quantization schemes. In [67], the authors
presented a contrastive loss function for better representation
capacity of activations. Besides, Shang et al. [68] used the
Lipschitz continuity as a regularization term to enhance the
robustness of the model. In addition, the authors proposed
an approximate Lipschitz constant instead of calculating its
exact value.

Some research work improves the accuracy during the
training by employing Knowledge Distillation (KD) that
depends on knowledge transfer from the stronger model
to the compressed one, which mimics the complex model.
The knowledge transfer is learning the class distribution
output via the loss function. Therefore, the BNN can be
under the supervision of a real-value model to improve the
learning capability to gain higher accuracy that is closed to
the real-valued model like CI-BCNN [69]. CI-BCNN extracts
the channel-wise interactions from the prior knowledge
to decrease the inconsistency of signs in binary feature
maps and keeps the information of input samples during
inference. While in [34], the authors utilized standard logit
matching loss to transfer learning between the full-precision
and the BNN. Also, LNS [37] introduced a specific loss
function to learn weights with noisy supervision. The same
idea is used in [70]; the authors presented distilled BNN
for monaural speech separation. Another BNN model with
knowledge distillation is proposed by Qian et al. [71]
for speech recognition. While Bulat et al. [72] applied
knowledge distillation for image classification and human
pose estimation tasks. Yang et al. [73] proposed a BNN based
on the knowledge distillation method to transfer channel-
wise mean and variance feature statistics from the real-
value model to the BNN model. Also, Huang et al. [74]
presented binarizing super-resolution network by knowledge
distillation.

¢: GRADIENT ERROR MINIMIZATION

The training process is divided into forward and backward
propagation. BNN utilizes the STE technique to estimate
the gradients in back-propagation as an approximation of
sign gradients [26] due to the zero value of the derivative
of the sign function. As a result, the gradient values are
clipped to the range of [—1,1], which causes degradation in
the performance. Various research work attempts to alleviate
the gradient errors by using other estimators (i.e., rounding
functions) in back-propagation. Bi-Real Net [29] used a
piece-wise polynomial function to update the activations
and used a magnitude-aware gradient to update the weights.
Also, Xu et al. [47] replaced the STE in back-propagation
with a higher-order estimator method that utilizes a piece-
wise polynomial function. In [75], the authors introduced a
circulant back-propagation algorithm to update the circulant
filters they used. Another work utilized the Error Decay
Estimator (EDE) to reduce the information loss of the
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gradients during the back-propagation [58]. While in [76], the
authors developed an Information Enhanced Estimator (IEE)
to aid the binary weights update by gradually approximating
the sign function.

Besides, in [77], the training used a weight searching
algorithm; the low-bit values of arbitrary weights are kept
with different probabilities to reduce the gradient error.
Kim et al. [78] used smoothed loss function for better
estimation of the gradient using Coordinate Discrete Gradient
(CDG). SI-BNN [79] proposed trainable parameters for
activations and gradients in the back-propagation. In addition,
the Fourier Frequency Domain Approximation (FDA) is
used to update the gradients in back-propagation in [80].
Lee et al. [81] introduced an Element-Wise Gradient Scaling
(EWGS) to update each gradient element by scaling factor.
This scaling factor is controlled by using the Hessian
information of a network. In [62], the authors presented
the Radical Residual Connection (RRC) technique which
enabled the information and gradients to stream through
every layer freely and used a tanh-based function for back-
propagation to minimize the gradient error.

d: NETWORK STRUCTURE

Due to the binary values of weights and activations used
in BNN, the feature maps are lower in quality, causing an
accuracy drop. Therefore, some researchers are heading to
modify the network architecture to increase the accuracy,
such as increasing the number of channels, increasing the
number of layers, reordering the layers’ position, or adding
shortcuts.

Some work attempts to modify the network structure,
like ABC-Net [49] presented parallel approximate convo-
lutions; each of them is a linear combination of binary
convolutions. Also, Bi-Real Net [29] applied shortcuts to
connect the full-precision activations before the sign function.
Similarly, BiNeal Net [82] modified the ResNet structure by
changing the convolution in the basic block and the skip
connection to a binary one. In [83], the authors combined
multiple BNN by boosting or bagging. While in [84], the
authors presented a new custom architecture for BNN called
BinaryDenseNet, which based on the BMXNet framework.
BinaryDenseNet is used for image classification and object
detection tasks. Besides, J. Bethge et al. [85] presented
MeliusNet that utilized a Dense-Block and Improvement-
Block for increasing the feature capacity and the feature
quality, respectively. MoBiNet [86] is a modified binary
model of MobileNetV1 architecture that utilizes a skip
connection and uses dependency within channels in a depth-
wise convolution layer. Another binary network based on
MobileNetV1 is ReActNet [87] which proposed ReAct-Sign
(RSign) and ReAct-PReLU (RPReLU) as alternatives of
the traditional activation function to reshape the activation
distribution. While in [88], the authors proposed Activation
Self Distribution (ASD) and Weight Self Distribution (WSD)

VOLUME 11, 2023



R. Sayed et al.: Systematic Literature Review on Binary Neural Networks

IEEE Access

to adjust the sign distribution of activations and weights,
respectively, to enhance the accuracy.

To boost feature expression capabilities, Zhang et al. [90]
replaced the static RSign and RPReLU in the ReAct-
Net [87] with Dynamic Sign (DySign) and Dynamic
PReLLU (DyPReLU). Also, in [91], the authors proposed
Binarized Ghost Module (BGM) as a modification for the
ReActNet [87] to improve the feature maps information.
IE-Net [76] augments the information of the activations
by utilizing several sign functions with several trainable
thresholds to produce various binary input features. While
RB-Net [92] presented a reshaped point-wise convolution
(RPC) and balanced distribution activation (BA) for a
more powerful representative ability. Also, AdaBin [93]
provides adaptive binary sets for weights and activations
for each layer that centers the position and distance of the
distribution of the binary values to real-valued distribution.
Besides, INSTA-BNN [94] determines the activation thresh-
old value based on the difference between statistical data
generated from a batch and each instance to increase the
accuracy. In [95], the authors proposed Binary Contextual
Dependencies Net (BCDNet), which provides Contextual
Dependencies modeling for BNN through binary multi-layer
perceptron block as a substitutional to binary convolution
blocks. In [67], the authors provided Contrastive Learning
for Mutual Information Maximization (CMIM) to learn
representative binary activations by determining the amount
of information shared between the binary and full-precision
activations.

The batch normalization layer affects the training stability
of BNN. For example, HWGQ [52] and [56] used the batch
normalization layer before the quantization operations to
make the output distribution of each layer near Gaussian
with zero mean and unit variance. While Chen et al. [96]
removed the batch normalization layer and used the adaptive
gradient clipping technique, and scaling factor for weights
as an alternative. WRPN [51] raised the number of filters in
each channel, and CBCN [75] introduced circulant filters and
a circulant binary convolution.

Network Architecture Search (NAS) automatically
searches the optimal network architecture, utilizing different
methods, including evolutionary algorithms. NAS methods
are inappropriate for the BNN due to quantization error
and unstable gradients. Therefore, a binary-oriented search
space and search strategies for binary networks are proposed
in [97], [98], and [99]. In [100], The authors used the
evolutionary search for group values at convolutional layers
to find the appropriate binary structure to binarize the
MobileNet. While Bulat et al. [101] utilized NAS that is
developed for real-valued networks. In addition, the authors
presented expert binary convolution based on condition
computing. Other designs used the evolutionary search
algorithm to optimize the number of channels in each layer
like [102], and [103]. Besides, Vo et al. [107] presented
Deepbit searching algorithm to assess the optimum BNN
architecture based on the hardware cost estimation regarding
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the implementation target platforms. While in [104], the
authors used the genetic algorithm for searching for the ideal
activation functions for BNN.

2) COMPRESSION OPTIMIZATION APPROACHES

BNN appears to maximize the speed and minimize the size of
the deep networks that utilize the full-precision representation
to be suitable for resource-constrained devices and edge
computing. Some research works tend to reduce the BNN
size, but this reduction may be a trade-off with the accuracy.
The compression approaches of BNN are classified into two
categories: fractional BNN and pruning.

a: FRACTIONAL BNN

To minimize the BNN size, some researchers use fractional
bit representations for weights or activations. In [108], the
authors introduced FleXOR, a flexible encryption scheme
for weight quantization. FleXOR allows fractional quanti-
zation bits to represent each weight where the quantization
differs from one layer to another in the number of bits.
FleXOR is implemented as an XOR-gate in inference time.
Another fractional quantization, Sub-bit Neural Networks
(SNN) [109] proposed a quantization technique that com-
posed of two steps. The first step is random sampling
to produce layer-specific subsets of weights. The second
step is the refinement step to optimize these subsets of
weights. While Y. Zhang et al. [110] developed FracBNN
that employed fractional activations and supported a dual-
precision activation up to two bits. FracBNN exploited sparse
binary convolution and applied binarization to the input layer
using thermometer encoding.

b: PRUNING

For more efficient area, compressed BNN models can be
obtained by pruning approaches that remove the redundant
parameters. However, there is a trade-off between accuracy
and pruning; accuracy may decrease when the pruning rates
increase. In [111], the authors utilize Bayesian optimization
for channel pruning for quantized neural networks. That
pruning approach based on the angle preservation feature
of high dimensional binary vectors [112] and the euclidean
distance. In [113], the authors proposed neuron pruning for
the fully connected layer then, retraining the network. While
in [105], the authors introduced a learning-based approach for
pruning the number of filters/channels in BNN.

Xiao et al. [118] provided the AutoPrune approach that
utilized optimizing a group of learnable parameters by using
gradient-based search to prune the network as an alternative
to direct pruning of the weights. Also, Li et al. [116]
pruned the BNN by weight flipping frequency approach for
analyzing the sensitivity of the binary weighs to accuracy.
In addition, this design support layer-wise pruning to reduce
the number of channels in each layer by the same percentage
of the insensitive weights. In [117], O3BNN-R proposed
a shrunk BNN model using two irregular pruning for
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TABLE 3. Comparative analysis of optimization techniques for model training bases on ImageNet dataset.

