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ABSTRACT Path planning for autonomous underwater vehicles (AUVs) is a key research focus in the
marine domain, requiring consideration of the underwater environment’s complexity and the efficiency of
the planning algorithms. Firstly, a variety of strategies such as the memory function are integrated into the
artificial jellyfish search algorithm (JS) to improve its convergence accuracy, and the improved artificial
jellyfish search algorithm (IJS) is obtained. Secondly, this paper establishes a good objective function
including the ocean current disturbance model, which helps the IJS algorithm better plan the paths to avoid
obstacles and strong side currents. Furthermore, the optimal smoothed paths are obtained by using a cubic
spline midpoint interpolation method. Finally, multiple simulation experiments are performed on the multi-
obstacle ocean current model with realistic terrain data. The comparison results show that the IJS algorithm
with a short running time has the optimal time cost and ocean current penalty cost for the planned path.
In addition, the IJS algorithm is also shown to be adaptable in the field of multi-AUV movements.

INDEX TERMS Autonomous underwater vehicle, improved artificial jellyfish algorithm, multi-obstacle
ocean current environment, three-dimensional path planning.

I. INTRODUCTION
With the continuous evolution of maritime strategies, under-
water unmanned equipment and technology have been valued
and developed. In particular, autonomous underwater vehi-
cles (AUVs) have been widely used in civil andmilitary fields
because of their advantages of good concealment and strong
mobility, which can easily and flexibly carry out underwater
operations [1]. It is worth noting that planning a reasonable
path to reach the mission point quickly and safely is a prereq-
uisite for AUVs to successfully start underwater operations.
Therefore, this paper focuses on the path planning problem
of AUVs in a multi-obstacle ocean current environment.
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approving it for publication was Nuno M. Garcia .

In the 1960s, Lozano-Pérez et al. [2] proposed the idea
of path planning, which means that in an environment
with obstacles, the motion device needs to find a safe and
efficient path from the start point to the target point accord-
ing to the corresponding evaluation criteria. Nowadays, sev-
eral researchers have conducted in-depth research on path
planning for AUVs [3], [4], [5], mainly including envi-
ronment modeling and planning algorithms. Environmental
modeling is the unified modeling of the collected environ-
mental elements for further construction of the real environ-
ment. Of course, the constructed environment model has to
be adapted to the path-planning algorithm. There are three
main common methods for environment modeling: visibility
graph [6], voronoi diagram [7], and grid method [8]. The grid
method is easier to understand and operate compared to the
other methods, and thus is more popular.

31010
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1989-8546
https://orcid.org/0000-0003-3240-909X
https://orcid.org/0000-0002-3195-3168


S. Guo et al.: Path Planning for AUVs Based on an Improved Artificial Jellyfish Search Algorithm

Commonly used path planning algorithms are mainly
divided into traditional algorithms and swarm intelligence
optimization algorithms. The traditional algorithms plan a
collision-free path by searching and sampling the path nodes.
The Dijkstra algorithm is the typical traditional algorithm.
In 1996, Arinaga et al. [9] first demonstrated that the Dijk-
stra algorithm was adapted to path planning for the AUV,
which did not take the underwater environment into account.
Eichhorn [10] constructed an underwater time-varying envi-
ronment using weighted directed graphs and successfully
planned the optimal path for a single AUV in combination
with the Dijkstra algorithm. Later, some researchers made a
series of improvements to the Dijkstra algorithm [11], [12]
based on the existing ones, which have improved the con-
vergence accuracy of the algorithm. However, the improved
algorithms still cannot overcome the drawback of the high
running cost and low efficiency, as the Dijkstra algorithm
requires a comprehensive search of the path nodes. The A*
algorithm and artificial potential field (APF) algorithm are
the more popular traditional algorithms. The literature [13]
illustrated that the A* algorithm can plan a compliant path
for the AUV in complex underwater environments. Nowa-
days some improvements to the A* algorithm are proposed,
and the high research hotspot is the bidirectional A* algo-
rithm [14]. But the A* searchmust rely on the heuristic values
of the adjacent grid of the current path point to determine the
next path point, so the A* and its improved algorithms are
unable to solve for the optimal path when multiple optimal
solutions exist. In 2012, Subramanian et al. [15] used APF
for underwater path search and found that it could not fulfill
the requirements of AUV path planning. the literature on APF
improvement includes [16], [17]. Besides, rapidly exploring
random tree (RRT), fast marching (FM), and D* algorithm
also belong to the traditional path planning algorithms.

As the complexity of the problem rises, traditional algo-
rithms have obvious difficulties in solving it. Thus swarm
intelligent optimization algorithms applied in the field of
complex dynamic path planning have become a trend [5].
Due to the ease of operation and fast convergence of particle
swarm optimization (PSO), Sun and Liu [18] used this algo-
rithm to solve problems related to large-scale static under-
water environments and achieved successful results. The
quantum particle swarm algorithm (QPSO) eliminates the
moving direction property of particles in the PSO algorithm,
which increases the randomness of particles and improves
the quality of paths in complex environments [19]. The ant
colony (ACO) algorithm relies on pheromones to determine
the feasibility of path points, and combines the roulette
method to gradually select the location points in the feasible
region for planning a reasonable path [20]. This algorithm
is suitable for multidimensional underwater environments
and has been favored by most researchers. However, it can’t
be ignored that the ACO algorithm has the fatal drawback
of long running time. The wolf pack algorithm (WPA) has
low feasibility in achieving multidimensional underwater
path planning for an AUV using an excellent leader wolf

selection strategy and a ‘‘survival of the fittest’’ update mech-
anism [21]. In recent years, the marine predator algorithm
(MPA) [22] and harris’s hawk optimization (HHO) [23] have
stood out for their good convergence performance and have
been applied in many fields, including path planning. In this
work, we introduce the artificial jellyfish search (JS) algo-
rithm to the field of AUV path planning for the first time.
In 2021, Chou and Truong [24] proposed the JS algorithm,
which achieved an optimal solution to the problem by mod-
eling the behavior of jellyfish searching for food to build a
relevant mathematical model. It has been successfully applied
to medicine [25] and economics [26]. In general, the common
swarm intelligence optimization algorithms have significant
advantages over traditional algorithms when dealing with
path planning problems. However, they also suffer from com-
mon shortcomings: poor stability and robustness, and high
dependence on the environment, which need further improve-
ment.

