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ABSTRACT Artificial intelligence (AI) technologies have seen strong development. Many applications
now use AI to diagnose breast cancer. However, most new research has only been conducted in centralized
learning (CL) environments, which entails the risk of privacy breaches. Moreover, the accurate identification
and localization of lesions and tumor prediction using AI technologies is expected to increase patients’
likelihood of survival. To address these difficulties, we developed a federated learning (FL) facility that
extracts features from participating environments rather than a CL facility. This study’s novel contributions
include (i) the application of transfer learning to extract data features from the region of interest (ROI) in
an image, which aims to enable careful pre-processing and data enhancement for data training purposes;
(ii) the use of synthetic minority oversampling technique (SMOTE) to process data, which aims to more
uniformly classify data and improve diagnostic prediction performance for diseases; (iii) the application
of FeAvg-CNN + MobileNet in an FL framework to ensure customer privacy and personal security; and
(iv) the presentation of experimental results from different deep learning, transfer learning and FL models
with balanced and imbalanced mammography datasets, which demonstrate that our solution leads to much
higher classification performance than other approaches and is viable for use in AI healthcare applications.

INDEX TERMS Artificial intelligence, synthetic minority oversampling, federated learning, transfer
learning, breast cancer.

I. INTRODUCTION
According to statistics published by the International Agency
for Research on Cancer in December 2020, breast cancer
has overtaken lung cancer as the most diagnosed cancer
worldwide [1]. Over the past two decades, the total number
of people diagnosed with cancer has nearly doubled, from
an estimated 10 million in 2000 to 19.3 million in 2020.
Today, one in five people worldwide will develop cancer
in their lifetime. It is estimated that the number of people
diagnosed with cancer will further increase in the future:
nearly 50% by 2040 compared to 2020. The number of people
who die from cancer has also increased, from 6.2 million
in 2000 to 10 million in 2020. Late diagnosis and a lack of
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access to treatment have become increasingly prevalent issues
that require more attention and follow-up. Breast cancer is a
malignant tumor of the breast. A tumor can be benign (non-
cancerous) or malignant (cancerous). Most breast cancers
begin in the milk ducts, with a small percentage of cases
developing in the milk sacs or lobules. If detected and treated
late, breast cancer may metastasize to the bones and other
organs and the pain will multiply.

Therefore, early detection of breast cancer is critical for
treating and saving patients. When the disease is in its early
stages, its manifestations may not be accurate and precise;
as a result, many abnormalities may be overlooked [2]. Cur-
rently, many studies apply machine learning to improve early
detection, reduce the risk of death, and prolong the patient’s
life. However, sharing patient data is not widely considered
at present due to privacy, technical, and legal issues. Security
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and privacy techniques enable stricter protection of patient
data and the use of data for research and routine clinical
purposes [3], [4].

A study on breast mass classification from mammograms
using convolutional neural networks (CNN) was published
in 2016 [5], where the authors gave results with recall for
identifying lesions estimated to be between 0.75 and 0.92,
which means that up to 25% of abnormalities could remain
undetected. Therefore, the ability to automatically detect
lesions and predict their likelihood of malignancy would be
valuable for doctors and could dramatically improve survival
rates. Thus, we developed an FL base to extract features
from multiple participating environments rather than a cen-
tralized learning environment. To investigate the real-world
performance of FL, we conducted a study for the applied
development of numerous breast cancer classification models
using mammography data. An international group of hos-
pitals and medical imaging centers joined this collaborative
effort to train models in a completely decentralized fash-
ion, without any data sharing between hospitals. This placed
higher requirements on the robustness of algorithms and the
selection of hyperparameters. In our study, we believed that
the analysis of recall performance was more important than
accuracy as false negatives can be life-threatening and false
positives are likely to be viewed by humans in diagnosing
breast cancer, and that is the main objective of this study.

Recently, FL has become a novel research trend in AI
applications. It aims to train a machine learning (ML) algo-
rithm across multiple decentralized nodes while holding the
data samples (i.e., without locally exchanging them) [6].
Training such a decentralized model in an FL setup presented
four main challenges: (i) system and data heterogeneity,
(ii) pre-trained data processing, (iii) data protection and pri-
vacy, and (iv) efficiency selection of distributed ML algo-
rithms. We addressed these challenges for breast cancer
classification in the context of FL.

The first challenge was system and data heterogeneity.
Different system vendors produce images with considerably
different intensity profiles for the same imaging modality.
To address this diversity, many recent studies have found
that a data-balancing solution such as the unsupervised
domain adaptation method forces the model to learn solution
domain-agnostic features through adversarial learning [7] or
a specific type of batch normalization [8]. However, more
straightforward methods were used in the current study to
address this challenge; we present a solution more efficiently
balances data.

The second challenge is imperative to process the data
before training because of its heterogeneity. There are many
data processing methods [9], [10]. We chose transfer learning
due to its many benefits, such as saving training time, better
neural network performance (in most cases), and the fact that
large amounts of data are not needed [11].

To address the third challenge, data protection and pri-
vacy [12], [13], many studies have incorporated more
security and privacy solutions. Our solution assumes that

an international group of hospitals and medical imag-
ing centers have joined this collaborative effort to train
the model in a completely decentralized manner, with no
data sharing between hospitals. This places higher require-
ments on the robustness of algorithms and the selection of
hyperparameters.

