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ABSTRACT Machine comprehension of visual information from images and videos by neural networks
suffers from two limitations: (1) the computational and inference gap in vision and language to accurately
determine which object a given agent acts on and then to represent it by language, and (2) the shortcoming
in stability and generalization of the classifier trained by a single, monolithic neural network. To address
these limitations, we propose MoE-VRD, a novel approach to visual relationship detection via a mixture
of experts. MoE-VRD recognizes language triplets in the form of a < subject, predicate, object > tuple
to extract the relationship between subject, predicate, and object from visual processing. Since detecting
a relationship between a subject (acting) and the object(s) (being acted upon) requires that the action be
recognized, we base our network on recent work in visual relationship detection. To address the limitations
associated with single monolithic networks, our mixture of experts is based on multiple small models, whose
outputs are aggregated. That is, each expert in MoE-VRD is a visual relationship learner capable of detecting
and tagging objects. MoE-VRD employs an ensemble of networks while preserving the complexity and
computational cost of the original underlying visual relationship model by applying a sparsely-gated mixture
of experts, which allows for conditional computation and a significant gain in neural network capacity.
We show that the conditional computation capabilities and massive ability to scale the mixture-of-experts
leads to an approach to the visual relationship detection problem which outperforms the state-of-the-art.

INDEX TERMS Computer vision, video analysis, visual relationship detection, mixture-of-experts, deep
learning.

I. INTRODUCTION
In the last decade, there has been a surge in research
on the machine comprehension of visual information from
images and video sequences. In particular, the application of
large neural networks has allowed problems to be tackled
such as video object segmentation [1], [2], [3], [4], object
recognition and classification [5], [6], [7], [8], [9], and action
recognition [10], [11], [12], [13], [14].

This unprecedented progress in the comprehension of
visual information, however, suffers from the computational
and inference gap between vision and language [15] to
accurately determine which object a given agent acts on and
how it might represent it by language.
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We can begin by drawing inspiration from the two-
streams hypothesis of the brain and how it processes visual
information, such that the brain distinguishes between a
ventral stream (the ‘‘what’’ pathway) and a dorsal stream
(the ‘‘where’’ or ‘‘how’’ pathway) [16]. In parallel with this
distinction, natural languages contain two classes of verbs
describing actions: manner verbs, describing how an action is
performed by expressing cause, such as waving arms (imply-
ing cheering) or nodding head (for assent); as opposed to
result verbs, that describe the result of an action by express-
ing their effect, such as move, heat, clean, enter etc. [17].

Computationally, then, several approaches to visual infor-
mation processing focus on the manner in which an action
is performed (how) [18], [19], [20], [21], versus the result of
the action, whether an object moves (where) or changes in
appearance [22], [23].

26048 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0140-0025
https://orcid.org/0000-0002-0718-4442


A. Shaabana et al.: Video Relationship Detection Using Mixture of Experts

When an action results in nearby changes, the visual
information processing problem consists of detecting the
three inter-related entities of subject, predicate (action), and
the object(s) involved; that is, to recognize language triplets in
the form of a < subject, predicate, object> tuple. To detect
the relationship between a subject (acting) and the object(s)
(acted upon), the action must be recognized. Some recent
approaches to visual relationship detection have focused
on static images [24], however static relationship detection
clearly has limitations in understanding temporal constraints
inherent in video sequences, which offer significant richness
regarding relationships [15], [24], [25]. Therefore, there has
been a significant research emphasis on detecting visual
relationships in video sequences [24], [25], [26], [27],
[15], [28], [29].

The main challenges associated with this problem stem
from the very large datasets, high ambiguity, and huge
amount of background clutter. Moreover, the objects involved
may only barely be recognizable due to pose, motion blur,
occlusion and lighting. On the other hand, large variance
in predicate representations [25] also makes it difficult to
learn latent patterns, thus it is essential to consider visual
and spatial features, and language ambiguity with synonyms.
There is also a combinatorial effect, in that the number of
unique tuple classes can be exceptionally large (the product
of the vocabulary of subjects, objects, and predicates).