In addition, several new path planning methods have been
proposed. Yan et al. [27] proposed an enhanced water wave
optimization (WWO) algorithm to plan the optimal path for
a single AUV in the two-dimensional (2D) plane, but the
method did not apply to the three-dimensional (3D) environ-
ment. Han [28] proposed amethod adapted to the 3D environ-
ment, critical obstacles and surrounding point set (COSPS),
which identifies critical obstacles and thus reduces compu-
tational complexity. However, this method doesn’t take into
account the time or distance optimal cost and the smoothness
of the path. Wang et al. [29] improved the QPSO algo-
rithm by introducing adaptive parameters, which can success-
fully identify and avoid obstacles. Che et al. [30] improved
the ACO algorithm with heuristic functions and pheromone
updates based on the ideas of the PSO algorithm. This
improved algorithm has a higher feasibility in the field of path
planning compared to the original ACO algorithm. The above
two methods have a simulation environment with few obsta-
cles and no ocean current, and their AUV path planningmeth-
ods are similar to that of the land robot. Although these meth-
ods yield better results, they can be biased in practical appli-
cations. By improving the neural network, Chen and Zhu [31]
proposed a new dynamic neural network model, which helps
to capture the local trajectory of the AUV and improved the
safety of the path in the ocean current environment. However,
the model does not consider the effect of side currents on
AUV navigation, which isn’t reasonable. The combination
of deep reinforcement learning and neural networks is a
new hot topic in the field of path planning [32], [33]. This
method requires parameter training, which can result in a high
computational burden and complex operations.

To improve the above-mentioned problems existing in the
field of AUV path planning, the specific works done in this
paper are the following.

1) Convergence performance of the basic JS algorithm is
improved.

2) A good objective optimization function with the ocean
current disturbance model is designed. It gives a
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reasonable penalty for the AUV to be disturbed by cur-
rents in different directions, thus avoiding side currents
and obstacles.

3) The practicality of the simulation path is improved.
On the one hand, building an environmental model
with realistic terrain data, ocean currents, and external
threats to close the gap with the real environment.
On the other hand, using the visualization search strat-
egy and cubic spline midpoint interpolation method
ensures that the simulation path has multiple scatter
points and is smooth.

The remainder of the paper is structured as follows:
Section II is large to provide a detailed statement of the
problem. Section III presents the designed algorithm model,
including the objective function. Section IV performs a vari-
ety of simulation experiments and analyses to verify the
algorithm model in terms of validity and practicality. The
discussion is carried out in the last section.

II. PROBLEM STATEMENT
A. ENVIRONMENTAL MODEL
The development of a good environmental model signifi-
cantly impacts the timeliness of AUV path planning. The
active area of the AUV in this work ranges from 157.1◦E to
157.6◦E , 19.6◦N to 19.9◦N , and -6500m below the surface.
The realistic ocean terrain data for this area can be obtained
by several methods [34] and we represented it using a digital
elevation model (DEM). The DEM is usually a data set
represented as (Xi,Yi,Zi) and Zi as the elevation of the planar
coordinates. In practice, the DEM is easily manipulated and
formed into a 2D array, the index of each array containing
the elevation of the point Zi. At the same time, we use the
grid method [8] to model the DEM as a grid map. In simple
terms, the grid map can be seen as the marine environment
of the region cut into a grid of NS*NS*NS, with each grid
point represented by (X ,Y ,Z ). When in a real large-scale
environment, a single grid generally has a large space. The
size of the AUV is relatively small and negligible. Therefore,
AUVs are treated as particles in the path planning process.
To further represent the harshness of the marine environment,
the grid map also includes various shapes of obstacles acting
as external threats. Of course, ocean currents can’t be ignored
and we have applied an ocean current vector to each grid
point. The resulting multi-obstacle ocean current environ-
ment model is shown in Fig. 1.

B. VISUALIZATION SEARCH STRATEGY
To better solve the AUV path planning problem, we grid the
constructed environment, and then give the search strategy for
AUV navigation. In this work, the X-axis is taken as the main
navigation direction of the AUV.We also perform a non-equal
cut5i, (i = 1, · · · ,N ) along themain navigation direction to
form N a plane parallel to the YOZ plane. In 5i, the Y-axis is
used as the lateral direction of AUVmovement and the Z-axis
as the vertical direction, with the AUV as a specific point.

FIGURE 1. The multi-obstacle ocean current environment model (Range:
157.1◦E to 157.6◦E , 19.6◦N to 19.9◦N , and -6500m below the surface;
Gray cylinder: radar reconnaissance range; Sphere, cube: floating
obstacles; Pink area: distribution of planar vector ocean currents).

FIGURE 2. Visualization area (Heading angle is α, pitch angle is β, UB and
UR are the maximum sailing distance).

In practice, the AUV has posture (heading angle as α,
pitch angle as β, roll angle as 0) limitations that prevent
it from navigating excessive distances in the horizontal and
vertical directions. Therefore, we set up visualization areas
in 5i, (i = 1, · · · ,N ). As shown in Fig. 2, when the AUV
moves in the main navigation direction to the position point
of the 5i, it can only search within the visualization area
of the 5i+1 for simplicity and efficiency. The visualization
area consists of the maximum lateral sailing distance UB
of the AUV and the maximum longitudinal sailing distance
UR. Within the limits of UB and UR, αmin ≤ α ≤ αmax,
βmin ≤ β ≤ βmax. Thus, the visualization search strategy
satisfies the constraints of the AUV’s posture.