The fourth challenge concerned the distributed learning
ability of the FL models [14], [15] employed. Many dis-
tributed learning models are used in FL for different appli-
cations. However, most studies focus on hypothetical data,
and each model is only suitable for one dataset, which makes
it difficult for researchers with practical applications as in
breast cancer. To evaluate the effectiveness of these models,
we tested the evaluation by other methods for comparison.
The contributions of this paper are as follows:

• Design of an FL framework for breast cancer classifica-
tion that includes a global server, which acts as a weight
aggregator andmobile replacement edge clients in tissue
training deep learning (DL). This solution is useful for
AI healthcare applications and can be widely deployed
in different hospitals or clinics.

• Pioneering use of a transfer learning pre-training dataset
in FL for breast cancer classification. Various models in
transfer learning were selected for performance evalu-
ation, including k-nearest neighbors (kNN), AdaBoost,
and eXtreme Gradient Boosting (XGB). First, the
image’s features are extracted using the Convolutional
Neural Network (ConvNet) of the pre-trained model,
and a linear classifier is used to classify the images.
Next, we used data equalization techniques such as
SMOTE and data augmentation in combination with
ImageNet to enrich and further optimize the training
data.

• With both balanced and imbalanced methods, experi-
mental results from the Digital Database for Screening
Mammography (DDSM) dataset demonstrate that our
solution’s FeAvg-CNN +MobileNet is much better for
centralized learning, which is more than 5% recall [5] in
improved performance. Moreover, the accuracy of our
research results reached nearly 98%; by comparison, the
maximum results were only 88.67% for the two-class
cases (calcifications and masses) and 94.92% (benign
mass vs. malignant mass and benign calcification vs.
malignant calcification) in the study [6].

The rest of this study is organized as follows. Section II
discusses related works; Section III describes the background
study, and proposes together with some challenges and under-
lying ideas. Section IV presents an experimental evaluation of
the deployed components. Finally, Section V discusses, and
Section VI concludes the future work.

II. RELATED WORKS
A. DEEP LEARNING
Today, breast cancer researchmainly focuses on detecting and
diagnosing breast tumors using deep learning algorithms [3],
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FIGURE 1. Architecture of the proposed approach federated learning
settings.

FIGURE 2. Flowchart of data processing for training and evaluation.

FIGURE 3. Diagram of DDSM data processing and conversion to images
by ROI extraction.

[4], [16], [17], [18], [19]. However, most studies still focus on
data processing, tumor prediction, and diagnosis using dis-
tributed learning models on a server. In such an environment,
patient data and information must be shared for centralized
processing on the server, which negatively affects privacy.
Moreover, centralized processing entails more work when not
all parties have access to a highly configured server.

A study [16] proposed a novel and efficient DL model
based on transfer learning to automatically detect and diag-
nose breast cancer. The specific of this study is to use the
knowledge gained while solving one problem in another
relevant problem. Furthermore, in the proposed model, the
features are extracted from a mammographic image anal-
ysis dataset (MIAS) using a pre-trained CNN such as
InceptionV3, RestNet50, Visual Geometry Group Networks
(VGG)-10, VGG-16, and Inception-V2 Restnet. To evaluate

the experiments, six metrics were used and demonstrated that
the transfer learning of the VGG16 model was powerful in
classifying mammogram images with accuracy, sensitivity,
specificity, and so on for breast cancer diagnosis. One study
used a breast cancer–detection system that included principal
component analysis (PCA), a multilayer perceptron (MLP),
transfer learning, and a support vector machine (SVM) [17].
The authors proposed a new processing method for pre-
dicting breast cancer based on nine individual attributes
and four basic machine learning methods; the final accu-
racy of the results was 86.97% on breast cancer coimbra
dataset (BCCD). Research becomes complex when too many
approaches are combined, and the results remain scarce.

Another study used CNN and US-ELM for feature extrac-
tion and clustering [3] and a mammogram segmented into
several sub-regions. Then, CNN was used to extract features
based on each sub-region, and unsupervised extreme learning
machine (US-ELM) was employed to cluster features of sub-
regions, which eventually located the region of the breast
tumor. Next, the authors designed a CNN network with 20 in-
depth features and other features to determine tumor density.
However, the mammogram dataset only included approxi-
mately 400 women and yielded moderate accuracy.

By using DL to support the AdaBoost algorithm, paper [4]
introduced an advanced technique for identifying and diag-
nosing breast cancer regions. Moreover, the study used the
CNNnetwork and LSTMalgorithms to identify the character-
istics of tumors for diagnostic tasks. The results demonstrated
that the use of magnetic resonance imaging (MRI), ultra-
sound (US), digital breast tomosynthesis, and mammography
yielded an accuracy that was too high: up to 97.2%. The
previous section introduced challenges of data imbalance in
breast cancer detection. A research article in [18] used a
transfer learning solution to solve this issue. The primary
model for breast cancer image classification is VGG-19. The
results demonstrated that the accuracy was approximately
90%. The paper [19] introduced a framework for automat-
ically evaluating areas of doubt detected in mammography
screening without additional tests, especially in unnecessary
biopsies, the suspected site is a benign tumor. It mainly
focused on the identification of segmented regions of interest
(ROIs) using a modified K-means algorithm. Next, a two-
way experimental mode (BEMD) analysis algorithm was
applied to extract multiple layers from the ROI. The results
demonstrate that accuracy reached 98.6% when the digital
mammography dataset was used.