In this article, we propose an approach to video visual
relationship detection (VidVRD), implemented by a multi-
expert framework, where each expert is trained using the
same model, and where the outputs of all experts are gated
based on a separate neural network. Our performance results
show that our novel architecture substantially outperforms
known state-of-the-art methods. The contributions of this
work are thus two-fold:

1) We construct a novel multi-expert detection frame-
work.

2) We capture recent developments in video visual
relationship detection as experts in our proposed multi-
expert architecture. Our proposed approach is not tuned
to a particular choice of expert, and other choices of
expert should be equally valid and applicable.

The rest of this paper is organized as follows: Section II
further develops the VidVRD problem and overviews past
work, Section III describes the encapsulation of an existing
VidVRD approach into an expert [15], Section IV describes
the experiments and results which are discussed in Section V.

II. RELATED WORK
Cascading failures caused by low-level misclassifications
make a monolithic solution, such as a single very large
neural network, not an ideal strategy to resolve large visual
relationship detection problems. To address such limitations,
earlier approaches proposed solutions such as dividing a
given problem based on pre-processing and post-processing
heuristics [15], [24], [25], [30], to attempt to correctly classify
predicates.

The capacity of a neural network to learn is limited by
its degrees of freedom (number of parameters) and further
limited by the available data. When datasets are, in fact,
large enough, then increasing the number of parameters can
lead to significant improvements in performance. However
for a typical deep learning model, where the entire network
is activated on each training sample, the computational cost
is roughly quadratic in the number of parameters, as both
the model size and the number of training samples increase
together [31], [32], [33]. This phenomenon is particularly and
uniquely exacerbated in visual information processing since
the input layer is very large. The statistical relationships of
pixels and objects detected in images and videos are subtle,
and the networks are often expected to performmultiple tasks
like object segmentation and action recognition, all of which
lead to significant increases in network size.

Limitations in computing power will eventually fall short
of meeting the training demand, and the networks trained in
this fashion tend to be brittle and sensitive to slight changes
in the data distribution [34] and task specification [35]. That
is, current systems are better characterized as narrow experts
rather than as resilient generalists [36].

With the above context in mind, we make the following
observation about the VidVRD task: A training approach
based on a single, monolithic network is not sufficient to have
stable and generalizable classifiers, at least in certain problem
contexts [34], [36]. Therefore, applying divide-and-conquer
by developing multiple small models and aggregating their
outputs could be a promising solution [37], [38] to create
more compact and/or resilient networks. As a consequence,
the mixture-of-experts architecture suggests a strategy to
achieve the larger network capacity needed to solve large
numbers of sub-problems, which is typical of the VidVRD
domain.

A. VIDEO RELATIONSHIP DETECTION
Video visual relationship detection (VidVRD) is made up
of multiple problems that must be resolved simultaneously:
object recognition, subject recognition, and action recogni-
tion. Hence, the detection often takes the form of classifying
a triplet in the form of a< subject, predicate, object> tuple
for each detected subject–object pair in a video.

When dealing with static images, this problem is compara-
tively straightforward as it involves detecting such a triplet
only once, using language and spatial features [39], [40],
[41], [42], [43]. In contrast, in video the problem becomes
significantly more complicated as spatio-temporal features
come into play, and relationships can change over time,
cascading the difficulty of the problem [15], [25], [44].

In 2017, Shang et al. [25] proposed the first approach
for VidVRD, decomposing a given video into segments
and stitching relationship predictions in preceding and
succeeding segments through a greedy association algorithm.
They also introduced the first fully annotated video visual
relationship dataset [25]. Later, Qian et al. [26] proposed
tackling the problem using a fully connected spatio-temporal
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FIGURE 1. A Mixture of Experts (MoE) layer as described by Shazeer et al. [33].

graph. Tsai et al. [24] also constructed a spatio-temporal
graph, but utilized Conditional Random Fields to exploit
the statistical dependency between objects. Liu et al. [27]
proposed a sliding-window scheme to simultaneously predict
short-term and long-term relationships using different kernel
sizes on object tracklets to generate sub-tracklet proposals
with different durations.