With the above complex environment model and the visual
search strategy in place, the 3D path planning problem for
the AUV in this work is transformed into a layer-by-layer 2D
planar search problem for feasible path points. The problem
can be described by a simple schematic diagram in Fig. 3.
Firstly, some clarification of Fig. 3 is required: the blue region
is the obstacle region. The visualization area contains the
red points and the grey points. The grey point is set as an
unreachable obstacle point due to its location in the obstacle
area. The green points in the plane with 51 and 5end are the
starting point Pstart and the target point Pend respectively. The
purple point is the track point Pi, i = 1, 2, . . . ,D. The black
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FIGURE 3. AUV path planning diagram.

FIGURE 4. Regulating mechanism.

arrow connects the trajectory pointsPi in the adjacent plane to
form the AUV’s navigation path. The problem can therefore
be described as the AUV starting from Pstart and following
the trajectory shown by the black arrows to reach Pend safely,
subject to certain constraints, minimizing the cost function.
In this work, the cost function is achieved by optimizing
the navigation time. The constraints include that the AUV
has to search for the target point and must not collide with
obstacles, the AUV posture constraints, and the AUV has to
avoid side currents in ocean currents conditions. Simultaneity
and conflict avoidance constraints in the case of multi-AUVs
co-movement.

III. ALGORITHM MODEL
A. JS ORIGINAL ALGORITHM MODEL
In the original JS algorithm, it is assumed that jellyfish have
three main types of foraging behavior: movement following
ocean currents, active movement, and passive movement. It is
worth noting that jellyfish need to perform three movements
through a regulation mechanism. As shown in Fig. 4, this reg-
ulation mechanism consists of the regulation function C (t)
and the constant C0 = 0.5.

C (t) =

∣∣∣∣(2 · rand(0, 1) − 1) ·

(
1 −

t
T

)∣∣∣∣ (1)

where t is the current number of iterations and T is the total
number of iterations.

When C (t) > C0 holds, jellyfish will move following the
ocean currents. The movement direction of the ocean currents
is determined by the optimal jellyfish position in the current
population together with the average position of all jellyfish,
which can be calculated by (2).

vtrend = Xg (t) − λ · rand (0, 1) · Xm (t) (2)

Xm (t) =
1
Np

Np∑
i=1

Xi (t) (3)

where Xg (t) is the current optimal jellyfish position, Xm (t) is
the average position of all jellyfish, andNp is the total number
of individuals of all jellyfish. λ is the distribution factor with
a fixed value of 3. Finally, the jellyfish positions are updated
as shown in (4).

Xi (t + 1) = Xi (t) + rand (0, 1) · vtrend (4)

When C (t) ≤ C0 and 1 − C (t) < rand(0, 1) hold, the
jellyfish enter the active movement phase. During this phase,
information is exchanged between the jellyfish, generating a
direction of movement vstep as shown in (5), which enables
the jellyfish to update their position.

vstep=

{
Xi (t)−Xj (t) , if Xi (t) inferior to Xj (t)
Xj (t)−Xi (t) , otherwise

(5)

Xi (t + 1)=Xi (t) + rand (0, 1) · vstep (6)

where Xj (t) is a randomly selected location for the jellyfish j.
It can be seen that when the jellyfish i is in a position with a
worse food source than the jellyfish j, the jellyfish i will tend
to move towards the position of the jellyfish j. Conversely, the
jellyfish i will tend to move away from the jellyfish j.

When C (t) ≤ C0 and 1 − C (t) ≥ rand(0, 1) are estab-
lished, the jellyfish will take a passive motion in the jellyfish
colony. The jellyfish will move around itself in search of
a food source. The corresponding updated position of the
jellyfish is shown in (7).

Xi (t + 1) = Xi (t) + rand (0, 1) · δ · (ub− lb) (7)

where the coefficient of motion δ = 0.1. ub , lb are the upper
and lower bounds of the search space where the jellyfish is
located.

The JS algorithm also differs from other algorithms for
population initialization and boundary conditions. In the liter-
ature [24], the JS algorithm uses the logistic chaos mapping
and the opposite bound method to deal with the two cases
mentioned above.

B. IMPROVED JS ALGORITHM MODEL AND ANALYSIS
1) IJS ALGORITHM MODEL
In multidimensional complex problems, the JS algorithm
suffers from slow convergence and tends to fall into local opti-
mality. To improve the above problems, this work proposes an
improved JS (IJS) algorithm as a path planning algorithm for
the AUV.
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The movement following ocean currents introduces a
memory function that is used to re-model the movement of
the currents. In single-objective problems, the average posi-
tion of the population reflects the position distribution of all
individuals because there are few constraints and the position
of individuals is more evenly distributed. Therefore in solving
such problems, the original algorithm uses the direction of the
currents fitted by (2) to be favorable for all individuals.

However, in multi-objective problems such as path plan-
ning, multiple local extrema are generated in space as the con-
straints increase. At this point, the applicability of the original
algorithm for fitting ocean currents is lower and the following
two poor situations arise. One situation is that the average
position of the population will be influenced by the extreme
positions of some jellyfish and will not accurately reflect
the distribution of the positions of all jellyfish. As a result,
some jellyfish will blindly follow the movement of the ocean
currents and will not have access to better food sources.
Alternatively, the ocean currents have a single direction of
movement and point to the current global optimum position.
At the same time, the step size of the ocean current is adjusted
by the rand function, which is too random and causes the
algorithm to fall into a local optimum with a high probabil-
ity. Therefore, this work introduces a memory function: the
historical optimal position of the jellyfish Xp (t) is added to
generate a valid current vcur as shown in (8).

vcur = r1 ·
(
Xg (t) − Xi (t)

)
+ r2 ·

(
Xp (t) − Xi (t)

)
(8)

r1 = r2 = 1.5 · rand (0, 1) (9)

The principle is shown in Fig. 5. The motion vector of the
jellyfish from the current position Xi to the global optimum
position Xg is vig. The motion vector of the jellyfish from Xi
to Xp is vip. We use the adaptation factors r1, r2 to adjust
vig and vip to produce ocean currents with the right direction
of motion and step size vcur. On the one hand, the fitted
ocean currents are favorable for each jellyfish and can drive
the jellyfish to find better food sources. On the other hand,
the direction and step length of the ocean current is effec-
tively modified by r1 , r2, reducing the likelihood of jellyfish
becoming trapped in a local optimum. Ultimately, during the
new following ocean currents phase, jellyfish update their
position according to (10).