B. FEDERATED LEARNING
Recently, FL was raised from the need to share sensitive data
between service providers in various fields, such as compe-
tent healthcare and smart cities [20], [21], [22], [23], [24]. The
results of some FL studies have been confirmed and applied to
medical imaging, such as brain tumor segmentation, predic-
tion of disease incidence, patients’ responses to treatment and
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other healthcare services, and late classification [25], [26],
[27], [28], [29], [30].

Regarding breast imaging, only two papers [31], [32] have
evaluated breast density classification. The authors employed
a client server-based FL method with federated averag-
ing (FedAvg) [7], which combines local stochastic gradi-
ent descent (SGD) on each site with a server that performs
model averaging. However, [31] significantly downsampled
the inputmammograms. Although low resolutions are accept-
able for density classification, the loss of detail negatively
affects malignancy classification. Moreover, this study did
not apply any domain adaptation techniques to compensate
for the domain shift of different pixel intensity distributions.
The authors [31] opted for a different approach by work-
ing on high-resolution mammograms with federated domain
adversarial learning [32]. In addition, they [32] applied cur-
riculum learning in FL to boost classification performance
while improving domain alignment and explicitly handling
domain shift with federated adversarial domain adaptation.
The paper employs three datasets of Full Field Digital Mam-
mography (FFDM), and the experimental results shown that
the proposed memory-aware curriculum method is beneficial
to further improve classification performance.

Based on the FL framework combinedwith CNN, the paper
in [33] used CNN’s federated prediction model is based on
improvements in general modeling and simulation conditions
on five types of cancer, the accuracy of cancer data reaches
more than 90%, the accuracy is better than the tree model sin-
gle model machines and linear models and neural networks.
However, this study still lacked comparisons with different
models rather than only MLP and did not address the issue of
data imbalance and treatment.

In 2022, there is a growing trend toward using FL to
predict breast cancer. Another study [34] used the Breast
Cancer Histopathological Image Classification dataset (BHI)
for detection. The authors first used residual neural networks
for automatic feature extraction, then employed the network
of Gabor kernels to extract another set of features from the
dataset. They extracted two sets of features and passed the
output through a custom classifier. The results showed that
this method achieved more than 80% accuracy.

Unlike previous authors [31], [32], [33], [34], who pro-
posed a FL framework for breast density classification based
on deep learning models, we targeted the more complex
task of breast cancer prediction based on the mammography
dataset. The innovation of the current research is that we
focused on accurately processing data using transfer learn-
ing. Because the data was robust, the classification results
were expected to improve the treatment rate for patients.
Many different models evaluated experimental results, and
the most suitable model for breast cancer was selected based
on the DDSM dataset. In addition to performing the results
in terms of accuracy, recall, and higher F1-score compared
to previous methods [5], we also analyzed diagnostic images
based on histograms to enable doctors and medical staff to
have a clearer view based on the displayed images. Finally,

we summarize and compare our proposed method with the
existing literature in Table 1.

III. THE PROPOSED METHOD
This section highlights our proposed approach in the
FL framework. First, its overall structure is presented in
Sub-section III-A. Next, Sub-section III-B describes he use
of transfer learning for data feature export. Next, in sub-
section III-C, we introduce the two mammography datasets
used in this study and how they were processed to improve
classification quality. The FedAvg algorithm is introduced
in Sub-section III-D, which we summarize in pseudocode
to explain the implementation of the FL framework. Next,
section IV, we evaluate the results and provide explanations.

A. AN OVERALL ARCHITECTURE OF THE
PROPOSED METHOD
The current sub-section III-A presents a complete system
model, including an overview diagram of how DL models
work in FL and simulation designs. Fig. 1 depicts how the
general behavior of the federated model was tested. The
model structure includes a global server that acts as a weight
aggregator and edge stations that replace mobile devices in
training the deep learning model. The FL process occurs
in three stages: stage (1) priming the initial model in the
first round of FL or updating the new model after aggre-
gating weights after the N th round of learning, stage (2)
local training with terminal data at the edge stations, and
stage (3) aggregating the weights to the server and updating
the global model. Taking advantage of transfer learning in
the local environment of edge stations, here are hospitals
that connect locally to machine learning-approaching tech-
nology devices using models that optimize performance, traf-
fic conditions, etc. Homogeneous communication does not
impose data labels on devices for prediction. However, it only
uses personalized data features to learn, limiting transmission
weights, limiting computation on edges, helping local train-
ing at the edge take place rapidly in reinforcement learning,
back-distribution, cross-linking increasing data on the edge
device sent to the edge increases over time.

The objective of the current study was to test the FL
models’ distributed learning ability. Thus, the server and edge
devices were simulated by initializing a similar DL model in
both the global and local phases. Therefore, the weight update
between the host and the edge device was also directly be
performed and ignored transmission time in the network.

At the beginning of the FL process, the starting server
initiated a DL model. It sent the newly initialized set of
weights to participating stations to create the first round
of FL (cloud server). The local model updated this set of
weights and began the training process. At the input of the
local model, data is the data that is optimally learned from
pre-trained modeling with IMAGENET [35] on incoming
edge devices (phones, computers, doctors, medical devices,
etc.) (client feature extraction). Due to the limitation in sim-
ulation, local learning occurred by training each edge with
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TABLE 1. Summary of literature paper used for breast cancer classification.
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a piece of data from the processed dataset and grouping it
to mark the order of the participating stations’ FL network
(edge sharing). Therefore, updating and training for the entire
edge station were sequentially performed until the number
of data groups in the divided dataset was exhausted instead
of simultaneous parallel learning on all devices, as in real
situations. In addition, the decentralized exchange sequential
sharing system mechanism has strict privacy conditions.