Xiao et al. [29] proposed to spatio-temporally localize the
relations (predicates) in a video sequence. Their proposed
approach, the Visual Relation Grounding in Videos (vRGV)
first produces region proposals from each frame of a video
and then learns to ground a pre-defined relation from
two trajectories. A trajectory is created by connecting the
consecutive bounding boxes linked to a visual entity (subject
or object) across a video segment.

Wu et al. [45] proposed using two graph-based networks
to predict the spatial–temporal relations (actions) between
subjects and objects in videos. They applied a gated graph
network together with a long short-term graph network to,
respectively, extract spatial relations within video frames and
multi-scale temporal relations between consecutive frames.

Gao et al. [46] proposed a tracklet-based visual transformer
composed of a temporal-aware decoder, which performs fea-
ture interactions between tracklets and predicate embeddings
for relationship detection. Zheng et al. [47] also proposed
the VRDFormer, in which a first module encodes a video
into a sequential frame-level feature map, and a second one
processes the sequential feature map in order to generate the
relation instances.

Li et al. [48] proposed a method to address the long-
tailed bias in VidVRD datasets, which results in poor gener-
alization. Their approach, the Interventional Video Relation
Detection (IVRD) applies causality-inspired intervention on
the model input to decrease the effect of the spurious
correlation in the training data, and therefore to enhance the
robustness of the output prediction.

Cao et al. [49] proposed using comprehensive semantic
representations that are useful for knowledge transfer across
relationships to solve the VidVRD problem. Their approach,
the Concept-EnhancedRelationNetwork (CKERN) produces
conceptually richer semantic representations of the detected
object pairs, and then predicts the relationship based on the
integration of multi-modal features.

Gao et al. [50] proposed a classification-then-grounding
approach based on the temporal bipartite graphs of the
videos, where the nodes are entities and predicates, and the
edges denote different semantic roles between the nodes.
Their proposed approach, the Bipartite Graph model (BIG)
first classifies all of the nodes and edges of the graph
(classification), and then localizes the temporal location of
each relation instance (grounding).

Chen et al. [51] introduced a compositional encoding
for VidVRD. Their proposed approach, the Social Fabric
Encoding (SFE) encodes a pair of object ‘‘tubelets’’ as
a composition of interaction primitives. Learning these
primitives, the resulting representation is used to localize and
classify relationships from co-occurring objects.

More recently, Shang et al. [15] modified their earlier
approach [25], whereby they proposed an iterative relation
inference that exploits the inter-dependency of relation
components (subject/objects and predicates) for better visual
relation recognition. To achieve this, they created three
preferential predictors with learnable tensors alongside the
normal visual predictors to model the inter-dependency rela-
tionship between subjects/objects and predicate classes [15].
Hence, each relational component has three classifiers, and
each of them consists of a visual predictor and a preferential
predictor. The visual predictor is a deep neural network
for recognizing the visual patterns of subject/object and
predicate, whereas the preferential predictor refines the
prediction of one variable (subject, object, or predicate)
conditioned on the values of the other two [15]. Following a
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similar architecture to their initial work [15], the authors take
a sliding time window and generate object tracklet proposals
as the detected entities, and then predict associated relation
triplets.

Due to its lightweight network architecture, modularity,
and state-of-the-art performance, we have chosen the work by
Shang et al. [15] as the basis for the expert in the architecture
proposed in this paper.

B. MIXTURE OF EXPERTS
Proposed more than three decades ago by Jacobs et al. [52],
the mixture of experts (MoE) architecture has been applied to
problems including the modeling of task relationships [53],
increasing network breadth and depth [54], multi-modal
generative models [55], and volunteer computing [56].

In 2017, Shazeer et al. proposed a new general purpose
neural network component: the Sparsely-Gated Mixture-of-
Experts (MoE) Layer [33], consisting of a number of experts,
each a simple feed-forward neural network, together with
a trainable gating network which selects a sparse subset
of the experts to be trained on each given input [33]. The
gating network essentially determines which of the experts
are best suited to a given type of input. All parts of the
network, both gating and experts, are trained jointly by back-
propagation [33]. In their paper, Shazeer et al. applied their
technique, illustrated in Figure 1, to language modeling and
machine translation.