Xi (t + 1) = Xi (t) + vcur (10)

The passive movement phase introduces a hybrid strategy
that drives the jellyfish in all directions. Analysis of the
equations shows that the passive motion of the jellyfish in the
original algorithm is directed toward the upper boundary and
that the motion steps are highly random. This situation causes
the jellyfish to move towards the upper boundary and not
in all directions, which is a limitation. Therefore, this work
implements a hybrid strategy.

The hybrid strategy consists of a restricted global motion
(satisfying the condition: rand (0, 1) ≥ 0.5) and a local
following motion, as shown in (11), at the bottom of the

FIGURE 5. Improving the movement of ocean currents.

next page. On the one hand, the jellyfish, in the course of
its restricted global motion, generates a vector of random
motions that can reach any position globally. And a linear
convergence factor RL is used to limit the motion step size,
prompting the jellyfish to actively give up some poor posi-
tions during the iterative process and gradually narrow down
the global search range with the current position as the core,
to achieve the purpose of motion around itself. On the other
hand, the jellyfish carries out a local following strategy. Local
high-precision development at position

(
Xg (t) + Xp (t)

)
/2.

Thus, the hybrid strategy will further the ability of algorith-
mic surveying and exploitation.

RL = (1 − t/T ) (12)

Xi (t + 1) = Xi (t) + vran (13)

where T is the total number of iterations and ub , lb are the
upper and lower bounds of the search space respectively.

A hierarchical optimization system is used. The basic JS
algorithm uses a conditioning mechanism to perform tran-
sitions between different motions. As shown in Fig.4, with
the number of iterations increasing, the jellyfish gradually
converge to a single motion, which tends to lead the algorithm
to a local optimum. To further demonstrate the effectiveness
of the improved strategy and to enhance the convergence of
the algorithm, this work replaces the regulation mechanism
with a hierarchical optimization system. Specifically, the jel-
lyfish populations are grouped in order of fitness from best
to worst. The top 1/3 of jellyfish constitute the elite group.
Due to their superior position, jellyfish in the elite group
perform the passive movement shown in (13). in an attempt
to find new food sources locally and globally. The last 1/3
of the jellyfish form the Followers group and will follow
the new ocean currents, relying on (10) detached poor food
sources. The intermediate jellyfish form the learning group
and will enhance inter-individual learning and communica-
tion according to (6).

For the treatment of population initialization, the IJS algo-
rithm is in line with other path planning algorithms, using
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a simple random initialization. The boundary condition for
each path point of a jellyfish satisfies two conditions: it must
be within the visualization area as well as within the boundary
of the 3D environment.

∣∣∣X yi(j+1) − X yij

∣∣∣ ≤ UB∣∣∣X zi(j+1) − X zij

∣∣∣ ≤ UR,


X xmin ≤ X xij ≤ X xmax

X ymin ≤ X yij ≤ X ymax

X zmin ≤ X zij ≤ X zmax

(14)

2) ALGORITHMIC TIME COMPLEXITY ANALYSIS
The main purpose of time complexity is to measure the speed
at which the algorithm runs. Assume a population size as NP,
a dimension as D, and a total number of iterations as T . The
time complexity of the IJS algorithm includes initialization,
jellyfish position update, and fitness calculation.

Firstly, the IJS algorithm uses a simple random initializa-
tion instead of the original logistic chaos mapping, with a
time complexity of O (D ∗ NP). Secondly, for updating the
jellyfish position during the iterative process, three improve-
ments are introduced, including the memory function, the
hybrid strategy, and the hierarchical optimization system.
But these measures are updates to the strategies in the orig-
inal algorithm and do not add additional time complexity.
So the time complexity remains at O (D ∗ NP ∗ T ). Finally,
the time complexity of the IJS adaptation calculation is
O (NP ∗ T ). Overall the time complexity of the IJS algorithm
is O (D ∗ NP) + O (D ∗ NP ∗ T ) + O (NP ∗ T ), which is the
same as the original JS algorithm.

C. OBJECTIVE FUNCTION
The objective function of this path planning module is
described as (15), including the time cost function of the path
Ft and the good penalty function Fpk , (k = 1, 2, 3).

Fit (X) = Fp1 (X) ·
(
c1Ft (X) + c2Fp2 (X) + c3Fp3 (X)

)
(15)

where X = {P1 (Pstart) ,P2,P3, . . . ,PD (Pend )} represents a
path consisting of a series of discrete points (both the start and
end point). For the weight of the corresponding function c1,
c2, c3, set c1 + c2 = 1, c3 takes the value 0 or 1. Fp1 denotes
safety. Fp2 is the ocean current disturbance and Fp3 is the the
success of the path.

1) TIME COST FUNCTION
The time cost function is expressed as follows.

Ft (X) =
ϖt (X) − ϖt min (X)

ϖt max (X) − ϖt min (X)
(16)

ϖt (X) =

D−1∑
i=1

(
Dist (Pi,Pi+1)

2 ∗ |vi|
+
Dist (Pi,Pi+1)

2 ∗ |vi+1|

)
(17)

ϖt min (X) =
Dist (Pstart ,Pend )

|vmax|
(18)

where ϖt (X) is the time cost of the path. Dist(Pi,Pi+1) is
the Euclidean distance between the point Pi and the point
Pi+1, |vi| and |vi+1| represent the actual scalar velocity of
the AUV relative to the ocean current at the points Pi and
Pi+1, respectively. In general, the AUV navigates with a
constant output vector velocity vrc. At the same time, the
ocean current causes a specific vector velocity vci at the path
point. According to the vector synthesis method, the actual
velocity of the AUV’smotion is vi = vrc+vci.ϖt min (X)is the
minimum time cost of the path. Dist (Pstart ,Pend ) represents
the shortest distance from the starting point to the target point
and vmax represents the maximum speed of the AUV actual
motion. Conversely,ϖt max (X) represents the maximum time
cost of the path. Therefore Ft (X) is the minimum time cost
of the path in [0, 1]. The smaller the value Ft (X), the lower
the time cost of the path.