During the local training phase, the pre-split data will be
trained with the local model. The learning process is akin to
a regular DL network training process, which includes the
following steps: fitting, forward propagation, and backward
propagation. Local training is completed only after all sta-
tions have concluded training with their data. The weights
of all stations will be aggregated for the global model update
according to the expression of the FedAvg algorithm. In addi-
tion to local weights, the number of data points in the data
group used for training at each station must be collected to
perform the aggregation. Therefore, in addition to storing
weights, each edge station also calculates and retains the
number of data points that it has trained to prepare for the
synthesis process at the server. The entire local learning
process at the edge stations is performed with DL models.
Specifically, the network model FedAvg-ANN (MLP) and
FedAvg-CNN and machine learning models kNN, AdaBoost,
and XGB were used in this study.

After the local training is complete, the set of weights and
data points for all stations is updated on the server. Currently,
the server plays the role of aggregator and runs the algorithm
with the set of weights and number of data points from the
stations to find a new set of weights for the global model.
Once the global model has been updated, the server checks
the results of the FL round by running the classification
problem on the test data, saves the test results, and moves on
to the next learning round. The entire FL process is run with
N given learning rounds. At each edge station, the number
of epochs (DL cycles) is also performed with n pre-selected
cycles. The number of FL rounds selected for the simulation
is 200. The timing and predictive power of the model both
depend on the number of epochs performed at each station.
To check for relativity, the model was sequentially tested with
one, two, and five epochs in the first 200 FL rounds. Both
cases will be tested with only a DL model applied in FL.

In this study, the models selected for FL were all DL
networks with shared parameters in the training process. For
backpropagation, the categorical cross-entropy loss function
and the SGD optimizer were used to improve the training of
all models. During forward propagation, the ReLU function
was used to activate hidden layer neurons, while the Softmax
function was used for predictive decision-making at the out-
put layer.

FL algorithms are fundamentally different and mainly
solve the problem of data security (i.e., the connection
between security hospitals). In a traditional data science
workflow, data is collected on a single server and used to build
and train a centralized model. FL has a centralized model that

uses training under a decentralized model. Once the model is
independently trained, each of the updated model weights is
sent back to a central server, which combines them to create
a highly efficient model. This also ensures that the data in
each node complies with data security policies and protects
against any data leaks or breaches. Quality data locally exists
on edge devices in hospital centers around the globe and is
protected by strict privacy laws. FL provides an intelligent
means of connecting machine learning models to this discrete
data regardless of location and, more importantly, without
breaking privacy laws. Instead of taking the data to the model
for general rule training, FL feeds the model to the data
instead. All that is needed is the flexibility of the data storage
device to commit itself to the binding process.

B. TRANSFER LEARNING FOR FEATURE EXTRACTION
In a hypothetical problem, 1,000 patients must be identified,
but the data for the training consists of only approximately
four images per person. Thus, there is insufficient data to
train a complete machine learning model. In such cases,
the models are usually pre-trained with extensive data from
sources such as ImageNet, which contains 1.2 million images
and 1,000 different categories. Then, in this study, the feature
extractor solution was used. After extracting the features of
the images using ConvNet of the pre-trained model, we used
a linear classifier to classify the images. In short, the image
features (e.g., calcifications, tumors, etc.) provided input for
linear or logistic regressions. The overview had three feature
extraction methods, which resulted in three different results
for each classifier [36]:

• Histograms of oriented gradients (HOGs)
• Features extracted from the discrete cosine (DCT)
domain

• Features extracted from a pre-trained CNN.

Different feature extraction methods have different advan-
tages. HOGs are commonly used for object detection and
employ gradients to provide information about edges, cor-
ners, and contents in an image. However, the decision was
made to extract features from the DCT domain because the
features were created to describe quality parameters in an
image. The last method uses features extracted from a CNN;
the network is trained on a large set of images in the object
recognition task to enable it to be generalized to the tasks and
another dataset for which the network has not been trained.
This method was chosen because of its high performance on
common tasks in organized learning. The task in Sub-section
III-B requires a more detailed representation of the compact
and efficient local communication of input values through an
unsupervised learning scheme with transfer from the large
ImageNet (transfer) by mapping the input to a selective latent
through a ConvNet network of pre-trained models whose
predictive output we need. The representative and symbolic
learned output feature is usually low-dimensional (called
FEx) and contains all of the necessary information at the
calcification region, as indicated by the heatmap, and can
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therefore be used as a calculation vector input function for a
supervised learningmodel (e.g., MLP or CNN) to perform FL
at the edge server. It is noteworthy that the features are learned
by compressing useful information of local input data into the
low-dimensional ConvNet network (MobileNet, ResNet50,
Xception, etc.) from developers providing the network struc-
ture with reference open handover, always learned and main-
tained by local users without sending to the cloud. More-
over, the cloud server only aggregates the updated model
parameters obtained by performing calculations at the edge
server based on the global model and local data from users,
patients, medical devices, etc., without the user’s sensitive
data access rights (e.g., data samples, representative low-
dimensional features) to protect user privacy in federated
communication and, optimally, in local sampling dispersion.