Riquelme et al. also proposed a Vision Mixture of Expert
(V-MoE) [57] for image classification. V-MoE replaces a
subset of feedforward layers in a vision transformer with
sparse MoE layers, where each image patch is ‘‘routed’’
to a subset of ‘‘experts’’. This halves the computation
consumption at inference while performing equally well as
the state-of-the-art.

It has been observed [33], [54], [58] that a gating network is
inclined to converge to a state where it produces large weights
for the same few experts regardless of input, a phenomenon
very much analogous to the problems encountered with self-
organized maps [59] (essentially a very flat single-layer
network) from pattern recognition. This imbalance becomes
self-reinforcing / self-perpetuating, as the favored experts
are trained more frequently / more rapidly and thus are
even more likely to be selected by the gating network [33].
To address this problem, Shazeer et al. [33] defined the
importance of an expert relative to a batch of training
samples to be the batch-wise sum of the gate values for that
expert.

In the following section we will present our
proposed architecture, which applies a sparsely gated
mixture of experts [33] to video visual relationship
detection [15].

III. ARCHITECTURE
Figure 3 illustrates our proposed architecture and its main
components.

A. SPARSELY-GATED MIXTURE OF EXPERTS
The MoE consists of a set of N expert networks E1, . . . ,EN
and one gating network, G, whose output is a sparse
binary N -dimensional vector. The experts are themselves
identical feed-forward neural networks, each with their own
parameters. Since our interest in this paper is the MoE
concept, for the individual experts we have adopt the baseline
state-of-the-art approach of [15] shown in Figure 1.

Given an input x, the output of the ith expert’s function is
denoted as Ei(x). These N outputs are combined in the MoE
layer as

y =

N∑
i=1

G(x)i · Ei(x), (1)

where G(x)i represents the output of the gating network. The
sparsity in computation, one of the key strengths of the MoE
approach, is realized by the explicit sparsity of the gating
output. That is,

G(x)i = 0 for most i, (2)

such that whenever G(x)i = 0 the corresponding expert Ei is
not invoked (the particular input x is not fed-forward into the
network representing expert Ei).
There is significant flexibility in the choice of gating

function. In this paper we adopt the absolute simplest case—
a single–layer gating function, with more capable multi-layer
generalizations to be considered as future work. The gating
output G(x) is computed as

G(x) = Softmax
(
topK

(
W i
g · x + Ng(W i

n · x)
))

, (3)

where topK selects theK largest values (the best experts), and
W i
g and W i

n are trainable gating and noise weight matrices,
respectively, which are parametrized for each expert i.

The number of samples sent to the gating layer is discrete,
and therefore not applicable to back-propagation, however
the inclusion of the noise term Ng(x) allows for a smooth
estimate of the number of samples used for each expert
in each batch, thus allowing for the back-propagation of
gradients. The noise function is defined as

Ng(x) = StandardNormal() · Softplus(x), (4)

where Softplus(x) =
1
β
log(1 + βx) is a smooth approxi-

mation of the ReLU function to constrain the output to be
positive.

An importance term is considered in the overall loss
to address imbalances resulting from the self-reinforcing
effect [60], which occurs when certain favoured experts are
trained more rapidly and thus are selected even more by the
gating network. The importance loss is

Limportance(x) = α
(
CV(g) + CV(l)

))
, (5)

where α is a hand-tuned scaling factor, g is the batch-wise
sum of gate values

g =

∑
x∈B

G(x) (6)
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over batch B, and

l =

∑
x∈B,G(x)>0

G(x) (7)

represents the load, summed over the positive gate values.
We applied CV(·), the coefficient of variation,

CV(x) =
var(x)(

mean(x)
)2

+ ϵ
(8)

as additional loss terms in (5) which encourage experts to
have a more balanced (equal) importance [33].

B. VISUAL RELATIONSHIP DETECTION
To address the problem of visual relationship detection in
video sequences, we take inspiration from VidVRD-II [15],
which learns relationship detection using iterative inference
shown in Figure 2.