Reference Bit-width | Network Architecture Optimization Techniques Top-1 Top-5
‘ (W/A) ‘ Accuracy % Accuracy%
[55] 32/32 AlexNet - 57.1 80.2
[55] 32/32 ResNet-18 - 69.6 89.2
[55] 32/32 ResNet-34 - 73.3 91.3
[55] 32/32 ResNet-50 - 76.0 93.0
[55] 32/32 VGG - 72.0 90.5
[55] 32/32 GoogLeNet - 729 91.3
[89] 32/32 MobileNet-v2 - 72.0 NA
[ BNN [20] [ 171 | AlexNet - [ 279 50.4
171 AlexNet Scaling factor to reduce 44.2 69.2
XNOR-Net [25] ResNet-18 the QF 51.2 732
172 AlexNet Scaling factor to reduce 49.8 NA
DoReFa-Net [44] 11 AlexNet the QEg 436 NA
1 AlexNet Scaling factor to reduce 46.1 709
Resnet-18 R . 54.2 77.9
[47] the QE, piece-wise
polynomial function to
reduce the GE.
171 ResNet-18 Scaling factor to reduce 57.1 79.9
XNOR-Net++ [48] AlexNet the QE 469 71.0
171 Resnet-18 Modify network structure using 42.7 67.6
ABC-Net [49] 171 Resnet-34 parallel approximate convolutions, 52.4 76.5
5/5 Resnet-50 Scaling factor to reduce the QE. 70.1 89.7
171 AlexNet Quantization function to 44.2 NA
171 AlexNet 2x-wide reduce the QE 48.3 NA
2/2 AlexNet 2x-wide 55.8 NA
472 AlexNet 2x-wide 57.3 NA
WRPN [51] 1/1 ResNet-34 1x-wide 60.54 NA
ResNet-34 2x-wide 69.85 NA
ResNet-34 3x-wide 72.38 NA
BN-Inception 2x-wide 65.02 NA
172 AlexNet Quantization function to 52.7 76.3
HWGQ [52] ResNet-18 reduce the QE 59.6 822
1/8 AlexNet e d 56.6 79.4
VGG Quzliptlz?tlon tuncm()ln an 66.2 87.0
ResNet-18 . g‘g actors to recuce 62.9 84.6
ResNet-34 67.0 87.6
ResNet-50 70.6 89.6
12 AlexNet 554 78.6
1/4 56.2 79.4
SYQ [53] 2/2 55.8 79.2
2/8 AlexNet 58.1 80.8
VGG 68.7 88.5
ResNet-18 67.7 87.8
ResNet-34 70.8 89.8
ResNet-50 72.3 90.9
1/4 ResNet-50 68.8 88.7
2/4 70.9 90.2
2/2 AlexNet Quantization function to 55.0 71.7
2/3 reduce the QE 55.4 779
2/4 55.4 78.0
12 ResNet-18 62.9 84.7
PACT [54] 173 65.3 85.9
1/4 65.0 85.9
172 ResNet-50 67.8 87.9
2/2 72.2 90.5
2/4 74.5 91.9
172 ResNet-18 Quantization function to 62.6 84.3
ResNet-34 reduce the QE 66.6 86.9
ResNet-50 68.7 88.4
LQ-Nets [33] AlexNet 55.7 78.8
GoogLeNet-Variant 65.6 86.4
2/2 DenseNet-121 69.6 89.1
TSQ [56] 2/2 AlexNet Quantization function to 58.0 80.5
VGG-16 reduce the QE 69.1 89.2
171 ResNet-18 Libra-PB Quantization function to 58.1 80.0
IR-Net [58] ResNet-34 reduce the QE, EDE to reducing 62.9 84.1
the GE.
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Note: QE means quantization error, GE means gradient error, and NA means not applicable.
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TABLE 3. (Continued.) Comparative analysis of optimization techniques for model training bases on ImageNet dataset.

develop IEE

Reference Bit-width | Network Architecture Optimization Techniques Top-1 Top-5
(W/A) Accuracy% Accuracy%
7 AlexNet Quantization function to 419 725
Quantization 12 reduce the oradient 55.4 78.8
Network [57] 1/1 ResNet-18 e & 53.6 753
172 ) 63.4 84.9
2/2 ResNet-18 Quantization function to 65.17 NA
3/3 reduce the QE. 68.66 NA
DSQ [60] 2/2 ResNet-34 70.02 NA
3/3 72.54 NA
ProxyBNN [61] 171 AlexNet laré)xy matrix to reduce the 514 75.5
1/1 AlexNet (BNN [20]) Unbalanced activation 42.1 66.6
1/1 AlexNet (XNOR-Net [25]) distribution. 45.6 69.6
[35] ResNet-18 (XNOR-Net [25]) 54.2 77.6
ResNet-18 (Bi-Real Net [29]) 57.2 80.2
ResNet-34 (Bi-Real Net [29]) 62.8 84.5
7 ResNet-18 Symmetric quantizer. 60.5 NA
2/2 67.8 NA
. 1/1 ResNet-34 65.8 NA
UniQ[63] 22 72.1 NA
171 MobileNet-V2 232 NA
2/2 50.5 NA
171 ResNet-18 Revive the dead weights 66.4 86.5
ReCU[64] ResNet 34 to reduce the QE 65.1 85.8
[67] 1/1 ResNet-18 (BiReal [29]+CMIM) Contrastive Learning for Mutual 60.1 81.3
ResNet-18 (IR-Net [58]+CMIM) Information Maximization. 61.2 83.0
ResNet-18(ReActNet [87]+CMIM) 71.0 86.3
ResNet-34 (IR-Net + CMIM) 64.9 85.8
171 ResNet-18 Weight searching algorithm to 61.3 83.1
172 reduce the GE. 64.8 85.5
SLB [77] 1/4 6.0 86.4
1/8 66.2 86.5
1/1 AlexNet Trainable thresholds in the 50.5 74.6
SEBNN[79] ResNet-18 backward function, 58.9 81.3
171 ResNet-18 Fourier Series to reducing 60.2 82.3
FDA-BNN [80] AlexNet the GE. 46.2 69.7
171 ResNet-18 . . 553 NA
n lj:l'ement-mse gradient 644 NA
(81] Ul ResNet-34 scaling to reduce the GE. 615 NA
172 69.6 NA
4/4 MobileNet-V2 70.3 NA
1/1 ResNet-18(modified) Add shortcuts, used piece-wise 56.4 79.5
Bi-Real Net [29] ResNet-34(modified) polynpmial function apd . 62.2 83.9
magnitude aware gradient in
back-propagation.
171 ResNet-18 Use standard logit matching loss to | 65.4 86.2
Real-to-Bin [34] transfer learning between the full-
precision and BNN
LNS [37] 171 ResNet-18 Sp;ciﬁc loss function to learn 59.4 81.7
weights.
171 AlexNet (BNN [20]) S 41.3 65.8
AlexNet (XNOR-Net [25]) i“if;:ltzrébt“}fé"gﬁf;fgn 4738 715
BNN-DL [66] AlexNet (DoReFa-Net [44]) g 47.8 71.5
AlexNet ( [27]) 47.6 71.9
AlexNet (WRPN [51]) 53.8 77.0
[68] 17 ResNet-18 Utilize Lipschitz Continuity 59.6 81.6
ResNet-34 function as a regularization term. 63.5 84.6
171 ResNet-18 Knowledge transfer to extract the 56.73 80.12
CI-BCNN[69] ResNet-34 channel-wise interactions. 62.41 84.35
(72] 17 AlexNet Progressive quantization, network 48.6 72.8
ResNet-18 stacking, knowledge distillation. 53.7 76.8
17 ResNet-18 KD by transferring the 59.87 NA
[73] channel-wise mean and variance
feature statistics.
CBCN [75] 171 ResNet-18 Circqlant back-propagation 61.4 NA
algorithm
IE-Net [76] 1/1 ResNet-18 Enhance the information 61.4 83.0
ResNet-34 of the activations and 64.6 85.2
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TABLE 3. (Continued.) Comparative analysis of optimization techniques for model training bases on ImageNet dataset.

Reference Bit-width | Network Architecture Optimization Techniques Top-1 Top-5
‘ (W/A) ‘ Accuracy% Accuracy%
171 AlexNet Quantitatively calculate the 52.7 76.0
BinaryDuo [78] ResNet-18 gradient mismatch using 60.4 82.3
Coordinate Discrete Gradient
(CDG)
1/1 BiNeal Net (1x-wide) Modify the ResNet structure 65.0 NA
N BiNeal Net(1.5x-wide) and apply a channel multiplier 69.7 NA
BiNeal Net [82] BiNeal Net(1.75x-wide) Py b 712 NA
BiNeal Net(2x-wide) 72.8 NA
1/1 AlexNet(BENN-SB-6, Bagging) ] . 52.0 NA
BENN (3] AlexNet(BENN-SB-6, Boosting) | Lrsemble multiple BNN 543 NA
. ResNet-18(BENN-SB-6, Bagging) 579 NA
ResNet-18(BENN-SB-6, Boosting) 61.0 NA
BinaryDenseNet [84] 1/1 BinaryDenseNet-45 New architecture for BNN 63.7 84.8
1/1 MeliusNet-C Modify the structure of 64.1 NA
MeliusNet [85] MeliusNet-42 the network. 69.2 NA
MeliusNet-59 71.0 NA
. 1/1 MoBiNet-Mid (K = 3) Use skip connection and 53.47 76.46
MoBiNet [86] MoBiNet-Mid (K = 4) K-dopendency. 54.40 7750
171 ReActNet-A Add RSign and RPReLU 69.4 NA
ReActNet [87] ReActNet-B instead of the traditional 70.1 NA
ReActNet-C activation function. 71.4 NA
SD-BNN [88] 171 SD-BNN(Bi-Real Net) Used self distribution for 66.5 86.7
activations and weights.
DyBNN [90] 1/1 DyBNN-ResNet18 Used DySign and 67.4 87.4
DyBNN-ReActNet DyRPReLU. 71.2 89.8
[91] 1/1 Customized Modify the ReActNet 71.4 NA
1/1 RB-Net (ResNet-18) Presented a reshaped 66.8 87.1
RB-Net [92] RB-Net (ResNet-18(2x-wider)) point-wise convolution and 70.1 89.1
RB-Net (ResNet-34) balanced distribution 70.2 89.2
activation.
AdaBin [93] 171 AlexNet proposed adaptive binary sets 53.9 77.6
ResNet-18 for weights and activations for | 66.4 86.5
ResNet-34 each layer. 66.4 86.6
ReActNet-A 70.4 NA
MeliusNet59 71.6 NA
INSTA-BNN [94] 171 ResNet-18 Determines the activation 68.0 87.9
MobileNetV1 threshold value based on the 71.7 90.3
statistical data from a batch
and each instance
BCDNet [95] 1/1 Used Contextual Dependencies BCDNet-A 71.8 90.3
BCDNet-B 72.3 90.5
171 ReActNet-18(BN-Free) Remove the Batch norm layer, 61.1 NA
[96] ReActNet-A(BN-Free) use adaptive gradient clipping 68.0 NA
and scaling factors for weights.
171 BATS Search algorithm for BNN 60.4 83.0
BATS [97] BATS(2x-wider) architecture. 66.1 87.0
1/1 BNAS-D Search algorithm for BNN 57.69 79.89
BNAS-E architecture. 58.76 80.61
BNAS [98] BNAS-F 58.99 80.85
BNAS-G 59.81 81.61
BNAS-H 63.51 83.91
171 NASB (ResNet-18) Search algorithm for BNN 60.5 82.2
NASB [99] NASB (ResNet-34) architecture. 64.0 84.7
NASB (ResNet-50) 65.7 85.8
[100] 171 Customized Use evolutionary search to bi- | 60.90 82.60
narize the MobileNet.
1/1 Customized Search algorithm for BNN ar- | 71.2 90.1
[101] chitecture and add condition
computing for convolution.
1/1 ResNet-18(modified) Search algorithm to adjust the | 69.65 89.08
[102] number of channels in each
layer
1/1 ResNet-18(DMS-A) Search algorithm to adjust 60.20 82.94
DMS [103] ResNet-18(DMS-B) the number of channels in 67.93 87.84
each layer
[104] 1/1 ResNet-18 Use the genetic algorithm to 55.514 78.556
NIN-E search for the ideal activation 52.270 75.822
functions
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TABLE 4. Comparative analysis of optimization techniques for model training based on CIFAR-10 dataset.