The left portion of Fig. 2 shows how the system is trained
on the input set, which results in two classification models:
one for quality and one for content. The reviews are sorted
by rank, and images that are classified as outstanding are
sent to the retrieval section. In partial retrieval, selection is
made from sets of similar images, such that that only one
is retrieved. The resulting images are good, outstanding, and
unique; we perform further analysis by retraining the classi-
fication model to provide the best result (e.g., the right image
is the result of the whole set of images’ progress).

C. DATASETS
DL heavily relies on datasets to automatically extract fea-
tures that uniquely characterize the various target classes.
In our study, we used the digital database of mammogra-
phy screenings from the University of South Florida. These
datasets and step processes are described in the following
sub-section III-C.

1) DIGITAL DATABASE FOR SCREENING MAMMOGRAPHY
(DDSM) DATASETS
DDSM is a database of 2,620 scanned film mammography
studies [37], [38], [39], [41]. It includes normal, benign, and
malignant cases with verified pathology information. The
Curated Breast Imaging Subset of DDSM (CBIS-DDSM)
collection includes a subset of DDSM data selected and
curated by a trained mammologist. Since CBIS-DDSM only
contains abnormal images, conventional scans were obtained
from DDSM and combined with CBIS-DDSM scans. How-
ever, the size image is relatively small. To increase the size
of the dataset, we extracted ROIs from each image, the algo-
rithm is proposed in Algorithm 1. We aimed to classify the
calcifications in which stage of the disease, so we extracted
information from several available sources and introduced
previous work. Previous studies in [42] did a great job extract-
ing ROI features from a combined DDSM and CBIS-DDSM
data source. However, our study is only selective regarding
the number and size of images to be suitable for transfer
tasks and federated for edge device environments. The Con-
vNets were trained to predict whether the scan was normal or

FIGURE 4. Illustrations of the calcification status of layers.

abnormal and whether the abnormalities were calcifications
ormasses and benign ormalignant. DDSMprovidesmetadata
in three files that include the patient’s age, the study date,
the date of digitization, the type of dense tissue, the scanner
used to digitize, and the resolution of each image. In addi-
tion, cases with anomalies include an OVERLAY file that
contains information about each abnormality, including the
type of abnormality (mass or calcification). The entire data
processing for training and evaluation is described in detail
in Fig. 3 and the subsequent sub-sections III-C2.

2) DATA PRE-PROCESSING
The dataset used in the study included images from
the DDSM and CBIS-DDSM datasets. Images were
pre-processed and converted to 299× 299 images by extract-
ing the ROIs. The data was stored as a tfrecords file for
TensorFlow. The dataset contained 55,890 training examples,
of which 86% were negative, and the remaining 14% were
positive; they were divided into five tfrecords [42]. The
data was also divided into training and testing in the CBIS-
DDSM dataset. The test files were equally divided into test
and validation data. However, the separation between the
test and validation data was incorrectly performed, which
resulted in the non-test files containing only volumes and
the validation files containing only calcifications. The dataset
consists of negative images from the DDSM dataset and
positive images from the CBIS-DDSM dataset. The data
was pre-processed to convert it into 299 × 299 images. The
negative (DDSM) images were tiled into 598 × 598 tiles,
which were then resized to 299 × 299. The positive (CBIS-
DDSM) images had their ROIs extracted using the masks
with a small amount of padding to provide context. Each
ROI was then randomly cropped three times into 598 ×
598 images, with random flips and rotations, and then the
images were resized down to 299 × 299. These files should
be combined for complete and balanced test data. The images
were labelled in two ways: i) normal label: 0 for negative
and 1 for positive; ii) full multi-class labels: 0 for normal,
1 for benign calcification, 2 for benign mass, 3 for malignant
calcification, and 4 for malignant mass.

As previous work addressed the classification of prede-
fined abnormalities, we focused on classifying images as
normal or abnormal. We expected to retrain the model to
classify for the whole five labels after achieving satisfactory
performance illustrated through each stage. Fig. 4 and Table 2
summarize breast cancer classification stages in the DDSM
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TABLE 2. Breast cancer stages in the DDSM dataset.

dataset. Based on the analysis results from Fig. 4 and Table 2,
doctors can diagnose which stage a patient is in and can
provide them with helpful advice.

3) DATA AUGMENTATION
CBIS-DDSM scans are relatively large, with an average
height of 5,295 pixels and an average width of 3,131 pixels.
To create usable images from full-sized scans, ROIs were
extracted using a mask and sized down to 299 × 299 pixels.
Each ROI was extracted in several ways:
• The ROI was extracted at the initial size of 598 × 598
• The ROI was zoomed to 598 × 598, with borders to
provide context

• If the ROI was too large to fit into a 598 × 598 image,
it was extracted in 598× 598 cells with a spacing of 299

The 598 × 598 pixels were then resized to 299 × 299.
To increase data samples, dataset data augmentation was
used, including random positioning of the ROI in the image,
random horizontal flip, random vertical flip, and random
rotation. The extraction of the ROI is detailed below. Since
the CBIS-DDSM dataset only contained anomalous scans,
normal scans were obtained from the DDSM dataset. While
the CBIS-DDSM images were reviewed and changed to
remove pseudo-elements such as white borders and overlay
text, the DDSM images were absent. Many variable-size
contours and arrays of white color were used to obscure the
patient’s personal information. To remove contours, DDSM
images were cropped by 7% on each side. Since the extracted
CBIS-DDSM ROIs were proportional to their size instead of
at a fixed zoom, the DDSM images were scaled down by a
random factor of between 1.8 and 3.2, then segmented into
299 × 299 pixels with spacing between 150 and 200 pixels.