VidVRD-II assumes a set of three entities E = [e1, e2, e3]
representing subject e1, predicate e2 and object e3, and their
corresponding features fe1 , fe2 , fe3 , which builds the language
triplet < subject, predicate, object >, and models the
problem of video visual relationship detection as the joint
probability

P(< e1, e2, e3 > |fe1 , fe2 , fe3 ). (9)

This joint probability can be factorized as three conditional
probabilities

P(e1|fe1 , e2, e3)P(e2|fe2 , e1, e3)P(e3|fe3 , e1, e2), (10)

which aids in inference when there is ambiguous visual
information, since the classes of any two components imply
a preference over the class of the third.
Each conditional probability of (10) is modelled by a

classifier consisting of a visual predictor and a preferential
predictor also shown in Figure 2. The visual predictor simply
learns visual patterns of the subject e1, predicate e2, and
object e3, using a deep neural network. The preferential
predictor applies learnable dependency tensors to refine the
prediction of one variable conditioned on the values of the
other two:

epr =


P(e1|fe1 , e2, e3) = 8(Ve1 · fe1 ) + pe2 ·We1 · pe3
P(e2|fe2 , e1, e3) = 8(Ve2 · fe2 ) + pe1 ·We2 · pe3
P(e3|fe3 , e1, e2) = 8(Ve3 · fe3 ) + pe1 ·We3 · pe2

(11)

Here epr is the conditional probability vector of three entities,
and V = [Ve1 ,Ve2 ,Ve3 ] are the learnable weights of the
visual predictors. In our case study, the weights of the subject
and object classifiers are shared, thus Ve1 = Ve3 . The paper
of [15] applied the nonlinearity 8 to the entire expression of
(11), as in

P(ei|fei , ej, ek ) = 8(Vei · fei + pej ·Wei · pek ) (12)

However actual implementations applied 8 to the first term
only, as in (11), a convention which we have preserved
for consistency. The weights [We1 ,We2 ,We3 ] model the

dependency of one class over the other two, separately
parametrized for each classifier. 8 represents the nonlinear
activation, here implemented by a Softmax function for the
subject and object classes, and a Sigmoid function for the
predicate class.
To design our architecture, we apply the MoE concept

of Section III-A by incorporating VidVRD-II into the MoE
framework, giving rise to the combined MoE-VRD shown
in Figure 3. The object tracklet proposals are extracted and
fed into the relation prediction experts. Based on the gating
layer, the top K experts are chosen. Upon the completion of
the forward pass, back-propagation is applied so the gradients
back-propagate through the gating network and the selected
experts.

1) OBJECT TRACKLET PROPOSALS
Weuse Seq-NMS [7] to generate object tracklet proposals as a
pre-processing step to use as inputs to the relational classifier
experts. For frame-level object detection, a Faster-RCNN
with an Inception-ResNet foundation [61] is pretrained on the
Open Images dataset [43].
The model serves as a suitably generic object

detector [15], [61]. The bounding boxes and corresponding
region features are extracted, after which Seq-NMS generates
a compact set of object tracklets, which form the inputs to the
expert neural networks.

2) FEATURE EXTRACTION
Applying the object tracklet proposals, we generate two types
of features: Visual Features and Relative Positional Features,
shown in Figure 3.
To generate the visual features f of (9) – (10), the bounding

boxes are applied to extract the pretrained deep visual features
of the subject and object entities, and the predicate’s visual
feature is computed through a concatenation of the subject
and object visual feature vectors.
In addition to the visual features, we extract a relative posi-

tional feature to represent the spatio-temporal relationship
between the entities. For each pair of object tracklets, the
algorithm computes the relative distance between the subject
and object by encoding the spatial and temporal relative
positional feature f pr :

f pr =

[
xpe1 − xpe3
xpe3

,
ype1 − ype3
ype3

, log
wpe1
wpe3

,

log
hpe1
hpe3

, log
wpe1h

p
e1

wpe3h
p
e3

,
tpe1 − tpe3

30

]
, (13)

where p ∈ [b, e] represents the beginning or ending
bounding box, characterized by coordinates (x, y), width w,
height h, and time t for subject e1 and object e3. A feed-
forward network is used to fuse the subject’s and object’s
visual features fe1 , fe3 with the relative positional features
of the beginning and ending bounding boxes f br , f

e
r , where

the relative positional feature f pr provides the expert with
additional information to recognize visual relationships.
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FIGURE 2. Visual relationship detection framework proposed by [15], which is used as the basis of our expert.