Reference Bit-width | Network Architecture Optimization Techniques Top-1 Accu-
(W/A) racy%
[55] 32/32 VGG-small - 93.8
[105] 32/32 VGG-11 - 83.8
[58] 32/32 ResNet-18 - 93.0
[58] 32/32 ResNet-20 - 91.7
[ BNN [20] 1/1 [ VGG-small - [ 89.9
XNOR-Net [25] 1/1 VGG-Small Scaling factor to reduce the QE. 89.8
HORQ [46] 1711 Customized Scaling factor to reduce the QE. 82
[47] 1/1 VGG-Small Scaling factor to reduce the QE, | 92.3
piece-wise polynomial function to
reduce the GE
LQ-Nets [55] 172 VGG-Small Quantization function to 93.4
2/2 reduce the QE 93.5
12 ResNet-20 88.4
2/2 90.2
TSQ [56] 2/2 VGG-small Quantization function to reduce the | 93.4
QE
IR-Net [58] 1/1 ResNet-18 Libra-PB Quantization function to 91.5
ResNet-20 reduce the QE, EDE to reducing 86.5
VGG-Small the GE. 90.4
DSQ [60] 171 VGG-Small Quantization function to reduce the | 91.72
ResNet-20 QE 84.11
ReCU [64] 7 EeSNet-lfﬁ Revive the dead weights to reduce 238
esNet-20 the QF 87.4
VGG-small 92.2
LNS [37] 1/1 ResNet-20 Specific loss function to learn 85.78
weights
LAB [65] 1/1 VGG-Small Use proximal Newton algorithm 87.72
with diagonal Hessian
approximation to reduce the
information loss
BNN-DL [66] 1/1 VGG-Small Use distribution loss to regularize 89.62
ResNet-18 the activation 90.47
[67] 1/1 ResNet-18 (IR-Net [58]+CMIM) Contrastive Learning for Mutual 92.2
ResNet-20 (IR-Net [58]+CMIM) Information Maximization. 87.3
VGG-small (IR-Net + CMIM) 92.0
[68] 1/1 ResNet-18 Utilize Lipschitz Continuity 91.8
ResNet-20 function as a regularization term. 86.0
CI-BCNN [69] 1/1 VGG-small KD to extract the channel-wise 92.47
ResNet-20 interactions 91.10
[73] 1/1 ResNet-18 KD by transferring the 93.92
channel-wise mean and variance
feature statistics
AdaBin [93] 171 ResNet-18 proposed adaptive binary sets 93.1
ResNet-20 for weights and activations for 88.2
VGG-Small each layer. 92.3
IE-Net [76] 7 ResNet-18 Enhance the information of the 92.9
ResNet-34 JT 88.5
VGG-Small activations and develop IEE 9.0
SLB[77] }g ResNet20 Weight searching algorithm ggg
1/4 to reduce the GE 903
1/1 VGG-Small 92.0
12 93.4
1/4 93.5
SI-BNN [79] 1/1 VGG-small Trainable thresholds in the back- | 90.2
ward function
[81] 1 ResNet-20 Element-wise gradient scaling to 856
reduce the GE
BinaryDenseNet [84] 171 BinaryDenseNet-21 New architecture for BNN 90.3
SD-BNN [88] 1 }\{Ssg:tlggl Used self distribution for ggg
ResNet-18 activations and weights. 95
[91] 1/1 Customized Modify the ReActNet 86.45
RB-Net [92] 1/1 VGG-16 Presented a reshaped point-wise 74.9
AlexNet convolution and balanced 56.2
distribution activation
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TABLE 4. (Continued.) Comparative analysis of optimization techniques for model training based on CIFAR-10 dataset.

Reference Bit-width | Network Architecture Optimization Techniques Top-1 Ac-
(W/A) curacy%
INSTA-BNN [94] 1/1 ResNet-20 Determines the activation threshold | 87.32
value based on the statistical data
from a batch and each instance
[96] 171 ReActNet-18(BN-Free) Use adaptive gradient clipping 92.08
ReActNet-A(BN-Free) and scaling factors for weights 83.91
[97] 1/1 BATS Search algorithm for BNN 95.5
BATS+AutoAugment architecture 96.1
BNAS [98] 1/1 BNAS-A Search algorithm for BNN 92.70
BNAS-B architecture 93.76
BNAS-C 94.43
[102] 1/1 VGG-small(modified) Search algorithm to adjust the num- | 93.06
ber of chanels in each layer
DMS [103] 171 ResNet-18(DMS-A) Search algorithm to adjust 89.32
ResNet-18(DMS-B) the number of channels in 92.70
VGG-11(DMS-A) each layer 84.16
VGG-11(DMS-B) 89.10
[104] 171 ResNet-18 Use the genetic algorithm to 91.40
NIN search for the ideal activation 87.48
ResNet-34 functions 92.20
RBNN [106] 1/1 VGG Train tasks from different 87.49
ResNet-18 areas such as vision and 86.69
ReActNet audio. 86.81

redundant edges during the inference, one for threshold
edge pruning and the other for pooling edge pruning.
Besides, Gao et al. [114] exploited the idea of reusing the
calculated partial outputs of the duplicated filters in one tile
of one neuron to prune the redundant operations in BNN.
Wu et al. [115] provided the Slimming Binarized Neural
Network (SBNN) that utilizes two compression techniques
filter pruning and knowledge distillation.

3) ACCELERATION OPTIMIZATION APPROACHES
Acceleration techniques provide parallelized computations
and highly pipelined data flow to improve the latency and
throughput performance. The BNN accelerator hardware
implementations are categorized into three classes: Comput-
ing in memory, FPGA, and ASIC implementations.

a: COMPUTING IN MEMORY

Since data transfer between memory and processors exhaust
much energy and accessing time, Some researchers utilize
Computing In-Memory (CIM) for more efficient energy
and accelerating the inference of BNN and increasing
the throughput like in [119], the authors exploited CIM
using a 9-transistor Static Random Access Memory (9T-
SRAM) to implement binarized VGG-16 on the CIFAR-
10 dataset. Agrawal et al. [120] provided Xcel-RAM
that allowed in-memory computing. Xcel-RAM divided
the SRAM to improve the parallelism of convolutional
computing. In addition, the authors proposed two models,
the first one utilized charge-sharing between the parasitic
capacitance in the standard 10T-SRAM array to perform
an approximate pop-count operation, and the second model,
modify the SRAM peripheral circuitry to compute accurate
pop-count operation. Also, Bankman et al. [121] provided
a mixed-signal processor for BNN. The design exploited
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the switched-capacitor neuron to enhance energy efficiency.
Besides, Valavi et al. [122] proposed a high signal to noise
ratio for charged-domain mixed-signal CIM with 64 tiles and
the charge-domain computation based on metal-oxide-metal
capacitors. In [123], the authors implemented an SRAM-
CIM unit-macro that supports a binary fully connected
neural network using a 6T-SRAM bit-cell. This design used
circuit techniques to decrease power consumption, such
as a dynamic input-aware reference generation scheme,
an algorithm-dependent asymmetric control scheme, a write
disturb-free scheme, and a common-mode-insensitive small
offset voltage-mode sensing amplifier. Similarly, in [124],
the authors proposed XNOR-SRAM that based on CIM.
This design support binary weights but ternary activation.
In [125], the authors used CIM based on pulse-width
modulation. This design used binary weights for AlexNet
architecture. While in [126], the authors proposed a CIM-
based accelerator that uses two different filter sizes. This
design supports near-threshold voltage operation down to
0.4V for more efficient energy. Song et al. [127] merged time-
domain (TD) computing with CIM. The authors implement
TD computing employing a dual-edge single-input cell
topology. Besides, Kushwaha et al. [128] proposed XNOR
and accumulation scheme based on CIM-SRAM utilizing a
10-transistor 1-capacitor (10T1C) XNOR bit-cell to achieve
a high compute signal to noise ratio and efficient energy
design. While in [129], the authors applied 8T2C SRAM
cells to consume less energy and avoid the problems of static
current. Table 7 shows the results of the CIM based on SRAM
schemes.

Another direction is implementing the CIM using the
memristor for the BNN inference accelerator because of
its low operating voltage and small cell area. In [148],
the authors proposed multilevel cell spin-torque transfer
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TABLE 5. Comparison between BNN and fractional BNN.

Dataset Reference Bit-width (W/A) Network BOP (G) Top-1 Top-5
Architecture Accuracy% Accuracy%
IR-Net [58] 1/32 ResNet-18 53.64 [109] 66.5 NA
1/1 1.677 [109] 58.1 NA
1732 ResNet-34 112.83[109] | 70.4 NA
1/1 3.526 [109] 62.9 NA
FleXOR [108] 0.8/32 ResNet-18 NA 63.8 84.8
ImageNet 0.63/32 63.3 84.5
0.6/32 62.0 83.7
SNN [109] 32/32 ResNet-18 - 69.6 NA
32/32 ResNet-34 - 73.3 NA
0.67/1 ResNet-18 0.883 56.3 NA
0.56/1 0.501 55.1 NA
0.44/1 0.297 53.0 NA
0.67/32 ResNet-18 28.26 64.7 NA
0.56/32 16.03 63.4 NA
0.44/32 9.504 60.9 NA
0.67/1 ResNet-34 1.696 61.4 NA
0.56/1 0.965 60.2 NA
0.44/1 0.581 58.6 NA
0.67/32 ResNet-34 54.27 68.0 NA
0.56/32 30.88 66.9 NA
0.44/32 18.59 65.1 NA
FracBNN [110] /1.4 Customized 7.30 71.8 90.1
IR-Net [58] 1/32 ResNet-18 17.52 [109] 92.9 NA
1/1 0.547 [109] 91.5 NA
1732 ResNet-20 1.283 [109] 90.8 NA
1/1 0.040 [109] 86.5 NA
1/32 VGG-small 19.30 [109] 92.5 NA
CIFAR-10 11 0.603[109] | 913 NA
FleXOR [108] 0.8/32 ResNet-32 NA ~91 NA
0.6/32 ~90 NA
SNN [109] 32/32 ResNet-18 - 93.0 NA
32/32 ResNet-20 - NA
32/32 VGG-small - 92.5 NA
0.67/1 ResNet-18 0.289 91.0 NA
0.56/1 0.164 90.6 NA
0.44/1 0.097 90.1 NA
0.67/32 ResNet-18 9.236 92.7 NA
0.56/32 5.239 92.3 NA
0.44/32 3.106 91.9 NA
0.67/1 ResNet-20 0.040 85.1 NA
0.56/1 0.034 84.0 NA
0.44/1 0.025 82.5 NA
0.67/32 ResNet-20 1.283 90.0 NA
0.56/32 1.099 88.9 NA
0.44/32 0.822 87.6 NA
0.67/1 VGG-small 0.194 91.0 NA
0.56/1 0.113 90.6 NA
0.44/1 0.074 90.0 NA
0.67/32 VGG-small 6.208 92.4 NA
0.56/32 3.616 92.1 NA
0.44/32 2.368 91.9 NA
FracBNN [110] 1/1.4 Customized 0.0715 89.1 NA

Note: BOP means Binary OPerations.

magnetic RAM (STT-MRAM) for the XNOR-Net architec-
ture on the MNIST dataset with low power consumption.
Li et al. [149] proposed in-situ learning using a memristor.
In [150], the authors provided an analog hybrid CMOS-
memristive design for back-propagation learning with a
sign control circuit and weight update unit. The design
can be adaptive with different neuromorphic architectures.
Another Memristor-CMOS design is presented by Van
Pham et al. [140] that supports single and double column
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architectures. Furthermore, they introduced two activation
functions: ReLU and sigmoid. Memristor is sensitive to its
initial conditions; therefore, Yi et al. [151] studied the effect
of the On/Off resistance ratio and the memristor devices’
changes on the reading sense and inference accuracy of BNN.

In [141], the authors programmed the memristor by an
asymmetrical coarse-programmed for the high resistance
state and fine-programmed for the low resistance state
during the crossbar training. This scheme based on the
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TABLE 6. Comparison between pruning approaches for BNN.