4) HISTOGRAM
It was necessary to collect different datapoints from the
DDSM dataset to evaluate quality indicators because the
data constantly fluctuated. Consider those randomly obtained
data, it will be challenging to appreciate the whole meaning
of the information they bring, and it is difficult to iden-
tify their fluctuations. To analyze and evaluate the quality
situation from the collected data to draw accurate conclu-
sions, people gather, classify, and rearrange them to represent
the distribution in the form of charts. Different pixel densi-
ties (histograms) according to the characteristics of the data
obtained. Based on the form of a frequency distribution by the
graph, one can have accurate conclusions about the normal
or abnormal situation of the quality criteria of the process.

Algorithm 1 ROI Extraction Algorithm
Input: Slide_size = 299; Full_slide_

size = 598; offset = 60.
Get the Base File Name and the Mask Name.
Add the ROI← Preprocessing

if mask_size ≤ (full_slice_offset) then
image_slice = image[ROI_edges]

end if
if mask_size ≤ (full_slice) / 1.5 then

roi_size = mask_size + 20%
image_slice = Random_flip and
rotate(image[ROI_edges])

end if
if mask_size > (full_slice) then

roi_size = mask_size + 5%
image_slice = Random_flip and
rotate(image[ROI_edges])

end if
return image_slice[slice_size]
Preprocessing(image,mask)
image← resize(image) = image

2
mask← resize(mask) = image.size
if image > 50,000 white pixels then

image← image − trimming edges (image) =
20 pixels

end if
(center_row, center_col)← corners(mask)
return center_row, center_col, mask
mask_size = int(max(mask.shape[0], mask.shape
[1]))
return center_row, center_col, mask_size
ROI_edges(center_col, center_row, image.shape,
roi_size)
return (start_row, end_row, start_col, end_col)

From there, appropriate decisions can be made to improve the
quality of the data input. Fig. 5 shows the density and pixel
intensity distribution for different stages of breast cancer of
DDSM dataset used in the study. The vertical axis represents
the number of pixels; the higher the vertices (e.g., the label
‘‘Malignant Calcification’’), the more pixels there are in that
area and the greater the detail. The horizontal axis represents
the average brightness of each area, which means a new
color similar to gray at 18%. The image labeled ‘‘Normal’’
occupies the dark space because it does not contain more
calcified areas (white pixels) than the layers labeled positive
for breast cancer. The origin of 0 is considered the darkest
(akin to black); values increase as they move to the right, and
the lightest value is 255. The area between these two values
represents medium brightness. Thus, the closer pixels are to
a value of 0, the darker the image; conversely, the closer they
are to a value of 255, the brighter the image. Pixels on the
vertical column of either value will lose detail (either too
dark or too light). A bright and clear image has a bell-shaped
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FIGURE 5. Density and pixel intensity distribution for different stages of
breast cancer.

histogram, peaks in the region of medium brightness, and
tapers off to the left and right regions of the graph.

5) SMOTE
From the fully labeled dataset, data balancing was performed
using the SMOTE method [40]. In an unbalanced dataset,
a different number of input samples represents each out-
put layer (or target layer). The resulting classifier loss will
often not be the high fact that the data is always non-IID.
However, the scenario that solves this problem is quite com-
mon nowadays. Some current methods apply unbalanced data
pre-processing:
• Oversampling: Oversampling involves increasing the
number of samples of the smallest class up to the number
of samples of the largest class and creating composite
templates

• Undersampling: Undersampling involves reducing the
number of samples of the largest class to the smallest
class size and removing some samples from the largest
class

• Class weight: This method involves specifying a weight
for each class. The weight of the largest class is equal
to 1, while the weight of the smallest class is equal to
the largest class’s sample divided by the smallest class’s
sample

• Decision threshold: If the predicted value is greater than
the threshold, it is set to 1; otherwise, it is set to 0.

Because of the unbalanced input data, one way to address
unbalanced datasets is to oversample the minority. The most
straightforward approach is to duplicate examples in the
minority class. However, these examples do not add any new
information to the model. Instead, recent examples can be
synthesized from existing measures. This data augmentation
type for the minority class is called the synthetic minority
oversampling technique, abbreviated as SMOTE. Since the
Fig. 6 and 7 show that the class distribution predictive breast
cancer before and after SMOTE use.

6) DATA SPLITING
Only around 10% of mammogram images are abnormal.
To maximize the likelihood, we evaluated our training data
more towards the abnormal scan direction (balance the

FIGURE 6. Class distribution predictive breast cancer data before SMOTE
use.

FIGURE 7. Class distribution predictive breast cancer data after SMOTE
use.

FIGURE 8. Data division process with the DDSM dataset.

abnormal minority class with normal), with a goal of 85%
normal. The data was separated randomly into training and
test data using existing parts of the CBIS-DDSM dataset to
avoid overlap. By using the scikit-learning machine learn-
ing library, which provides the train_test_split()
function to perform train test split. The overall data was
divided randomly into training, validation, and testing data
according to the following percentages: 80%, 10%, and 10%,
respectively.