In summary, each encapsulated expert consists of an object
predictor, a subject predictor, and a predicate predictor —
each of which is a basic feed-forward network, allowing for a
set of modestly-sized, nimble experts to speed up training and
inference, when compared to an equivalent single monolithic
network.

IV. EXPERIMENTS AND RESULTS
In order to properly assess the improvements offered by our
proposed framework and to make a fair comparison with the
state-of-the-art, we conduct our experiments using a similar
experimental setup and the same datasets as used by the
iterative inference approach proposed by Shang et al. [15].

A. DATASETS
Our experiments are conducted using two VidVRD bench-
mark datasets: ImageNet-VidVRD [25] and VidOR [62],
[63]. The ImageNet-VidVRD is the first dataset for video
visual relation detection, created by Shang et al. [25]. It con-
sists of 1,000 videos collected from ILSVRC2016-VID [64].
These videos are manually annotated with video relation
instances [15], [25]. VidOR is a recently-released large-scale
benchmark also compiled by Shang et al. [62], which contains
10,000 social media videos from YFCC-100M [63].

B. EVALUATION METRICS
In object detection there are two related problems to be
solved: localization and classification. Localization deter-
mines the location of an object (e.g., its bounding box),
whereas classification infers the object’s identity.

For object detection tasks, it is standard to calculate
precision and recall based on a given threshold on the IoU
(Intersection over Union), which measures the fractional
overlap between predicted and true bounding boxes. If the
IoU result for a predicted bounding box exceeds the
threshold, then the prediction is classified as a true positive,
otherwise it is a false positive.

We can thus define metrics, such as Recall@50, implying
an evaluation of the recall metric based on an IoU threshold of
50% (i.e., allowing bounding boxes to be only 50% overlap-
ping). Other metrics, such as Recall@100, Precision@10 etc.
are equivalently defined.

We designed and implemented our evaluation metrics
consistent with those in previous works [15], [25], [62].
To this end, we calculate how many ground truth relation
instances are detected by the mixture of experts in each
testing video.Metrics are divided into two categories: relation
tagging and relation detection.

Relation tagging focuses on the precision of the relation
triplet without considering the precision of its spatio-
temporal location in the video. In other words, relation
tagging simply checks whether the relationship was detected
properly, but not whether it was detected with any accuracy
in time or space. The tagging performance is evaluated by
Precision@1 (P@1), Precision@5 (P@5), and Precision@10
(P@10).

In contrast, relation detection measures the precision of
both the relation triplet and the corresponding subject/object
trajectories for every detected relation instance [25]. Relation
detection of instances are considered to be correct only
if they match the ground truth relation instance, and the
voluminal Intersection-over-Union (vIoU) of the trajectories
of subject and object are both larger than a pre-defined
threshold. The vIoU threshold is set to 50% in order to
address the objectives of our experiments. The detection
performance is measured using the Mean Average Precision
(mAP), Recall@50 (R@50), and Recall@100 (R@100).

All experiments are run ten times with different random
seeds for each expert, and the mean plus/minus standard-
deviation scores are reported.

C. SINGLE EXPERT PERFORMANCE
To ensure the proper functioning of the proposed mixture
of experts, clearly we must first validate the performance
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FIGURE 3. An illustration of the MoE-VRD architecture proposed in this article. Raw RGB images are taken as input; for each given image frame
the subject and object tracklets are extracted and given to the feature extraction network together with bounding box information in order to
generate visual and relative positional features representing all three entities: subject, predicate and object. The visual and positional features
are applied as the input to our experts and gating networks. Every expert outputs a score corresponding to each entity, which represents both
visual and preferential predictions. The gating network outputs a sparsely gated vector, which evaluates each expert’s learning. Selecting the
top K experts, the sum-product of the sparsely gated expert scores is calculated and represented as the output of our MoE-VRD architecture.