[ Dataset [ Reference | Network Architecture [ Accuracy% [ Pruning rate % [ Pruning of operations % |
MNIST [114] LeNet-5 98.4 NA 57
[115] Customized 98.82 50 NA
[105] NIN 83.11 33.05 NA
VGG-11 81.97 39.7 NA
ResNet-18 86.39 39.89 NA
CIFAR-10 [111] VGG-11(BNN [20]) 82.31 43.82 NA
[113] VGG-11 81.2 39.8 NA
[116] NIN 86 NA 20
AlexNet 85.5 NA 40
[117] VGG-like 88.5 NA 42
VGG-like(with regularization) 85.2 NA 48
[114] VGG-like 88.7 NA 5T
[115] BNN( [20]) 90.40 50 NA
ResNet-18 89.31 50 NA
[105] ResNet-18 50.13 21.592 NA
ImageNet [111] ResNet-18(XNOR-Net [25]) 49.48 25.5 NA
[117] VGG-16 74.3 NA 27
VGG-16(with regularization) 714 NA 49
AlexNet 72.7 NA 19
AlexNet (with regularization) 71.8 NA 43
[115] ResNet-18 51.98 25 NA
TABLE 7. Comparison of CIM implementations based on SRAM schemes.
Precision Ref. Dataset Technology | Supply On-chip Performance | Energy Accuracy%
(bit) Voltage memory | (GOPS/mm?) | Efficiency
Vmaz (V) (KB) (TOPS/W)
[INTI6 | [130] ] MNIST/ImageNet [ 65nm | 038 [ 16 [ 252 [ 206 [ 99.2/92.7 ]
[INT8 [ [131] | MNIST/CIFAR-10/lmageNet | _ 45nm__| 0.4 [ NA [ NA [ 105 [ 98.6/90.2/773 |
[ INT8 [ 1321 ] ImageNet [ 7nm [ NA [ NA [ NA [ 6.02 [ NA |
[INTS [ (1331 CIFAR-10 [ 28am_ [ 09 [ 64 [ NA [ 16.63 [ 92.02 ]
[INT8 [ (134 ] CIFAR-10 [ 28m [ 1 [ 64 [ NA [ 7.67 [ 91.94 ]
[ INT(1-8) [ [135]] CIFAR-10 [ 65nm [ 12 [ 72 [ 600 [ 192 [ 92.4% |
[121] CIFAR-10 28nm 0.6 328 913 772 36
[122] MNIST/CIFAR-10/SVHN 65nm 0.94 295 1498 866 98.92/83.50/95.10
[123] MNIST 65nm 1.2 4 33130 55.8 97.5
[124] MNIST/CIFAR-10 65 nm 0.6 16 5461 403 98.84 /88.78
1-bit [125] ImageNet 28nm 0.6 NA NA 46.6 NA
[126] MNIST/CIFAR-10/SVHN 55nm 0.4 216 913 5526 97.73/ 82.56/ 92.61
[127] MNIST 40nm 0.9 8 NA 537 98.0
[129] MNIST/CIFAR-10 28nm 0.7 NA NA 3182 97.37/181.17

Note: INTS indicates 8-bit integer, INT(1-8) means variable bit precision from 1- to 8-bit.
* This accuracy for 4-bit precision.

incremental pulse steps. In [142], the authors presented
an architecture based on a 1-transistor 1-digital memristor
(1T1DM). Besides, Hirtzlin et al. [143] used hafnium oxide
RRAM in a 2-transistor 2-resistor cell. This design supports
bit-errors reduction. In [152], the authors presented a BNN
accelerator with a two-column reference memristor structure
to map +1 and —1 weights on the memristor array and
remove the sneak current effect. While Qin et al. [144] used
a W/AIOx/A1203/Pt memristor with a column architecture.
Chen et al. [153] proposed a memristor crossbar design
that converts the weights and the feature maps before the
convolution process, which guarantees a constant sign of the
input voltage of each port in the crossbar. Ahn et al. [145]
suggested a technique to increase the parallel activated
word-line based on magnetic-RAM. This design supports a
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retraining method that relies on knowledge distillation to be
robust against the memristor device variations. In addition,
Huang et al. [146] introduced configurable architecture that
utilizes binary inputs, weights, and neurons. This design
supports two neuron cases one of them is {—1, +1} and
the other is 0, 1. While Kingra et al. [147] proposed dual-
configuration CIM based on 2T-2R XNOR bitcell with
MobileNet architecture for BNN. Also, Parmar et al. [154]
presented stochastic sampling CIM based on OxRAM
circuit. In [155], the authors utilized a 1-selector 1-resistor
architecture instead of a 1-transistor 1-resistor array of the
memristor structure to obtain high speed, and high-density
integration. While in [156], the authors used a 3D-memristor
structure for low power consumption. The summary of the
aforementioned works is tabulated in Table 8.

VOLUME 11, 2023



R. Sayed et al.: Systematic Literature Review on Binary Neural Networks

IEEE Access

TABLE 8. Comparison of CIM implementations based on Memristor schemes.

Precision Ref. Dataset SET/RESET | HRS/LRS| Max. Accuracy% Memristor | Power
(bit) Voltage (V) ratio Current Amount (W)
(mA)
FL-P32 [136] ImageNet 2/1 1000 NA 84.4 NA 62.6
FL-P16 84.4
FX-P32 81.5
FX-P16 78.6
[ FX-P3 [ [137] [ MNIST [ 2/-2 [ 20 [ NA [ 99 [ NA [ NA ]
[ INT4* [ [138] [ MNIST/ CIFAR-10 [ 1.2/1.5 [ NA [ NA [ 99/85.7 [ NA [ NA ]
[ INT8 [ [139] [ MNIST [ 1.8/4.7 [ NA [ NA [ 96 [ NA [ 0.007 ]
[140] MNIST 2.3/-14 100 ~10 96.1 NA NA
[141] MNIST 3/-4 50 10 91.7 NA NA
[142] MNIST 2t05/-1to-2 | 104 NA 89.34 NA 4.07
1-bit [143] | MNIST/ CIFAR-10/ ImageNet/ ECG | 3.3/2.5 NA 20 98.1/86.9/45/78.7 | NA NA
[144] MNIST 1.4/-1.8 >1000 ~1 98.3 NA NA
[145] CIFAR-10/ ImageNet NA 2 NA 89.72/56.82 NA NA
[146] MNIST 1.5/-2 NA NA 98.2 1,164,800 1.666
[147] CIFAR-10 1/-1 NA ~10 84.9 NA NA

Note: FL-Px indicates floating point representation with x bit, FX-Px indicates fixed-point representation with x bit.
*This precision is for weights, and the precision of activations is a 3-bit fixed-point.

b: FPGA-BASED IMPLEMENTATIONS

FPGAs have various advantages like re-programmability and
parallel data processing. FPGAs are more power-efficient
than GPUs. There are several research works performed
to accelerate the BNN using the FPGA. Since BNN uses
bit-wise operations, that make BNN convenient for FPGA
implementation. Nurvitadhi et al. [157] implemented a BNN
using binary weights and activations on Aria 10 FPGA
and 14 nm ASIC using Verilog code. In addition, they
compared them against optimized software on Xeon server
CPU, Nvidia Titan X server GPU, and Nvidia TX1 mobile
GPU. Liang et al. [158] presented FP-BNN that provides
a Resource-Aware Model Analysis (RAMA) method to
evaluate the FPGA’s resources cost to decide the storage
place of the model’s parameters using on-chip BRAM for
small models and off-chip for the large model. Moreover,
they utilized an XNOR model and a pop-count compressor
tree for binary multiplication and accumulation processes for
convolution and fully connected layers. In order to permit
parallel accessing and storing the parameters, [159] used
N-RAM blocks, also this design supports a reconfigurable-
size convolutional filter. Guo et al. [160] utilized a binary
input layer and represented the padding with an odd-even
scheme. In [161], the authors used the software implemen-
tation of the BNN [20] to build binary MLP for binary
classification for three applications imaging, cybersecurity,
and high-energy physics. After training the network, the
Verilog code of the combinational BNN is generated for
FPGA implementation. To enhance the accuracy of the
BNN, He et al. [162] introduced Ensemble Binarized
DroNet (EBDN) that is a perception-control integrated deep
binary DroNet model [163]. The EBDN utilized ensemble
learning to decrease the error due to binarization. While
Ling et al. [164] enhance the speed by pipelining and
sparse local aggregation techniques for local stereo matching
accelerator using BNN. Also, Skrimponis et al. [165] enhance
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the throughput using dynamic partial reconfiguration applied
to a BNN remote-accelerator for disaggregated computing.
In addition, Cho et al. [166] presented an adaptive parallelism
design to enhance the throughput. Besides, in [167], the
authors used the K-mean cluster method to reuse the weights
for parallel computation and reduce the pop-count operation
complexity. In [168], the authors presented channel amplitude
and adaptive spatial amplitude models to enhance the BNN
computation speed.

On the other hand, there is another FPGA-based imple-
mentation using High-Level Synthesis (HLS) where the BNN
is designed in C/C++ language and synthesized to generate
the HDL code for the neural network layers to the target
FPGA [169], [170], [171], [172], [173], [174]. In order to
increase the throughput, Zhao et al. [175] used variable-
length buffers. While in [176], utilized pipelining and two
binary parallel convolution layers instead of one to enhance
the throughput. Also, In [177], the authors developed LBCNN
for AlexNet architecture and replaced the convolutional layer
with two sublayers. The first sublayer had ternary weights,
and the second sublayer was 1 x 1 convolution. Based on the
FINN [169] framework, BinaryEye [178] classifies regions
of interest within a frame using an integrated streaming
camera system. Also, based on the Matrix-Vector Threshold
unit (MVTU) proposed in FINN [169], Faraone et al. [53]
presented a symmetric quantizer. Besides, Zhang et al. [110]
implemented FracBNN that utilized fractional bit representa-
tion for activations. Table 9 shows the summary of the FPGA-
based implementations.

c: ASIC-BASED IMPLEMENTATION

The Application-Specific Integrated Circuit (ASIC) hardware
implementations are energy efficient and have high perfor-
mance. Therefore, some researchers proposed ASIC-based
BNN accelerators. In [203], YodaNN provided an ASIC
design implementation for the BinaryConnect with some
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TABLE 9. Comparison of FPGA-based Implementations.