2) SAFETY FUNCTION
The safety of the path Fp1 (X) is described as (19). Due to
the presence of marine terrain and external threats in the
environmental model, safety is calculated using two methods
Jr1 (X) , Jr2 (X).

Fp1 (X) = Jr1 (X) · Jr2 (X) (19)

In a grid map, a grid is an obstacle zone whenever marine
terrain is present, and this grid is not passable. Specifically,
we binarise the grid points to determine the obstacle zone by
applying 0 and 1 as shown in (20).

S (x, y, z) =

{
0, if Zm (x, y) ≥ Zg (x, y) + dsafe
1, else

(20)

Zm (x, y), Zg (x, y) represents the elevation of the moun-
tain and the elevation of the grid point located at the point
respectively and dsafe is the safety distance. If Zm (x, y) ≥

Zg (x, y)+dsafe holds, this grid is an obstacle zone and cannot
be reached by the AUV, at which point the value assigned
to the grid point is 0. Thus, the safety of AUV passing over
marine terrain can be expressed by (21).When an AUV enters
an obstacle area, it will be penalized with a fixed value of 10,
which ensures that the AUV’s path points are away from the
obstacle.

Jr1 (X) =

{
1, S (x, y, z) = 1
10, S (x, y, z) = 0

(21)

External threats include enemy radar threats, local electro-
magnetic interference threats, floating obstacle threats, etc.
Due to the randomness of the shape, size, and location of

vran =

{
RL · (((ub− lb) · rand (0, 1) + lb) − Xi (t)) , if rand (0, 1) ≥ 0.5
rand (0, 1) ·

((
Xg (t) + Xp (t)

)
/2 − Xi (t)

)
, else

(11)
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FIGURE 6. AUV obstacle avoidance illustration(Rk : the radius of the
obstacle; Red arrow AB: the navigation path of the AUV; dk : the shortest
vertical distance from the center point to the red arrow; dsafe: the set
safe distance).

the external threats, the continued use of the above meth-
ods to binarise their location is cumbersome and inaccurate.
In this work, the external threats are transformed into differ-
ent shapes of obstacles and the obstacle areas are modeled.
Of course, the real external threat is included in the created
obstacles. Due to the long radar survey range, we assume that
AUVs can only go around and not pass overhead. The radar
threat is treated as an obstacle in the shape of a cylinder as
shown in Fig. 1. For all other external threats, we transform
them into floating obstacles in the shape of spheres or cubes.
As shown in Fig. 6, the grey area is assumed to be a real
obstacle in 3D and Rk is the radius of the obstacle. The red
arrow AB is the navigation path of the AUV. dk indicates the
shortest vertical distance from the center point of the obstacle
to the arrow AB. dsafe is the set safe distance. The AUV can
only navigate safely if the condition dk > Rk + dsafe is met.

Jr2 (X) =

{
1, if dk > Rk + dsafe
10, else

(22)

3) OCEAN CURRENT DISTURBANCE FUNCTION
In the ocean current environment model, currents in different
directions can exert different forces on the AUV, affecting
its safe navigation. In particular, side currents cause greater
losses as the AUV cannot effectively resist the impact of side
currents. We design the ocean current disturbance function
Fp2 as shown in (23), which promotes the AUV to use the
ocean currents effectively while avoiding the side currents.

Fp2 (X) =

D−1∑
i=1

Ui

(D− 1) ∗ max (U)
(23)

U = 1.5·sin(µ)11.15+1.0·(sin (µ/3))3 , µ =
θ

180
·π

(24)

U is the penalty function for ocean currents and Ui is the
penalty value for currents at the time i. µ denotes the con-
version between the angular system and the radial system.

FIGURE 7. Illustration of the penalty for the ocean current (Above is an
illustration of ocean current types; Below is the curve of the penalty
function for the ocean current).

θ is the angle between the direction of the AUV velocity and
the direction of the current velocity.Fp2 (X) is in [0, 1]. The
smaller the value, the more successful the AUV is in avoiding
side currents.

In conjunction with Fig. 7, we illustrate the penalties for
the different ocean currents. The ocean current is divided into
3 types: Type 1 is positive ocean current and satisfies the
condition as θ ∈

[
0◦, 60◦). The ocean current is positive and

effective for the AUVmovement and suffers the least penalty.
Type 2 is reverse ocean current, which satisfies the condition
as θ ∈ (135◦, 180◦

]
. Most reverse ocean currents cause

the AUV to move slowly. Therefore, the penalty for reverse
ocean currents is greater than for positive ocean currents and
increases as the angle θ increases. Type 3 is the side ocean
current, which satisfies the condition as θ ∈

[
60◦, 135◦

]
. Its

penalty is based on the following two considerations: a). The
penalty value for most side ocean currents is greater than for
reverse ocean currents. b). Because the vertical ocean current
(θ ∈

[
89◦, 91◦

]
) in the reverse ocean current has the highest

resistance to AUV navigation, the highest penalty value is
set for the vertical ocean currents. Overall, the design of the
ocean current penalty function U is reasonable.
Fp3 (X) is a larger target penalty value and is only used

if the AUV does not reach the target point. The AUV path
planning is considered successful only if the AUV searches
for the target point in the set visualization area, provided that
the other constraints are satisfied. Otherwise, the AUV does
not reach the target point and is subject to a fixed penalty
value: Fp3 (X) = 5.

D. B-SPLINE CURVE FOR SMOOTH
Many of the path curves generated using the swarm intelligent
optimization algorithms are zigzag and do not match the
path trajectory of the AUV in the real marine environment.
This work incorporates the B-spline curve [35], which has
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FIGURE 8. Midpoint insertion to improve path following(Black line: the
curve with midpoint insertion; Red line: the curve without midpoint
insertion).

the continuity of second-order derivatives, to capture the
generated path points and fit continuous smooth curves.

The parametric equations of the B-spline curve are as
follows.