TABLE 1. Comparisons of a single expert with the method of by Shang et al. [15] on the ImageNet-VidVRD Dataset [25] (top) and on the VidOR
Dataset [62] (bottom). In both cases, the expert performs essentially equivalently to that of [15].

of a single expert. The performance of the MoE framework
consisting of only a single expert (N = 1, and thus
necessarily K = 1) during training and testing should be
essentially unchanged from the published performance of the
underlying expert [15], [25].

In the multi-expert architecture, at every iteration the
gating layer outputs a sparse vector selecting K experts.
If there is only a single expert, then the gating layer is
essentially irrelevant, simply selecting the same one expert
every time, and the resulting performance should be the same
as if we had simply run themodel built by Shang et al. without
any adjustments [15].

We have shown the results of the state-of-the-art
approaches in Table 1, illustrating a comparison between the
relation detection and relation tagging results of Shang et al.’s
VidVRD-II [15] and our single-expert (N = 1) MoE-VRD
architecture over the ImageNet-VRD and VidOR datasets.

Both approaches perform quite similarly, validating that the
MoE-VRF framework is not interfering with the operation of
the underlying expert, allowing us to generalize to multiple
experts, next.

D. MULTI-EXPERT PERFORMANCE
We now wish to evaluate the performance of our proposed
MoE-VRD architecture when more than one expert (N > 1)
is at play.We evaluate our approach on theVidORdataset [62]
and ImageNet-VRD dataset [25].

We evaluate our work against recent representative
approaches:

• VidVRD-II [15], which builds upon the same authors’
work in [25]. It uses an iterative inference approach to
video relationship detection.

• GSTEG [24], which constructs a fully-connected
spatio-temporal graph for relation inference.
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TABLE 2. Performance of our proposed MoE-VRD with K = 2 and a total of N = 10 experts, in comparison with state-of-the-art approaches on the
ImageNet-VidVRD dataset [25]. For every criterion the proposed MoE-VRD outperforms all other approaches. The substantial increase in performance
stems unambiguously from the mixture-of-experts approach, since our expert on its own is no better than the method in VidVRD-II, as was shown in
Table 1. ‘‘−’’ indicates that no corresponding results were reported.

TABLE 3. A comparison with the state-of-the-art, as in Table 2, but here on the VidOR dataset [62].

• VRD-GCN [26], which builds a model that can take
advantage of spatial-temporal contextual cues to make
better predictions on objects as well as their dynamic
relationships.

• VRD-STGC [27], which proposes a novel sliding-
window scheme to simultaneously predict short-term
and long-term relationships [27], and extracts spatio-
temporal features.

• 3DRN [65], which develops a 3-D CNN to learn the
visual features for relation recognition in an end-to-end
manner.

• IVRD [48], which proposes a causality-inspired inter-
vention on the model input to improve prediction
robustness.

• CKERN [49], which generates comprehensive semantic
representations by incorporating retrieved concepts with
local semantics.

• BIG [50], which proposes a classification-then-
grounding approach based on temporal bipartite graphs.

• Ens-5 [46], which proposes a tracklet-based visual
Transformer composed of a temporal-aware decoder.

• SFE [51], which proposes encoding the representation
of a pair of objects as a composition of interaction
primitives.

For the ImageNet-VRD dataset [25] we compare to all ten
of these methods; for the VidOR dataset [62] we compare to
eight of the preceding methods, due to the choice of results
reported in the respective papers.

Table 2 shows the results, comparing our proposed MoE
architecture with all ten other methods on the ImageNet-VRD
dataset [25]. The proposed MoE-VRD performs significantly
better, in every metric, than any method tested, including the
most recent state of the art. The large margin of improvement
stems from having a gating function that allows experts to be
trained quite separately on different sorts of inputs, leading
to a degree of robustness due to heterogeneity, which is very
difficult for single large monolithic networks.

Similar to Table 2, Table 3 now shows the comparative
results on the VidOR dataset [62]. Our proposed MoE-
VRD still exhibits superior performance in every metric
when compared to most of the state of the art approaches,
although by a lesser margin than in Table 2, likely due
to the increased diversity of the VidOR dataset [62], and
the related naivety or limitation of the Moe-VRD in using
a set of identical experts. The creation of heterogeneous
or differently-specialized experts is a subject for future
research.