Precision | Dataset Ref. Target FPGA Top-1 Top-5 | Frequency Throughput Power LUT BRAM DSP
’ (bit) ‘ ‘ ‘ Accu. ‘ Accu. ‘ (MHZ) FPS GOP/s (W) ‘ ‘ ‘
[ FL-P32 [ MNIST [ [179] [ Xilinx XCZU7EV [ 96 [ NA [ 100 [ NA [ NA [ 0.67 [ 169,143[ 304 [ 12 ]
[ FX-P18 [ MNIST [ [180] [ Cyclonel0 [ 97.57 [ NA [ 150 [ NA [ NA [ NA [ 12588 [ NA [ 274 ]
[ FX-P1I [ MNIST [ [I81] [ Virtex7 [968 [ NA 150 [ NA [NA [ NA [ 80175 ] 0 [ 83 ]
[ FL-P32 [ CIFAR-10 [ [182] [ Xilinx(ZCU102) [ 64.82 [ NA [ 100 [ NA [ 28.15 [ 6.89 [ NA [ 324 [ 1315 ]
[ FL-P16 | CIFAR-10 [ [I83] [ Intel Stratix-10 [ ~8 [ NA T 185 [ NA [ ~180 20 [ 239k [ 2558 [ 1040 |
[ INT8 [ CIFAR-10 [ [184] [ UltraScale+ XCVU9P [ NA [ NA [ 200 [ 386.7 [ - [ 13.5 [ 480k [ NA [ 4202 ]
[ FL-P32 [ ImageNet [ [182] [ Xilinx(ZCU102) [ NA [ NA [ 100 [ NA [ 46.99 [ 7.712 [ NA [ 787 [ 1508 ]
[ FX-P16 | ImageNet [ [I185] [ Virtex-7 (VC709) [NA [ NA 156 [ 391 [56594 [302 [273805] 1913 [ 2144 ]
FX-P (8- | ImageNet [186] | Stratix-V (GSDS8) 66.58 | 87.48 120 NA 117.8 19.1 NA 1,439 164
16)
[ FL-P8 [ TmageNet [ [187] [ Xilinx VC709 [ 6831 [ NA 200 [ - [ 760.83 9.8 [ 231761 [ 913 [ 1027 |
[158] | Stratix-V(5SGSDS) 98.24 | NA 150 - 5905.40 26.2 182301 2210 20
[161] | Zynq 7000 Zedboard 96.13 | NA NA NA NA 1.47 44670 NA NA
[162] | Zyng- 97.7 NA 200 - 439.1 2.11 43K 286 12
7000(XC7Z100)
[114] | Zyng- 88.7 NA 450 - 6921.97 1.72 NA NA NA
7000(XC7Z100)
MNIST [167] | Ultra96 98.4 NA 300 - 18330 1.795 26780 0 0
97.7 NA 300 - 7647 0.977 14361 0 0
[169] | Zyng-7000(Z7045) 98.40 | NA 200 1561k | - 22.6 82988 396 NA
[170] | Ultra96 97.69 | NA 300 - 5,110 11.8 38,205 417 NA
PYNQ-Z1 NA 100 - 974 2.5 25,358 220 NA
[171] | Spartan XC7S50 98.25 | NA 200 NA NA NA 24124 88.8 150
[178] | XC7K325T 98.40 | NA NA - 116 13.8 88k 124 NA
[160] | Xilinx ZC702 96.9 NA NA NA NA 3.2 29.6k 103 NA
[169] | Zyng-7000(Z7045) 9490 | NA 200 219k | - 11.7 46253 186 NA
SVHN [171] | Zynq ZC702 97.00 | NA 200 NA NA NA 53200 280 165
[174] | Zynq-7020 97.00 | NA 142.85 5310 - 3.5 27,342 94 NA
[110] | Zynq ZU3EG 89.1 NA 250 28069 | - 4.1 51444 212 126
[113] | Zedboard (XC7Z020) | 81.8 NA 143 408 - 2.2 15680 64 0
[114] | Zyng- 88.7 NA 200 - 9685.04 14.89 NA NA NA
7000(XC7Z100)
[158] | Stratix-V(5SGSDS) 86.31 NA 150 - 9396.41 26.2 219010 2210 20
[159] | Virtex-7 VXT458t 91.79 | NA 200 - 2100 28 232000 832 2352
[160] | Xilinx ZC702 88.61 NA NA NA NA 33 29.6k 103 NA
[165] | ZyngMP NA NA 150 - 667 5.97 29,249 122 4
(XCZU9EG)
[167] | Ultra96 80.2 NA 210 205k | - NA 290012 NA NA
1-bit CIFAR-10 [169] | Zyng-7000(Z7045) 80.10 | NA 200 219k | - 11.7 46253 186 NA
[171] | Zynq ZC702 86.98 | NA 200 NA NA NA 53200 280 165
[173] | Zynq 72100 87.15 | NA 167 18069 | - 5.5 78.2K 603 291
[174] | Zynq-7020 91.50 | NA 142.85 537 - 4.4 37,286 130 NA
[175] | Zynq 72020 87.73 | NA 143 NA NA 4.7 46900 94 3
[176] | Xilinx PYNQ Z1 86 NA 143 930 - 2.4 23436 135 53
[188] | Virtex7 (XC7V690T) | NA NA 450 NA NA 15.44 NA 372 18K 0
[189] | Virtex-7 980T 86.06 | NA 340.13 NA NA NA NA NA NA
[53] Xilinx ZU3 FPGA 554 NA 300 NA NA NA 70.6K 432 360
[110] | Zynq ZU3EG 71.8 90.1 250 48.1 - 6.1 50656 201 224
ImageNet [158] | Stratix-V(5SGSDS) 4290 | 66.80 150 - 1963.96 26.2 230918 2210 384
[166] | ZYNQ (XCZU7EV) 75.5 NA 371 - 177.68 ~0.71 | 48K 89 2
[171] | Virtex VCU108 4143 | NA 200 NA NA NA 53760 3041 768
UNSWNBIS| [161] | Zynq 7000 Zedboard ~90 NA NA NA NA 1.568 51353 NA NA
[190]
SUSY [191] | [161] | Zynq 7000 Zedboard 72.18 | NA NA NA NA 0.68 19140 NA NA
PAMAP2 [193 Xilinx Artix-7 99 NA 0.315 0.72 - 0.68 5988 1 0
[192]
Customized | [194] | Xilinx ZCU102 NA NA NA 41.1 - 3.1 NA NA NA
Customized 195] | Virtex-7 98 NA 200 NA NA 16.15 27,631 75 NA
(XC7VX485T)

modifications for more energy-efficient implementation.
YodaNN used the two’s complement and multiplexers as
an alternative to the multiplications. Moreover, the authors
utilized Latch-based Standard Cell Memory (SCM) archi-
tecture instead of SRAM to store the images. The design
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provided three filter sizes 3 x 3,5 x 5, and 7 x 7, to enhance
module flexibility. Also, Wang et al. [204] presented a
binary weights CNN that used a compensation scheme for
the binary multiplication process. Furthermore, the authors
reduced the computation complexity by exploiting early
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TABLE 10. Comparison of ASIC-based implementations.

Precision Reference Dataset Technology | Area (mm?) | Frequency| Power Performance Accuracy%
(bit) (MHZ) (mW) GOP/s [ FPS
FL-P32 [196] MNIST 65nm ~60 NA NA NA NA 99.25
CIFAR-10 65nm ~500 NA NA NA NA 89.06
[ FX-P16 [ 971 ] MNIST [ 28nm [ 5.76 [ 1200 [ 635 [ NA [NA [ 98.36 |
[ INT8 [ 98] ] NA [ 28nm [ 331 [ 700 [ 40000 [ 92000 | - [ NA |
[ EX-P(1-16) [ [199] ] ImageNet [ 40nm ] 2.4 [ 204 [ 76 [ - [ 47 [ NA |
[ EX-P(1-16) [ [200] ] ImageNet [ 65nm ] 16 [ 200 [ 297 [ - 183 [ NA |
FX-P16 [201] ImageNet 65nm 1.77 400 254 - 2.29 68
3.5 200 260 - 2.21
[ FX-P10 [ [202] ] ImageNet [ 65nm [ 16 [ 60 [ 52 [ - [ 263 [ NA |
[166] ImageNet 40nm 0.016 300 NA 74 - 75.5
[195] Customized infrared images 28nm 0.26 200 33.03 NA NA 98
[203] MNIST/ CIFAR-10/SVHN 65nm 311 400 153 1510 - NA
[204] CIFAR-10 130nm 44.92 190 768.7 3501 - 84.87
65nm 11.23 380 842.6 7002 -
[205] MIO-TCD [206] 22nm 2.61 NA NA - 50M 64.7
1-bit [207] CIFAR-10 22nm 2.32 492 8.76 108 - 84
[208] INRIA+CIFAR-10 32nm 3.38 500 410 8191.8 96.5
[209] MNIST 55nm 0.421 0.001 51.45 NA NA 98.0
Yale [210] 0.0008 NA NA 93.3
[211] CIFAR-10 10nm 0.39 13 5.6 NA NA 86
622 607 NA NA
[212] ImageNet 65nm 0.54 476 56.2 746 - NA
156 9.9 244 -

Note: FX-P(1-16) means fixed-point representation with variable bit precision from 1 to 16 bit.

pooling, activations quantization, approximate adders, and
compressor tree. Besides, in [205], the authors implemented
combinational BNN for low power near sensor process-
ing. The authors utilized two models with 16 x 16 and
32 x 32 binary inputs with variable and fixed weights.
Conti et al. [207] provided XNOR Neural Engine (XNE).
It is a hardware accelerator IP for BNN. XNE is connected
with the microcontroller unit, memory, and I/O subsystems.
Another system implementation of the BNN chip supports
AMBA stream bus interfaces for Advanced Driver Assistance
System (ADAS) applications to detect pedestrians and
cars [208]. This design is evaluated by pedestrian detection
from INRIA dataset [213] and car detection from the CIFAR-
10 dataset. STBNN [209] is a spiking neuron model for
BNN inference that utilizes binary inputs and weights and
replaces the multiplication process with a 1-bit Signed AND
operation. While in [211], the authors used the computing
near memory to decrease the cost of the data movement and
near-threshold voltage to decrease the sequential elements’
overhead. Table 10 shows the summary of the ASIC-based
implementations.

4) OTHER TRAINING METHODS

Another training direction for low memory BNN that
is suitable for on-edge devices is proposed in [36] that
introduced a low memory and low energy training. Lay-
devant et al. [38] introduced training the BNN utilizing
Equilibrium Propagation (EP) that provides the ability of
on-chip training. Cai [214] proposed Tiny-Transfer-Learning
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(TinyTL) that adjusts the weights of the pre-trained models
by using the newly gathered data.

Another research attempts to perform on-chip training.
Yu et al. [215] utilize the 16 Mb RRAM macro chip to
implement the multilayer perceptron algorithm used for
the MNIST. The authors used the binary implementation
for the classifications and 8 bits for online training to
update the parameters. The authors reported accuracy of
~96.5%. Besides, Koo et al. [216] introduced stochastic
Binary Spiking Neural Network (SBSNN) that based on the
Spike Timing Dependent Plasticity (STDP) to build energy-
efficient on-chip neuromorphic systems. SBSNN utilized
‘stochastic bit’ to realize the stochastic neurons and binary
synapses for training and deterministic ones for inference.

E. RQ5: WHAT ARE THE TYPES OF THE BNN
FRAMEWORKS?

BNN uses binary weights and activations; thus, these binary
values require special tools and optimization strategies.
Although the BNN models are implemented in Python
platforms like TensorFlow [217] and Pytorch [218], these
platforms do not support storing the data of the model in
binary format, so the BNN frameworks appear to solve
this problem and also permit users to move smoothly from
training to deployment. Some of the existing frameworks are
FPGA-based, and others are not.

1) FPGA-BASED FRAMEWORKS

FPGA-based frameworks apply hardware-software co-design
that begin with the training phase of the BNN using Python
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code to obtain the learned parameters of the trained network.
Then, design the hardware layers in C/C+4+ code. The next
step is to use Vivado HLS [219] for generating the HDL code
of the desired network to be implemented on FPGA. Then,
use Vivado design suite [220] to obtain the bitstream file.
Examples of these frameworks are discussed in the following
lines.

Umuroglu et al. [169] developed the FINN end-to-end
framework. This framework supports user selection of the
desired throughput. The authors utilize the Theano library
for the training stage inspired by BNN [20]. Then, FINN
uses C++ code to build the hardware components of the
required network. FINN framework proposed optimization
on the standard BNN architecture like combining the Batch-
Normalization and the activation layers to a threshold. This
threshold is compared to the output of the pop-count; if the
threshold is greater than the output of the pop-count, then,
the output is 1; else, the output is 0. As a result, the Max-
Pooling layer becomes Boolean OR-Gate. FINN supports
parallelism in matrix multiplication in both convolution and
fully connected layers by using a Matrix-Vector Threshold
unit (MVTU) controlled by the user’s input throughput.
The results showed that the FINN framework outperforms
its predecessors (which are mentioned in [169]) in the
throughput. As an extension of FINN, Blott et al. [170]
presented FINN-R that ables to work with BNN besides
multi-bit quantized networks. In addition, the design supports
pruning to eliminate unimportant operations.

Ghasemzadeh et al. [171] provided another end-to-end
framework named ReBNet, which used Keras library [221]
for the training phase then, used Vivado HLS to generate
the hardware code. The ReBNet framework follows the
same outlines of the FINN framework [169] but with some
modifications. The first modification, ReBNet utilizes 1-bit
weights and multi-level residual binarization for the activa-
tion layer. It trains the BNN employing a residual binarization
scheme that allows a specific number of levels. The residual
binarization scheme sequentially binarizes the residual errors
to raise the approximation’s precision. As the residual
binarization level increase, that leads to higher area and
latency for ReBNet. The second modification is multiplying
the corresponding scaling factors to the accumulated pop-
count. These two modifications, as mentioned earlier, cause
building the max-pooling unit as comparators, not OR gates.