Sp (u) =

n∑
i=1

φi · Bi,k (u) (25)

Bi,0 (u) =

{
1, ui < u < ui+1

0, others

Bi,k (u) =
u− ui

ui+k − ui
· Bik−1 (u)

+
ui+n+1 − u

ui+k+1 − ui+1
· Bi+1k−1 (u) (26)

where, φi represents the path points of the AUV. The B-spline
basis function Bi,k (u) is set to order 3, i.e. k = 3. is a node
vector, typically taken in [0, 1].
Of course, during this curve fitting correction process,

the AUV still needs to perform obstacle avoidance behavior
for intersecting complex obstacles. Fortunately, the B-spline
can act as a local correction. Secondly, we introduced the
midpoint insertion method [36]. As shown in Fig 8, combined
with the midpoint insertion method, the B-spline curve can
better follow the original line segment to adjust the AUV’s
obstacle avoidance path.

E. PSEUDO-CODE FOR PATH PLANNING BASED ON THE
IJS ALGORITHM
The IJS algorithm for the AUV Path Planning is summarized
in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS
In this section, we will perform a series of experiments
including single AUV path planning in a multi-obstacle static
ocean environment and a multi-obstacle ocean current envi-
ronment, and multi-AUV convergence path planning. The
grid map size for the ocean environment is 100*100*100.
In the real environment, assuming that 0.1 degree in lat-
itude corresponds to a distance of 11.1 km, 0.1 degree

Algorithm 1 Path Planning Based on the IJS Algorithm

Input: Environmental model, start point, target point, the
extent of visualization area, number of AUVs, and velocity
range.
Output: Optimal fitness and optimal smoothing path.
Initialize: (1) number of jellyfish Np, dimension D,

total number of iterations T . (2) The populations were
randomly initialized to obtain group initialization paths
(which did not necessarily satisfy the AUV condition con-
straints): Xi = {Pistart ,Pi2, . . . ,Pik , . . . ,Piend (PiD)} , i =

1, 2, . . .Np. All jellyfish were used to calculate their
respective fitness values by (15).
For t from 1 to T

All jellyfish are listed from lowest to highest fitness
value.

For i from 1 to Np
If i ≤ 1/3
Update of jellyfish position using (13).

ElseIf i ≤ 2/3
Update of jellyfish position using (6).

Else
Update of jellyfish position using (10).

End If
Calculate the fitness value f (Xi).
Update the best individual fitness value Xbi =

Xi, if f (Xi) ≤ f (Xbi)
Update the global best fitness value Xg =

Xbi, if f (Xbi) ≤ f (Xg)
End For
Return Xg, f

(
Xg

)
The scatter points in the output Xg are used as control

points for the optimal path. Use the B-spline curve model
to fit a correction to these scatter points and output the
optimal smooth path.
End For

in longitude is 11.1 ∗ cos (Lat) km. The IJS algorithm,
JS algorithm [24], QPSO algorithm [19], PSO algorithm [18],
HHO algorithm [23], and MPA algorithm [22] are selected
for comparison experiments. The algorithms to be com-
pared were implemented on MATLAB R2018b simula-
tion software. Computer configuration: Intel(R) Core(TM)
i7-10870H, 16 GB RAM, 2.40 GHz main frequency, 64-bit
operating system. In addition, all algorithms were initialized
uniformly at random. The population size is 45, the dimen-
sions are 40, and T = 500, and each algorithm was run
20 times independently.

A. MULTI-OBSTACLE STATIC OCEAN ENVIRONMENT
As currents are not considered in the static ocean environ-
ment, the weight parameter c2 = 0 is set in the objective
function to remove the penalty for current disturbance. Also
c1 = 1. The shortest journey cost path is the same as the
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FIGURE 9. Optimal path planning results in a multi-obstacle static ocean
environment.

optimal time cost path. The speed vrc of the AUV in the static
ocean environment is set to 3 knots (1 knot is 0.514m/s). The
optimal path planning results are shown in Fig. 9 with the
different colors corresponding to the trajectories planned by
the different algorithms. The AUV starts from the green circle
(157.1083◦E , 19.5980◦N , −5349.05 meters) and sails to
the destination in the red triangle (157.5881◦E , 19.8841◦N ,
−110.29 meters). The shortest distance from the starting
point to the destination is 40789.30 meters, and the shortest
time cost is 26452.21 s.

We tabulate the simulation results of successful solutions
from the random independent experiments in Table 1. TBest ,
TMean, and STD denote the optimal time cost, the average
time cost, and the standard variance of all successful paths.
In addition, this work generates AUV paths randomly in the
initialization phase, its security cannot be guaranteed and
requires continuous iteration through intelligent optimization
algorithms to generate feasible paths. However, each algo-
rithm has different execution capabilities, and we use the
success rate (PSuccess) to reflect the efficiency and adaptability
of the algorithm. PSuccess refers to the ratio of the number
of times each algorithm successfully generates a path that
meets the requirements over a set number of experiments. The
algorithm’s single run time (TSingle) is also taken into account.

Analysis with Fig. 9 and Table 1: the algorithms MPA and
PSO planning have the worst optimal time cost of 29622.87 s
and 29537.65 s. The yellow and green curves in Fig. 9 repre-
sent the optimal paths planned by the algorithms HHO and
QPSO. The two path curves are similar, with TBest being

27369.97 s and 27107.05 s. The JS algorithm ranks fourth
in terms of optimal time cost, with 28236.75 s. The red curve
is the smooth path planned by the IJS algorithm, which has
TBest = 26741.73 s, closest to the minimum time cost from
the starting point to the target point. In terms of average
time cost, the IJS algorithm converges the planning time to
27243.69 s, ranking first among all the compared algorithms.
The stability of the algorithms can be reflected by the STD
evaluation metric. the QPSO algorithm has the best stability
with STD = 127.49. the IJS algorithm is second only to
the QPSO algorithm with a value of 281.83, which has a
greater advantage over other algorithms. The success rate of
the HHO,MPA, and PSO algorithms is below 60%. Although
QPSO has a high convergence accuracy, its success rate
(PSuccess = 65.00%) is poor and it has low adaptability in the
complex and multi-obstacle environment. the JS algorithm
ranks second in terms of success rate, but it also has a 25%
probability of failing to plan a reasonable path. The IJS
algorithm has a success rate of 100% and is suitable for AUV
path planning. For the TSingle evaluationmetric, Except for the
HHO algorithm which has a long single run time of 87.84s,
the rest of the algorithms have a run time of around 52s.
This is due to the increased time complexity of the HHO
algorithm, which requires multiple adaptations in the loop
structure. Overall, the IJS algorithm has high convergence for
solving the AUV path planning problem in the multi-obstacle
static ocean environment.