D. FEDAVG ALGORITHMS
The primary algorithms 2, 3, and 4, which were used to
simulate the learning process in the FL model, is introduced
in the sub-section III-D. The outermost for loop loops through
a given number of learning loops, each being a global learning
loop. In each of these loops, the program performs global
parameter initialization in the first step. The feature extraction
task performs the following steps for the client side: loading
the optimal weighted model from ImageNet corresponding
to breast cancer data, randomly partitioning the data into
packets for direct prediction (i.e., taking advantage of the
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model’s convolutional layers to extract features), packing the
data into FE_x, and sending it to the edge. There will be
two processes at the edge server. The first is training for
global communication between edges, while the other is local
feature extraction of data from clients and linking. The model
will get weight with the general model (ANN-FedAvg, CNN-
FedAvg). Client updates pretrained data with ImageNet, and
extracted will be reconnected. Then, edge server will train
with the total data obtained to generate local weight. This is a
global update algorithm that could sever, initialize weightw0,
then send to edge-sever according to the preset round-robin
schedule. On the edge-server side will update the weight
later in the training process at communication loops. After
getting the weight list of all participating edges, the model
will aggregate and average. Then update the weights again
for the next round.

Algorithm 2 Local Pretrained-Model Update Feature
Extracted Low-Dimensional Dataset.
Msub Are Selected Model From Edge Sever;
C Client With Index k in Edge Computing Area;
B Is the Edge Batch Size From Edge Sever Request;
Psub Data Point Each Node Be Divided From Edge
ClientUpdate(k,FE_x)
Msub(woptimized )← initialize(net) from IMAGENET

/* feature extractor */
Bk ← (split Psub into batches of size Bk
for batch b in Bk do

images← uniformly random sample b images
X , y← preprocess(images)
z← predict(net,X )← Msub(woptimized )
l ← loss(z, y)
FE_x← update[flatten(z), backward(l)]

end for
return FE_x to edge server

IV. EXPERIMENTAL VALIDATION
The current section evaluates the effectiveness of transfer
learning using popular models such as MobileNet, Densen-
net21, Xception, and Resnet50 with two DDSM datasets on
a FL framework and compares it to previous methods of
breast cancer identification, including FL-CNN and FL-MLP.
For fair comparison, all models are implemented in Python
3.8 with Tensorflow 2.9, and Anaconda3. The experiments
were run in the machine with following specifications: GPU
NVIDIA TESLA P100 2vCPU RAM 256 GB. Furthermore,
in all simulations, we used the same settings: rounds = 60,
edges= 3, clients= 4, frequency= 5, epochs= 3, batches=
32, length = 27,940.

A. PERFORMANCE TO COMPARE THE QUALITY
CLASSIFICATION FOR FL AND CENTRALIZDED LEARNING
Since training on the dataset is prolonged, the period mod-
els choose three epochs with binary labels. The metrics

Algorithm 3 Collaborative Local Update in Client-
Edge. There AreM Edge Servers Model Are Indexed
by m;
B Is the Edge Batch Size From Cloud Sever Request;
E Is the Number of Client Epochs;
P Feature Extracted Dataset From Edge Type 1-
Dimensional and η Is the Learning Rate Into Each
Edge Rounds
EdgeSeverUpdate(m,w,P)
receivedM (Wround ) from global model of cloud sever
and initialize to edge model
M (Wround )← initialize(net)
for each edge model m ∈ M in parallel do

Pmt+1← EdgeConcatenate(m,FE_x,
∑

c k)←
ClientUpdate(k,FE_x) /* Pretrained
& arrange global model */

for each edge epoch from 1 to E do
for batch b ∈ B do

wtm← η
`
l(M (wround ; b))

end for
end for

end for
return wm and Pm to cloud server

Algorithm 4 Global Aggregation. There Are N Edge
Sever Are Indexed by i;
B Is the Edge Batch Size;
E Is the Number of Edge Epochs;
P Data Point Each Edge Held

for each round t = 1, 2 . . . do
updated wt send to all N edge sever each round

end for
for each edge i ∈ N in parallel do

wit+1← EdgeSeverUpdate(i,wt ,Pit )
wt+1←

∑N
i=1

w̃l
N /* global aggregation

based on parameters wt+1 */
end for

evaluation as accuracy, precision, recall, and F1-score and the
area under the curve (AUC) are used to evaluate the models.
After a well-performing model is extracted on the shared
balance dataset, three epochs with the global model will be
retrained, with the previous weights reused to update the
training. If the model works well, it is used to classify all five
classes; it is assumed that this will allow the convolutional
layers to extract the essential features that provide optimal
input from the device hospital update.

We considered using transfer learning from MobileNet,
Densenet121, Xception, Resnet50, or randomization models
at each suitable parametric model time, but we decided that
the features of the ImageNet data were adequately different
from those of the ImageNet data features of X-ray scans.
Therefore, it made more sense to learn the features from
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scratch on this dataset. However, using transfer learning
between models accelerated the training process by consid-
ering around 60 communication rounds, which saved weeks
of training time to reach the global minimum loss.

In the first performance of Table 3, we compare accu-
racy and AUC between CL, including models like KNN,
AdaBoost, and XGB, and FL models like FedAvg-MLP and
FedAvg-CNN for two datasets, balanced and imbalanced
data. In addition, in transfer learning, we leave the random
model in the data processing so that we can compare each
different model.

The AUC results with the balanced dataset show that
XGB’s centralized learning yielded the best results, followed
by FedAvg-CNN, FedAvg-MLP, KNN, and AdaBoost, which
exhibited similar accuracy. With the imbalanced dataset,
XGB still demonstrated the best results, followed by FedAvg-
MLP, KNN, FedAvg, and AdaBoost with AUC and similar
for accuracy. Based on the results, the application of FL in
breast cancer classification is a reasonable choice when it
is associated with more advantages than traditional learning
methods. Moreover, the results confirmed that AUC should
be chosen over accuracy in breast cancer classification.