Other researchers proposed an end-to-end framework
for FPGA implementation called LUTNet [172] that uses
software-hardware co-design. LUTNet starts from Tensor-
Flow software to perform the first three steps. The first step is
training using high-precision values in forward and backward
propagation. The second step is fine-grained pruning to sup-
press the unimportant weights. The third step is binarization
using an approximation of linear combinations of multiple
binary values accomplished by residual binarization. LUTNet
replaces the XNOR gates in BNN with K-LUT to execute
Boolean operations. In addition, it supports network tiling
to share data between operations. The inference K-LUTs
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is written in C language using Vivado HLS to generate
the HDL code required for FPGA implementation. The
authors reported that their framework utilized less area due
to pruning, and as a result, it consumes less power.

2) OTHER FRAMEWORKS

There are some inference frameworks for BNN, some of them
are open-source software frameworks like BMXNet [222],
BMXNet 2 [223], daBNN [224], Riptide [225], and
Larq [226], and the others are not available to the public
like BitStream [227]. This section discusses only the open-
source software frameworks. The following lines describe
these frameworks.

BMXNet [222] is a BNN library based on MXNet [228],
it released under Apache license. BMXNet supports binary
and quantized weights and inputs. BMXNet supports XNOR-
Net and DoReFa-Net. BMXNet used Python for training and
validation for the BNN. This library is suitable for CPU
and GPU implementations. BMXNet framework is used in
research work like [28], [84], and [85]. As an extension of
BMXNet, BMXNet 2 [223] proposed three new functions
the sign, round functions with STE, and grad-cancel operator.
In addition, BMXNet 2 separates the training and inference
code mixed in the first version.

daBNN [224] is a fast BNN inference framework for ARM
devices, released under the BSD license. daBNN utilized
the following methods to speed the inference: upgraded
bit-packing scheme, direct binary convolution, and novel
memory layout to decrease memory access. daBNN used
C++ and ARM assembly in the written codes, it supported
Java binding and Android package. daBNN based on standard
Open Neural Network Exchange (ONNX) operators to ensure
easy deployment on other frameworks. daBNN proposed
onnx2bnn, that is a model conversion tool to convert trained
BNN models to the daBNN format. daBNN reported six
times faster on Bi-Real Net-18 than on the BMXNet. daBNN
framework is used in research work like [58] and [229].

Riptide [225] is a fast BNN framework that based
on TensorFlow [217] and TVM [230]. Riptide utilized
TensorFlow during the training phase and TVM to compile
efficient machine code by automatic search and find high-
quality hyper-parameters to maximize performance. Riptide
achieved 4-12 times speedup compared to the floating-point
implementation.

Larq [226] is a framework for BNN and other quantized
neural networks. Larq based on Tensorflow-Keras. Larq
divided into three parts; the first part is Larq library used
for building and training BNN, the second part is Larq Zoo
used for testing and maintaining the pre-trained models.
The third part is Larq Compute Engine (LCE) used for
deployment on mobile and edge devices [231]. LCE reported
that it accelerates the binary convolutions by 8.5:18.5 times
compared to their full-precision counterparts. Larq is used
in research work like [232], [233], [234], [235], [236],
and [237].

VOLUME 11, 2023



R. Sayed et al.: Systematic Literature Review on Binary Neural Networks

IEEE Access

F. RQ6: WHAT ARE THE APPLICATIONS THAT UTILIZE
BNN? WHAT ARE THE USED DATASETS IN THESE
APPLICATIONS AND THEIR EVALUATION METRICS?

Many applications can utilize the BNN to benefit from the
BNN’s advantages like saving memory, area, and power. The
following subsections illustrate the applications of BNN.

1) IMAGE CLASSIFICATION

It is an essential application in computer vision and machine
learning, so most research works evaluate the BNN on
the image classification tasks. Image classification predicts
the class of one object from a collection of predefined
classes that it has been trained on. The BNN strategies
are tested over different deep network structures like
VGG [238], AlexNet [239], ResNet-18 [240], ResNet-20,
ResNet-34, ResNet-50. These tasks use datasets like MNIST,
SVHN, CIFAR-10, and ImageNet. Examples of the image
classification tasks are illustrated in the previous tables.
The descriptions of the used datasets are in the following
lines.

e MNIST dataset [21] denotes the Modified National
Institute of Standards and Technology dataset. It is a
dataset of 70,000 grayscale images of 28 x 28 pixels for
handwritten single digits between 0 and 9. The MNIST
database includes 60,000 images for training, and the
other 10,000 are for testing.

e SVHN dataset [23] stands for Street View House
Numbers dataset. It is a dataset of over 600,000 colored
images of 32 x 32 pixels of digit images coming
from real-world data of ten classes. The SVHN dataset
contains 73,257 digits for training, 26,032 digits for
testing, and 53,1131 additional images.

o CIFAR-10 dataset [22] means the Canadian Institute for
Advanced Research dataset. It is a dataset of 60,000
colored images of 32 x 32 pixels of 4 different vehicles
(airplanes, cars, ships, and trucks), and six different
animals (birds, cats, deer, dogs, frogs, and horses).

o ImageNet dataset [24] is a large colored images
dataset that has different versions. The commonly used
version is the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012); it contains 1.2 million
images for training, 50,000 images for validation, and
150,000 images for testing. It has 1000 classes.

The most important evaluation metric of BNN in the
image classification task is accuracy which is described in
subsection IV-D1. From the results in Table 3 to Table 4,
in the first research work in BNN [20], the accuracy
approached the full-precision counterpart on the small dataset
like CIFAR-10 but the accuracy is sever decreased on large
dataset like ImageNet. Therefore, some research works trend
to using scale factors or quantization functions to improve
the accuracy like WRPN [51], and PACT [54] achieved
comparable accuracy to the full-precision counterparts on the
ImageNet dataset, where the accuracy of ResNet-18 in [54] is
lower than the full-precision counterpart by only ~7%. While
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the accuracy of ResNet-34 (3x-wide) in [51] is lower than the
full-precision counterpart by only 1%.

Besides, adding specific regularization to the loss function
to guide the network parameters in back-propagation to
decrease the mismatch due to binarization leads to better
accuracy like in [78] and [83], where the accuracy of ResNet-
18 (BENN-SB-6, Boosting) in [83] is lower than the full-
precision counterpart by only ~8%. While the accuracy of
AlexNet in [78] is lower than the full-precision counterpart
by only ~5%.

In addition, modifying the network structure to improve
the accuracy like ReActNet-C [87], INSTA-BNN [93], [94],
BCDNet-A [95], and [101]. They have an accuracy very close
to the full-precision MobileNet-v2 by a difference of less
than 1%. Nevertheless, the drawback of these modifications is
increasing the calculation operation that increases the model
size. While BiNeal Net (2x-wide) [82] and BCDNet-B [95]
surpasse the full-precision MobileNet-v2.

Another evaluation metric is the area which is described in
subsection IV-D2. Few research studies tried to minimize the
model size of BNN by using fractional weights or fractional
activations. From Table 5, both FleXOR [108] and SNN [109]
used fractional weights but FleXOR used full-precision
activations. SNN gets higher accuracy with lower bit-width
in 0.67/32-bit than the FleXOR by 0.9% and realizes a more
compact model in 0.44/1-bit with a decrease of around 11%.
While FracBNN [110] used fractional activation of 1.4 bit
and binary weight. FracBNN achieves comparable accuracy
to the full-precision MobileNet-v2 by a very small difference
of 0.2%, but it used around twice the number of Binary
OPeration (BOP) of that used with ResNet-34 in the IR-Net
on ImageNet dataset.

Another approach to decrease the area of the network
model is pruning. For example, in Table 6, the results of [117]
illustrate that the BNN can be compressed without loss
on accuracy on ImageNet by dynamically pruning irregular
redundant edges at all layers; this method does not need to
retrain the model.

The last evaluation metric is the speed which is described
in subsection IV-D3, through CIM, FPGA, and ASIC
implementations. Table 7 to 10 provide comparisons between
various hardware implementations. After improving the
accuracy, it is important that the proposed methods should be
hardware friendly to be applicable in real-world applications.
Finally, the trade-off between accuracy, area, and speed
should be taken into consideration regarding the required
application.

2) OBJECT DETECTION

It is an important application in computer vision. Object
detection gathers two tasks; the first task is localizing one or
more objects in an image and drawing a box around them,
then, the turn of the second task comes to classify the objects
in the image [252]. There is some BNN research works on
object detection, like in [195], the authors presented human
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TABLE 11. Summary of the object detection performance of BNN on PASCAL VOC dataset.

[ Neural Network Approach | Reference | Network Architecture [ Binarization Method / Real-Valued | Trained Dataset | mAP% |

Customized [241] VGG16 Real-Valued VOC2007 68.9

BNN [20] VOC2007 473

Alexnet Real-Valued VOC2007 66.0

BNN [20] VOC2007 464

Faster RCNN [242] [243] VGG16 BDNN VOC2012 62.6

[244] ResNet-18 Real-Valued VOC2007 67.8

ASDA-FRCNN VOC2007 54.6

Bi-Real Net [29] 51.0

ResNet-138 Real-Valued VOC2007+2012 73.2

ASDA-FRCNN VOC2007+2012 63.4

Bi-Real Net [29] 60.6

ResNet-34 Real-Valued VOC2007+2012 75.6

ASDA-FRCNN VOC2007+2012 65.5

XNOR-Net [25] 54.7

[245] ResNet-18 Real-Valued VOC2007+2012 74.5

BiDet VOC2007+2012 50.0

BiDet(SC) 59.5

XNOR-Net [25] 48.4

Bi-Real Net [29] 58.2

[246] ResNet-18 Real-Valued VOC2007+2012 76.4

LWS-Det VOC2007+2012 732

Bi-Real-Net [29] 60.9

BiDet [245] 62.7

ReActNet [87] 69.6

ResNet-34 Real-Valued VOC2007+2012 77.8

LWS-Det VOC2007+2012 75.8

Bi-Real-Net [29] 63.1

BiDet [245] 65.8

ReActNet [87] 72.3

ResNet-50 Real-Valued VOC2007+2012 79.5

LWS-Det VOC2007+2012 76.9

Bi-Real-Net [29] 65.7

ReActNet [87] 73.1

[247] ResNet-18 Real-Valued VOC2007 74.5

DA-BNN VOC2007 63.5
\ YOLOV2 [248] [ [249] ] DarkNet XNOR-Net [25] [ VOC2007 [ 796 |

SSD [250] [243] VGG16 BDNN VOC2007+2012 63.3
‘ ‘ XNOR-Net [25] ‘ 60.71 ‘

SSD512 [250] [84] VGG-16 Real-Valued [250] VOC2007+2012 76.8

BinaryDenseNet-37 BinaryDenseNet VOC2007+2012 66.4

BinaryDenseNet-45 68.2

SSD300 [250] [245] VGG16 Real-Valued VOC2007+2012 72.4

BiDet VOC2007+2012 52.4

BiDet(SC) 66.0

XNOR-Net [25] 50.2

Bi-Real Net [29] 63.8

MobileNetV1 Real-Valued VOC2007+2012 68.0

BiDet VOC2007+2012 51.2

XNOR-Net [25] 48.9

[246] VGGI6 Real-Valued VOC2007+2012 74.3

LWS-Det VOC2007+2012 71.4

Bi-Real-Net [29] 63.8

BiDet [245] 66.0

ReActNet [87] 68.4

Customized [251] Customized Real-Valued VOC2007+2012 \ 75.4

‘ [251] ‘

|
BSF-XNOR VOC2007+2012 | 65.1 |

Note: mAP stands for Mean Average Precision, BiDet(SC) means BiDet with extra shortcut for the architectures.

detection on infrared images. Sun et al. [241] suggested a
fast object detection algorithm by combining the proposals
prediction and object classification processes. While in [249],
the authors introduced an FPGA accelerator of BNN, that
based on YOLOvV2 [248] for object detection. In [243],
the authors introduced a greedy layer-wise method as an
alternative to binarizing all the weight at the same time.
Ojeda et al. [253] proposed filtering stage to the input
image stream followed by BNN used for pedestrian detection.
In [244], the authors provided Amplitude Suppression and
Direction Activation for Faster Region-based CNN (ASDA-
FRCNN) that based on suppressing the shared amplitude
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between the real-valued and binary filters through a new
loss function. Besides, Z. Wang et al. [245] suggested BiDet,
which is a training method of BNN. This method eliminates
the redundant information by the information bottleneck
method [254] to concentrate posteriors on informative
detection prediction. In [246], the authors introduced LWS-
Det, which is a layer-wise searching algorithm that used
angular and amplitude loss functions in a student-teacher
network. This algorithm reduced the angular and amplitude
error learning by utilizing a differential binarization search
and the scale factor. Also, Wang et al. [251] introduced
Block Scaling Factor XNOR (BSF-XNOR) convolutional
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TABLE 12. Summary of the object detection performance of BNN on MS-COCO dataset.