To reflect the stochastic nature of the experiment, we set
different starting and ending points for the path planning of
the AUV. The simulation results are shown in Fig. 10-12.
the HHO and QPSO algorithms converge better, but they
have low success rates. the MPA and PSO algorithms have
the worst time cost for planning. the MPA algorithm cannot
even plan a reasonable path in one experiment. It is clear
that in each experiment the IJS algorithm dominates in all
evaluation metrics and plans the optimal path that meets the
requirements.

B. MULTI-OBSTACLE OCEAN CURRENT ENVIRONMENT
The continuous and complex changes in the velocity vector
of ocean currents due to temperature variations, topography,
and geostrophic deflection forces severely affect the safe
navigation of AUVs. Therefore, robust modeling of ocean
currents throughout the ocean environment is essential for
AUV path planning. There is a large number of literature that
examines the modeling of ocean currents, with mathematical
function fitting being the most popular method.

In this work, we construct a time-varying ocean current
model using the stream function in [31] as follows.

ξ (x, y, t) = 1−tanh

 y−α (t) cos (κ (x−εt))√
1+(ηα (t) sin (κ (x−εt)))2

 (27)

α (t) = α0 − β cos(ω0t + γ ) (28)
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TABLE 1. Results of simulation experiment I in the multi-obstacle static ocean environment (the starting point: (157.1083◦E , 19.5980◦N ,
−5349.05 meters), the target point: (157.5881◦E , 19.8841◦N , −110.29 meters)).

FIGURE 10. Results of simulation experiment II in the multi-obstacle
static ocean environment (The starting point: (157.1184◦E , 19.8901◦N ,
−5073.33 meters), The target point: (157.5830◦E , 19.6191◦N ,
−551.45 meters) The shortest distance is 38915.19 meters. The shortest
time is 25236.83 s).

FIGURE 11. Results of simulation experiment III in the multi-obstacle
static ocean environment (The starting point: (157.1336◦E , 19.6552◦N ,
−1102.90 meters), The target point: (157.5780◦E , 19.8359◦N ,
−3308.69 meters) The shortest distance is 30757.05 meters. The shortest
time is 19946.21 s).

where the parameters are set: κ = 1, ε = 0.12, η = 0.84,
α0 = 0.12, β = 0.3, γ = π/2. The velocity of horizontal
currents is Vc =

(
−

∂ξ
∂y ,

∂ξ
∂x

)
.

FIGURE 12. Results of simulation experiment IV in the multi-obstacle
static ocean environment (The starting point: (157.1790◦E , 19.8509◦N ,
−827.17 meters), The target point: (157.5578◦E , 19.6251◦N ,
−4411.59 meters) The shortest distance is 32135.91 meters. The shortest
time is 20840.41 s).

Compared to the strength of the horizontal currents, the
vertical currents are less intense and have little impact on the
path planning of the AUV, therefore the vertical currents are
ignored in this work.

The above time-varying ocean currents are added to the
multi-obstacle static ocean environment model to form a
dynamic model of ocean currents. After several experiments,
the algorithm converges best when c1 = 0.7 ,c2 = 0.3 are
used. The optimal path planning results in the multi-obstacle
current environment are shown in Fig. 13, with the starting
point (157.1083◦E , 19.5980◦N , -5349.05 meters) and the
target point (157.5881◦E , 19.8841◦N , -110.29 meters). And
the AUV scalar velocity is twice as fast as the scalar velocity
of the ocean current (|vci| = |vrc| /2). The yellow and blue
curves are the optimal time-cost paths for the PSO and HHO
algorithms. It can be seen that the curvature of the yellow and
blue curves is too large for the path of the AUV in realistic
conditions due to the ocean currents. The other algorithms
produce smooth curves.

The simulation results for all Successful programs are
tabulated in Table 2. The paths planned by the various algo-
rithms are affected by the ocean currents and their time costs
increase compared to the no-current case. Fortunately, the
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TABLE 2. Statistics of simulation results in the multi-obstacle ocean current environment.

FIGURE 13. Optimal path planning results in a multi-obstacle current
environment.

IJS algorithm still shows strong convergence, with a 100%
success rate and an optimal time cost of 27982.83 s. All
the other algorithms have an optimal time cost greater than
28000.00 s. For the evaluation index TMean, the algorithms
HHO and MPA have the worst costs of 42980.60 s and
47163.61 s respectively. The next are JS, QPSO, and PSO
algorithms with time cost in the interval [30000, 40000].
The average time cost of the IJS algorithm is less than
30000 s and the convergence effect is obvious. In addition,
the IJS algorithm remains highly stable with STD = 840.24.
It is noteworthy that in several independent experiments, all
algorithms except the IJS algorithm planned non-conforming
paths. This confirms the advantage of the IJS algorithm in
path planning in the case of ocean currents as well as its
high adaptability. As shown in Fig. 14, we use box plots to
represent the current penalty cost PVcur (PVcur ∈ [0, 1]),
which is calculated by the ocean current disturbance function
Fp2 . Each box plot is labeled with the maximum value, the
average value (the value corresponding to the symbol ‘‘C–’’),

FIGURE 14. Ocean current penalty cost results statistics (The ocean
current’s scalar velocity is 0.5 times the AUV scalar velocity).

the minimum value, and the current penalty cost (the value
represented by the red line) for the optimal time-cost path
planned by each algorithm. MPA’s average ocean current
penalty cost is the highest, at 0.443. HHO can plan the path
with the lowest ocean current penalty cost, but the average
time cost is higher than 40,000 s. And the large standard
variance of the penalty values shows the instability of the
HHO algorithm. The other algorithms also plan paths with
high PVcur . The IJS algorithm has PVcur in the interval [0.105,
0.166] with small fluctuations, indicating that the AUV can
successfully avoid side currents and effectively navigate with
ocean currents with the IJS algorithm.