BIG [50], Ens-5 [46], and SFE [51] do outperform the
proposed MoE-VRD for one or more metrics in Table 3,
although for the Relation Detection assessment the MoE-
VRD is highly competitive, outperforming BIG and Ens-5.
In any event, a universal improvement on every possible
dataset and/or metric is not to be expected, and the impressive
results of SFE in Table 3 are, for example, significantly less
impressive in its rather lackluster performance, relative to
MoE-VRD, in Table 2.
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FIGURE 4. mAP of the MoE-VRD approach having N = 10 experts, as a function of K during training. Note
that performance drops after K = 2; due to the averaging nature of the architecture before the final
output, such that well-performing experts may become drowned out by more poorly performing peers if
K is set too large.

E. ABLATION STUDY
Really the only aspect of the proposed architecture which can
be removed, via ablation, is the collection of experts. That is,
our ablation study assesses performance as a function of the
number of ‘‘top experts’’ K chosen by the gating function for
each input. The total number of experts was fixed to N = 10,
since N > K needs to be large enough to test a meaningful
range of K , at the same time increasing N far past 10 leads
to challenges in network memory requirements and training
reliability. The results of the multi-expert experiments are
presented in Figure 4, plotting mAP K , ablating K from
6 down to 1.

The best MoE results are achieved when we select the two
top experts (K = 2) for each input, such that the performance
drops with increased K for both datasets. Note that a low
optimum value of K is an asset, not a liability, in that a small
K implies a modest computational complexity, since only K
experts are actually engaged for any given input.

V. DISCUSSION AND CONCLUSION
The problem of video-based visual relationship detection
(Vid-VRD) is relatively new compared to static image-
based visual relationship detection. The spatio-temporal
dimensions in the video domain cascade the difficulty of the
problem, given the far greater data volumes and the ability
for relationships to change over time. There have been a few
approaches to address this problem, however they uniformly
rely on monolithic neural networks [24], [26], [44].

In this work, we developed a new framework, the MoE-
VRD, based on a mixture of experts approach. MoE-VRD
is developed by encapsulating a Vid-VRD framework [15]
into an expert within a sparsely gated mixture of experts
architecture.

Our proposed approach to video visual relationship
detection also addresses limitations in computing power
and distributed computation, which arises from the limited
capacity of neural networks to absorb information due to
the limitations in network size (number of parameters)
in comparatively blunt architectures based on a single,
monolithic network.

We have observed that the performance of the network
drops when we select more than two experts (K > 2).
We believe that this stems from the averaging operation,
which acts prior to the final output, resulting in well-
performing experts being increasingly drowned out by those
experts having inferior performance. Studying this effect
more carefully, and in other settings, is one subject for future
work.

We achieved highly promising results from MoE-VRD
based on experiments on two different datasets, ImageNet-
VRD [25] and VidOR [62]. Our MoE-VRD outperforms
nearly all state-of-the-art approaches in most metrics, and
outperforms every tested approach on the ImageNet-VRD
dataset.

The proposed approach in this paper is perhaps still
naive, as all of the experts are tackling the same problem.
In principle one could imagine dividing the problem into
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smaller subproblems (with certain experts only aimed at
subject/object recognition, for example), to address multi-
modal datasets or to explore hierarchical MoE architecture,
in which a primary gating network chooses a combination of
experts — each of which itself is a secondary or tertiary MoE
with its own respective set of experts and gating network [33].

Finally, almost certainly the gating network itself would
benefit from further scrutiny. The gating network of this
paper is the simplest possible choice, a single-layer feed-
forward network, taking as input the same spatio-temporal
object-tracklet features as are being provided to the experts.
In a sense, it would seem that too much is being asked
of the gating function, to go all the way from low-level
input to expert-assessment output, such that the gating
function tacitly must emulate or reproduce certain elements
of expert behaviour. It would seem preferable to have the
gating function operate at a higher / more abstracted level,
and having certain aspects of expert-assessment made the
responsibility of the expert networks themselves.
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