[ Neural Network Approach [ Reference | Network Architecture | Binarization Method / Real-Valued | mAP @.5% | mAP @[.5,.95]% |

Faster RCNN [244] ResNet-18 Real-Valued [242] 42.7 21.9
ASDA-FRCNN 37.5 19.4
[245] ResNet-18 Real-Valued 44.8 26.0
BiDet 24.8 12.1
BiDet(SC) 31.0 15.7
XNOR-Net [25] 21.6 10.4
Bi-Real Net [29] 29.0 14.4
[246] ResNet-18 Real-Valued 53.8 322
LWS-Det 44.9 26.9
Bi-Real Net [29] 33.1 17.4
BiDet [245] 34.6 19.4
ReActNet [87] 38.5 21.1
ResNet-34 Real-Valued 57.6 35.8
LWS-Det 49.2 29.9
Bi-Real Net [29] 37.1 20.1
BiDet [245] 41.8 21.7
ReActNet [87] 433 23.4
ResNet-50 Real-Valued 59.3 37.7
LWS-Det 52.1 31.7
Bi-Real Net [29] 40.0 22.9
ReActNet [87] 47.7 26.1
SSD300 [245] VGG16 Real-Valued 41.2 23.2
BiDet 22.5 9.8
BiDet(SC) 28.3 13.2
XNOR-Net [25] 19.5 8.1
Bi-Real Net [29] 26.0 11.2
[246] VGG-16 Real-Valued 41.2 23.2
LWS-Det 329 17.1
Bi-Real Net [29] 26.0 11.2
BiDet [245] 28.3 13.2
ReActNet [87] 30.0 153
CenterNet [256] ‘ [82] ‘ ResNet-18 \ Real-Valued [ 29.5 [ NA \
\ BiNeal Net [ 292 | NA |

Note: mAP@.5 is mAP for Intersection over Union (IoU)=0.5, mAP@[.5, .95] is mAP for IoU € [0.5 : 0.05 : 0.95].

TABLE 13. Summary of the semantic segmentation performance on BNN.

[ Reference | Dataset | Neural Network Approach | Network Architecture | Binarization Method / Real-Valued | mIOU |
[260] PASCAL VOC2012 FCN-8s-C5 [264] ResNet-18 Real-Valued 67.6
GroupNet-C 61.5
GroupNet-C + BPAC 66.2
FCN-8s-C4C5 [264] ResNet-18 Real-Valued 70.1
GroupNet-C 63.6
GroupNet-C + BPAC 69.0
FCN-8s-C5 [264] ResNet-34 Real-Valued 75.0
GroupNet-C 69.3
GroupNet-C + BPAC 73.9
FCN-8s-C5 [264] ResNet-50 Real-Valued 75.5
GroupNet-C 70.0
GroupNet-C + BPAC 74.4
[261] CityScapes [262]+TDG [265] DeepLabv3 ResNet-18 Real-Valued 97.30
binary DAD-Net 96.60
KITTI Road [263] DeepLabv3 ResNet-18 Real-Valued 94.45
binary DAD-Net 95.25

Note: C4 and C5 mean extracting features from the final convolutional layer of the 4-th and 5-th stage, respectively. TDG means The training data generator
that generate annotations automatically for the drivable area segmentation.

layer and two-level densely connected network structure. « PASCAL VOC [257] used to assess the models’
While Zhao et al. [247] presented DA-BNN, which used performance in different tasks in the aspect of computer
an adaptive amplitude mechanism to improve the feature vision like object detection and semantic segmentation.
representation. In addition, in [255], the authors provided It was part of the Visual Object Classes (VOC)
an FPGA-based comparison between the CNN, Quantization challenges. It has 20 object classes. The two com-
Neural Network (QNN), and BNN for the object detection monly used versions are VOC2007 and VOC2012. The
task. VOC2007 dataset contains 5,011 and 4,952 images for

Table 11 and Table 12 illustrate the BNN results of the training/validation and test data, respectively. While
object detection task on the benchmark datasets PASCAL VOC2012 is always used as supplementary data in the
VOC and MS-COCO, respectively. The descriptions of the training phase. The VOC2012 dataset contains 11,530
benchmark datasets are in the following lines. images for training/validation data.
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TABLE 14. Summary of the image super-resolution performance on BNN.

Ref. | Neural Network Up-scaling | Binarization Method / | Set5 [271] [ Setl4[272] | BSDI100[273] [ Urbanl00 [274] |
Approach Factor Real-Valued | PSRN | SSIM ][ PSRN [ SSIM [[ PSRN [ SSIM [[ PSRN | SSIM |
[267] | VDSR [275] 4 Real-Valued 31.35 0.884 28.01 0.767 27.29 0.725 25.18 0.752
BNN [20] 29.02 0.827 26.55 0.724 26.29 | 0.685 23.55 0.685
DoReFa-Net [44] 29.39 0.837 26.79 0.728 26.45 0.689 23.81 0.696
ABC-Net [49] 29.59 0.841 29.63 0.730 26.51 0.687 23.96 0.699
BAM 30.31 0.860 27.46 0.749 26.83 0.706 24.38 0.720
SRResNet [276] 4 Real-Valued 31.76 0.888 28.25 0.773 27.38 0.727 25.54 0.767
BNN [20] 29.33 0.826 26.72 0.728 26.45 0.692 23.68 0.683
DoReFa-Net [44] 30.38 0.862 27.48 0.754 26.87 0.708 24.45 0.720
ABC-Net [49] 30.78 0.868 27.71 0.756 27.00 0.713 24.54 0.729
BAM 31.24 | 0.878 27.97 0.765 27.15 0.719 24.95 0.745
[268] | VDSR [275] 4 Real-Valued 31.35 0.884 28.01 0.767 27.29 | 0.725 25.18 0.752
BNN [20] 30.19 0.858 27.30 0.744 26.70 0.700 24.28 0.715
Bi-Real Net [29] 30.38 0.861 27.41 0.748 26.82 | 0.705 24.35 0.718
IR-Net [58] 30.66 | 0.869 27.62 0.757 26.93 0.713 24.56 0.730
BTM 30.83 0.873 27.76 0.761 27.03 0.717 24.73 0.736
IBTM 31.06 | 0.877 27.85 0.762 27.07 0.718 24.88 0.740
EDSR [277] 4 Real-Valued 32.46 0.897 28.80 0.787 27.71 0.742 26.64 0.803
BNN [20] 17.53 0.188 17.51 0.160 17.15 0.151 16.35 0.163
Bi-Real Net [29] 30.81 0.871 27.71 0.760 27.01 0.716 24.66 0.733
BTM 31.63 0.886 28.25 0.773 27.34 0.728 25.38 0.762
IBTM 31.84 | 0.890 28.33 0.777 2742 | 0.732 25.54 0.769
[74] VDSR [275] 4 Real-Valued 31.35 0.884 28.01 0.767 27.29 0.725 NA NA
Customized 30.38 0.864 27.52 0.753 26.88 0.709 NA NA
SRResNet [276] 4 Real-Valued 31.76 | 0.888 28.25 0.773 27.38 0.727 NA NA
Customized 31.30 0.880 28.03 0.768 27.20 0.723 NA NA
‘ ;821 ‘ EDSR 3 [ Real-Valued [ 3248 [ 0.894 [ 2882 [ 0.781 || 27.72 | 0.736 || 26:65 | 0.805 |
[ BiNeal Net [ 31.94 | 0.887 |[ 2847 | 0.771 || 2749 | 0.726 || 2580 | 0.776 |
[269] VDSR 4 Real-Valued 31.61 0.886 28.19 0.772 27.28 0.726 25.32 0.759
PDBC-F 30.95 0.875 27.81 0.761 27.05 0.717 24.76 0.737
SRResNet [276] 4 Real-Valued 31.76 0.888 28.25 0.773 27.38 0.727 25.54 0.767
PDBC-F 31.51 0.883 28.14 0.770 27.27 0.723 25.23 0.756
EDSR [277] 4 Real-Valued 3246 | 0.897 28.80 0.787 27.71 0.742 26.64 0.803
PDBC-F 31.80 0.889 28.34 0.775 27.39 0.730 25.56 0.769

Note: PSNR means Peak Signal to Noise Ratio and SSIM means structural similarity.

TABLE 15. Comparison of the point cloud classification of BNN on ModelNet40 dataset.

[ Reference | Neural Network Approach [ Binarization Method / Real-Valued | Overall Accuracy% |

[279] PointNet [282] Real-Valued 88.2
BNN [20] 7.1

XNOR-Net [25] 64.9

BiPointNet 86.4

PointNet++ [283] Real-Valued 90.0
XNOR-Net [25] 63.1

BiPointNet 87.8

PointCNN [284] Real-Valued 90.0

XNOR-Net [25] 83.0

BiPointNet 83.8

DGCNN [285] Real-Valued 89.2

XNOR-Net [25] 51.5

BiPointNet 83.4

[280] PointNet [282] Real-Valued 89.2

XNOR-Net [25] 81.9

Bi-Real Net [29] 71.5

POEM 90.2

PointNet++ [283] Real-Valued 91.9

XNOR-Net [25] 83.8

POEM 91.2

DGCNN [283] Real-Valued 89.2

XNOR-Net [25] 81.5

POEM 91.1

¢ MS-COCO [258] dataset stands for Microsoft Common
Objects in Context. It is used for various tasks like
image recognition, classification, object detection, and
segmentation. It has 80 object classes. The MS-COCO
release of 2015 has 165,482 images for training, 81,208
images for validation, and 81,434 images for test.
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The evaluation metric of the object detection is mean
Average Precision (mAP), which measures the sensitivity of
the neural network. From the result in Table 11 on PASCAL
VOC dataset, the highest mAP is 79% that achieved by [249]
it based on YOLOv2 [248] with DarkNet backbone. While
LWS-Det [246] based on Faster RCNN with ResNet-34,
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TABLE 16. Comparison of the point cloud part segmentation of BNN on ShapeNet Parts dataset.