Simulation experiments were carried out in strong ocean
currents (|vci| = 0.8 · |vrc|, |vci| = 1.2 · |vrc|) to verify the
adaptability of the IJS algorithm in strong ocean currents.
The statistical results are presented in Table 3 and Fig. 15-16.
In the case of |vci| = 0.8 · |vrc|, the MPA algorithm has
an increased time cost and is less resistant to ocean current
disturbances. All other algorithms can plan a lower optimal
time cost path with the help of favorable ocean currents.
However, the deterioration of both TMean and STD indicates
that the average time cost and instability of the algorithm
increase in more complex cases. Fortunately, the IJS algo-
rithm converges significantly, reaching TBest = 26142.71 s
TMean = 29813.04 s and Psuccess = 100%. In the case
of |vci| = 1.2 · |vrc|, the HHO algorithm and the MPA
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FIGURE 15. Strong ocean current penalty cost results statistics (The
ocean current’s scalar velocity is 0.8 times the AUV scalar velocity).

FIGURE 16. Strong ocean current penalty cost results statistics (The
ocean current’s scalar velocity is 1.2 times the AUV scalar velocity).

algorithm have failed to plan the path. The average time
cost of the algorithms JS, PSO, and QPSO are all higher
than 38,000 s, which is at least 10,000 s higher than the IJS
algorithm. The IJS algorithm can still plan paths to navigate
using strong ocean currents. For the current penalty cost, the
IJS algorithm has a significant advantage. the IJS algorithm
has the lowest ocean current penalty cost, plans more paths
to avoid side ocean currents, and is more resistant to ocean
current disturbance.

C. MULTI-AUV CONVERGENCE MODEL
As the difficulty of underwater tasks increases, there is a
new trend towards multi-robot co-movement. We model the
convergence of multiple AUVs. The model requires that each
AUV not only satisfies safety, side ocean current avoidance,
and success, but also that multiple AUVs have the same

FIGURE 17. Multi-AUV optimal path planning results (Path 1: (the starting
point: (157.3558◦E , 119.6191◦N , −3308.69 meters), the target point:
(157.5881◦E , 19.8841◦N , −110.29 meters)); Path 2: (the starting point:
(157.1790◦E , 19.7455◦N , −3308.69 meters), the target point:
(157.5881◦E , 19.8841◦N , −110.29 meters)); Path 3: (the starting point:
(157.2043◦E , 19.6552◦N , −3308.69 meters), the target point:
(157.5881◦E , 19.8841◦N , −110.29 meters))).

time cost (simultaneity) and avoid collisions with each other.
In this problem, AUVs have a range of speeds. Simultaneity
requires that multiple AUVs start at the same time from their
respective starting points, adjust their speed, and reach the
next planned path point concurrently. The final result is that
multiple AUVs arrive at the target point together to carry out
their missions. To avoid collisions between multiple AUVs
during navigation, we require multiple AUVs to be located
at different path points at the same time, ensuring the safety
of the AUVs. The minimum speed of the AUVs is set to
0.5 knots and the maximum speed to 4 knots. The number
of AUVs is 3. |vci| = 0.2 · |vrc|.

In the multi-AUV convergence model, the ocean current
disturbance function Fp2 of the IJS algorithm plays a key
role, which can help multiple AUVs travel in combination
with ocean currents to meet the requirements of simultaneity
and finally reach the target point safely. As shown in Fig 17,
the IJS algorithm plans three smooth paths from different
starting points to the same target point in a multi-obstacle
ocean current environment. path 3 has the longest journey,
but with the lowest current penalty cost. This is because the
AUV 3 needs to travel in combination with the ocean current
under the simultaneity requirement. three paths satisfy the
simultaneity with an optimal time cost of 29071.70 s. Twenty
independent experiments can achieve a success rate of 65%.
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TABLE 3. Statistics of simulation results under strong ocean current environment.

The total cost of the ocean current penalty is 0.41, indicating
that the three AUVs mostly navigate in the positive current
and reverse current areas. Thus the IJS algorithm is adapted
to the multi-AUV movement field.

V. CONCLUSION
To solve the path planning problem for AUV, we build a
multi-obstacle ocean current environment and propose a plan-
ning method adapted to this environment. The environment
model is constructed using the grid method and an AUV
visualization search strategy is given. The planning method
consists mainly of the IJS algorithm and a well-posed objec-
tive function. the IJS algorithm is based on the original JS
algorithm, incorporating a memory function, a hybrid strat-
egy, and a hierarchical optimization system. These improved
strategies increase the convergence accuracy and robustness
of the algorithm. The objective function includes time cost,
safety, success, and an ocean current disturbance function,
which effectively carries out obstacle avoidance and side
current avoidance. the IJS algorithm can plan a reasonable
path for AUVnavigation under this objective function. the IJS
algorithm is simulated in a constructed complex environment
model together with algorithms JS, PSO, QPSO, HHO, and
MPA. The results show that the IJS algorithm has a significant
convergence effect and a high success rate of planning a
reasonable path, which is suitable for the path planning field.
Finally, the path planning model proposed in this paper is
applied in the field of multi-AUV motion.

In the future study, This work needs to be further tested
in a real environment with the real AUV. We will consider
the actual energy loss, size, and specific attitude changes
of the AUV to improve the economy and concealment of
AUVs in the path planning process, which is one of our key
research directions. In addition, the multi-AUV coordination
movement is a hot topic, which is conducive to improving
work efficiency. Therefore, it is also crucial to strengthen the
practicability of the IJS algorithm in the field of multi-AUV
coordinated motion.
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