[ Reference [ Neural Network Approach | Binarization Method / Real-Valued | mIOU

[279] PointNet [282] Real-Valued 84.3
BNN [20] 54.0

BiPointNet 80.6

[280] PointNet [282] Real-Valued 83.7
XNOR-Net [25] 75.3

Bi-Real Net [29] 70.0

POEM 81.1

PointNet++ [283] Real-Valued 85.1

XNOR-Net [25] 71T

POEM 82.9

DGCNN [285] Real-Valued 85.2

XNOR-Net [25] T4

POEM 83.1

TABLE 17. Comparison of the point cloud semantic segmentation of BNN

on S3DIS dataset.

[ Reference | Neural Network Approach | Binarization Method / Real-Valued [ mIOU [ Overall Accuracy% |

[279] PointNet [282] Real-Valued 54.4 83.5
BNN [20] 9.5 45.0

BiPointNet 443 76.7

[280] PointNet [282] Real-Valued 47.7 78.6
XNOR-Net [25] 39.1 70.4

Bi-Real Net [29] 355 65.0

POEM 45.8 77.9

PointNet++ [283] Real-Valued 53.2 82.7

XNOR-Net [25] 43.1 759

POEM 49.8 80.4

DGCNN [285] Real-Valued 56.1 84.2

XNOR-Net [25] 45.6 78.0

POEM 50.1 81.3

obtain a comparable mAP with the full-precision counterpart
by a difference of ~2%.

From the result in Table 12 on the MS-COCO dataset, the
highest mAP is 52.1% that achieved by LWS-Det [246] based
on Faster RCNN with ResNet-50, which decreased by ~7%
from its full-precision counterpart.

3) SEMANTIC SEGMENTATION
Semantic segmentation is the process of pixel-level label-
ing with a set of object categories in the image [259].
Zhuang et al. [260] applied BNN for semantic segmentation
task through the GroupNet algorithm. The GroupNet decom-
posed the network into desired groups and approximated each
group utilizing a combination of binary bases. In addition, the
authors provided Binary Parallel Atrous Convolution (BPAC)
to enhance the performance. While Frickenstein et al. [261]
proposed Binarized Driveable Area Detection Network
(Binary DAD-Net) that is used for autonomous driving.
Table 13 shows the BNN results of the semantic segmen-
tation task on the benchmark datasets PASCAL VOC2012,
CityScapes [262], and KITTI Road [263], respectively. The
descriptions of the benchmark datasets are in the following
lines, and the PASCAL VOC2012 dataset description is
aforementioned before.
o CityScapes dataset [262] is a large-scale dataset
for pixel-level and instance-level semantic labeling
19 classes. It includes 2,975 training images, 500 valida-
tion images, and 1,525 test images, all of these images
from German street scenes.
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o KITTI Road dataset [263] contains 289 images with
manually annotated ground truth labels, 259 images for
training, and 30 images for validation.

The evaluation metric of the semantic segmentation is
mean Intersection-over-Union (mloU). From the results of
Table 13 on the PASCAL VOC2012 dataset, the (GroupNet-
C+BPAC) with ResNet-50 obtains a comparable result to
the full-precision counterpart by a difference of 1.1. Also,
binary DAD-Net achieves results close to its full-precision
counterpart on the CityScapes dataset by a difference of 0.7.

4) IMAGE SUPER-RESOLUTION

The goal of Image Super-Resolution (ISR) is to improve the
resolution of images and videos in computer vision [266].
There are a few research works that utilize the BNN
to alleviate the heavy computation required by the ISR,
such as [267], in which the authors introduced a binariza-
tion method based on the Bit-Accumulation Mechanism
(BAM) to improve the precision. Also, in [74], the authors
suggest a binarization model based on pixel-correlation
knowledge distillation and trainable scaling factors. While
Jiang et al. [268] provided a Binary Training Mechanism
(BTM) that used the feature distribution as an alternative
of the Batch-Normalization layer and improved this design
precision with a multi-stage knowledge distillation technique.
In [269], the authors proposed a precision-driven binary
convolution (PDBC) that provides approximate multi-bit
representations for activation to replace the traditional binary
convolution.
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All the above-mentioned work used DIV2K dataset [270]
in the training phase, which contains 800 training images,
100 validation images, and 100 testing images. Table 14
shows the evaluation results that are tested on four standard
datasets Set5 [271], Setl4 [272], BSD100 [273], and
Urban100 [274].

The evaluation metrics of the ISR are Peak Signal
to Noise Ratio (PSNR) and structural similarity (SSIM).
From the results of Table 14, EDSR with BiNeal Net
achieves the highest PSNR on Set5, Set 14, BSD100, and
Urban100 datasets by differences of 0.54, 0.35, 0.23, and
0.85, from its full-precision counterpart, respectively. Also,
EDSR with IBTM achieves the highest SSIM on SetS5,
Set14, and BSD100 datasets by differences of 0.007, 0.01,
and 0.01, from its full-precision counterpart, respectively.
While EDSR with BiNeal Net achieves the highest SSIM on
Urban100 by the difference of 0.029 from its full-precision
counterpart.

5) POINT CLOUD TASKS

There are many point cloud tasks like classification, part seg-
mentation, and semantic segmentation [278]. These tasks are
3D tasks that depend on the computation of a group of point-
wise geometric attributes. The 3D tasks are more challenging
than the 2D tasks; thus, the binarization process enlarges the
information loss in the 3D tasks. Therefore some researchers
try to improve this loss by utilizing algorithms that make the
BNN fit with the point cloud operations. Qin et al. [279]
suggested BiPointNet, which is a binary methodology for
point clouds. BiPointNet maximizes the information entropy
and restores feature representation efficiently by using
Entropy Maximizing Aggregation (EMA) and Layer-wise
Scale Recovery (LSR), respectively. While in [280], the
authors derived Point-wise Operations based on Expectation-
Maximization (POEM). POEM depends on the Expectation-
Maximization methodology [281], by which the weights
are constrained for a robust bi-modal distribution. In addi-
tion, POEM provided trainable scale factors to improve
the representation capacity of the binary fully-connected
layers.

The point cloud tasks classification, part segmentation,
and semantic segmentation utilize benchmark dataset Mod-
elNet40 [286], ShapeNet Parts [287], and S3DIS [288],
respectively. The descriptions of these benchmark datasets
are in the following lines.

o ModelNet40 [286] dataset is a benchmark for point
cloud classification. It includes 12,311 CAD models
from 40 object classes.

o ShapeNet [287] dataset includes is a subset of 300M
models with 220k categorized into 3,135 classes.
ShapeNet Parts is a subset that comprises 31,693 meshes
classified into 16 common object classes. Each shape
has from two to five portions based on the category with
fifty part classes.

o S3DIS [288] dataset denotes Stanford 3D Indoor
Scene dataset, that used for semantic segmentation.
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It comprises 3D scan point clouds for six indoor areas,
containing 272 rooms in total, and each point belongs to
one of 13 semantic categories.

The evaluation metric of the point cloud classification
and semantic segmentation is the overall accuracy, while
the evaluation metric of the part segmentation is mIOU.
From the results in Table 15 on the ModelNet4(0 dataset,
the highest overall accuracy is achieved by PointNet++
with POEM [280] by a difference of 0.7% from its full-
precision counterpart. Table 16 shows that the highest mIOU
obtained on the ShapeNet Parts dataset by DGCNN with
POEM [280] by a difference of 2.1 from its full-precision
counterpart. Table 17 on the S3DIS dataset, illustrates the
highest overall accuracy, and mIOU achieved by DGCNN
with POEM [280] by a difference of 2.9% and 6 from its full-
precision counterpart, respectively.

6) OTHER APPLICATIONS
This part describes other applications that utilize the BNN in
the following lines:

« In the facial recognition task, In [289], the authors pro-
vided LBP-BNN, in which the BNN with Local Binary
Pattern is used for emotion detection application. While
in [290], the authors suggested BinaryCoP, which is a
BNN accelerator based on FINN framework [169] for
facial-mask for wearing positions of the MaskedFace-
Net dataset [291].

o In the health care aspect, Hirtzlin et al. [143]
employed hybrid Memristor-CMOS to implement
BNN for a biomedical signal task like -electro-
cardiography (ECG) signals. In addition, In [62]
and [292], the authors applied BNN for medical image
segmentation.

o In the natural language processing field, Shrid-
har et al. [293] can apply the BNN to text classifications.

o In audio tasks, Chen et al. [70] used BNN for monaural
speech separation. While in [71], the authors utilized
BNN for speech recognition. Besides, Cerutti et . [294]
merge analog binary feature extraction with BNN
for keyword spotting on microcontroller units. Also
in [295], the authors proposed BNN for Keyword
Spotting. In addition, Saeed [296] presented an early-
exiting approach to accelerate BNN inference for audio
tasks.

e In Human Activity Recognition (HAR) field,
De Vita et al. [193] proposed FPGA-based implemen-
tation for HAR. While in [297], provided BNN for
general purpose processors with a RISC-V instruction
set. In addition, in [298] the authors suggested Binary-
DilatedDenseNet for low-latency and low-memory for
HAR.

« In security applications, Xu [299] introduced BNN for
person re-identification task. While in [300], the authors
provided BNN for multispectral image classification.
Besides, in [301], the authors employed BNN with

VOLUME 11, 2023



R. Sayed et al.: Systematic Literature Review on Binary Neural Networks

IEEE Access

network architecture search for synthetic aperture radar
(SAR) ship classification.

o In fault diagnosis, Tong et al. [302] deployed a fault
diagnosis system for an open-circuit fault (OCF) of a
Modular Multilevel Converter (MMC).

G. RQ7: WHAT ARE THE CHALLENGES AND FUTURE
WORK OF THE BNN?

From 2016 until the submission of this paper, the BNN has
developed as discussed in the literature. This section listed

the challenges and the future work for the BNN.
o Most of the studies perform offline training that takes

a long time. Several training methods are discussed in
the literature, based on the chosen network architecture
and its application. Therefore, we could not specify
a certain method to be the best one. Online training
may be the solution for rapid and efficient training.
To the best of our knowledge, there is one paper for
BNN online training [215]. For real-time applications
such as security, the dataset should be quickly updated,
which may require online training. Online training is
an open research point that requires many research
studies.

e Most of the BNN studies are for image classifica-
tion; there are few studies for the other applications
mentioned above in the previous subsection. Therefore,
other applications such as the point cloud tasks, image
segmentation, and speech applications require more
research studies.

o Although the BNN minimizes the memory storage
and power consumption regarding the standard DNNSs,
the data transfers and memory access still exhaust a
significant part of the energy during the execution of
BNN. Computing in-memory (CIM) is a good solution
to reduce the data transfers and memory access for
BNN implementation, but it suffers from the circuit
non-ideality like the case of memristor that reduces the
system accuracy. Therefore, we call for more research to
solve this challenge.

o The BNN design cannot be generalized for all tasks;
each requires a specific BNN design. Thus, choosing the
appropriate network topology for a particular task is still
an open question.

V. CONCLUSION

BNNs provide promising solutions for the hardware imple-
mentation of machine learning based applications. Compared
to CNNs, the implementation of BNNs reduces networks’
complexities, memory footprint, and power consumption.
However, the main drawback of utilizing BNNs is the
information loss due to binarization. Several research studies
proposed various techniques to improve the performance
of BNNs. We performed a systematic literature review that
presents the state-of-the-art in BNN research through data
obtained from 239 research studies. We presented a com-
prehensive review of three BNN optimization approaches:

VOLUME 11, 2023

accuracy optimization, compression optimization, and accel-
eration. We explored various application domains that utilize
BNN implementations and their evaluation metrics. Finally,
the paper identified current challenges in BNN design
and the future trends in BNN research. The discussed
optimization approaches include improving the accuracy
during the training process, compressing the BNN model,
and improving the speed and power consumption by using
CIM, FPGA, or ASICs. Our literature review showed that
combining different optimization approaches lead to better
performance.
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