In the evaluation in Tabs. 4, 5, 6, and 7, similar to Table 3,
we change the transfer learning models in data processing
at the client. However, the analysis showed lower results for
FL than for XGB (100% for both balanced and unbalanced
data). Even when comparing the results with other meth-
ods, the FeAvg-MLP and FeAvg-CNN results combined with
MobileNet transfer learning are the best compared to other
classical methods.

However, in terms of other advantages, FedAvg-CNN
with MobileNet transfer learning gives better results than
other learning methods, including accuracy and AUC in both
data types: balanced (97,106%/99.743%) and unbalanced
(85,741%/95,999%). In addition to checking the quality
classification performance, we must pay attention to the
selection of learning models for customers. In FL, low-
parameter models are necessary because models with sig-
nificant parameters cannot run on low-profile clients. Based
on the results in Table 3 to 7 choose MobileNet, with a
capacity of 4.3M, as the lowest and most reasonable. Again,
we recommend selecting the suitable learning models for
research requirements; otherwise, the choice will affect the
accuracy.

B. PERFORMANCE TO COMPARE THE AVERAGE
ACCURACY, RECALL, AND F1-SCORE RESULTS ACROSS
BREAST CANCER STAGE
Consider the results on the breast cancer stage prediction
classes as in Table 8, the recall result to avoid false negative
control almost reached 100% for ‘‘IID’’ when the DDSMdata
used about 50%, and oversampling by SMOTE the samples
on three edge servers, then averaging from a total of about
600 samples per layer. Meanwhile, the scenario ‘‘non-IID’’
keeps the original data of themodel entirely unchecked for the

minority classes. That is, the periods do not almost correctly
predict more than the threshold of 0.5.

C. PERFORMANCE TO COMPARE THE AVERAGE
ACCURACY, AUC FOR K-FOLD CROSS-VALIDATION
In the sub-section III-C6, we randomly split the dataset into
training, validation, and testing sub-datasets by the following
percentages: 80%, 10% and 10%. This division is perfectly
reasonable if we have a large amount of data. However, when
there is too little data, this division will lead to the abysmal
performance of the deep learning model. The reason is that
some data points useful for training have been included for
validation and testing, but the model still needs to learn that
data point. Sometimes, the small amount of data will lead to
erroneous results when validating and testing because some
classes are only used in validation and testing and not in
training (because the division of training and validation is
entirely random). If only based on that result were to evaluate
the model, it would be inaccurate. In this study, to assess
whether the MobileNet model we have chosen is suitable for
the DDSM dataset, we use K-fold cross-validation (K = 4)
to evaluate. In the case of non-Fold without cross-validation,
we test and use the 90% (80% training set, 10% validation
set) dataset to train the process and the 10% test set, while
the 10% test set is distinct. In the case of K = 4 with cross-
validation, we use 90% (training, validation) divided every
4-fold corresponding to each K, including 75% training set
(K-1) and 25% (K) for the validation set. The remaining 10%
of the test set is similar to non-Fold (fair-play) that we use
for testing after finishing training with cross-validation. After
the evaluation process, we choose K = 4 because the data
shared by the server is already relatively small enough for the
validation process to have enough data to test. Then we train
the model K times, where ‘‘1’’ part is the validation data and
(K-1) the rest is the training data. The final model evaluation
result will be the average of K training times evaluation
results. Consider Table 9, we do non-fold normal and 4-fold
cross-validation with two datasets, balanced and unbalanced,
with different models.

Evaluation results based on accuracy and AUC show that
it is correct to choose FeAvag-CNN and MobileNet models
with advantages when using the FL framework. Then the
value of accuracy and AUC (97.91%/99.80% in case of
non-fold and 92.79%/99.04% in case of 4-fold) balance. And
accuracy and AUC (84.93%/95.93% in case of non-fold and
89.33%/96.99% in case of 4-fold) balance is the highest and
most stable compared to the other methods.

D. PERFORMANCE TO COMPARE THE ACCURACY ON
LOCAL MODELS AT EDGE SERVERS
We performed a local comparison of training, testing, and
validation data on three edge servers for 60 rounds of data
without overfitting (see Fig. 9). For this test, we evenly split
the data across edge servers, assuming that each server would
have 33.3% of the original data. This data will be optionally
distributed and have no pre-assigned label order. The data
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TABLE 3. Quality classification accuracy and AUC performance assessment results for a balanced and imbalanced datasets for CL at edge servers,
FL models at cloud servers, and random model in transfer learning at clients.

TABLE 4. Quality classification accuracy and AUC performance assessment results for a balanced and imbalanced datasets for CL at edge servers,
FL models at cloud servers, and MobileNet model in transfer learning at clients.

TABLE 5. Quality classification accuracy and AUC performance assessment results for a balanced and imbalanced datasets for CL at edge servers,
FL models at cloud servers, and Densenet121 model in transfer learning at clients.

TABLE 6. Quality classification accuracy and AUC performance assessment results for a balanced and imbalanced dataset for centralized learning at edge
servers, federated learning models at cloud servers, and Xception model in transfer learning at clients.

TABLE 7. Quality classification accuracy and AUC performance assessment results for a balanced and imbalanced dataset for centralized learning at edge
servers, federated learning models at cloud servers, and Resnet50 model in transfer learning at clients.

extraction processwas performed after the client extracts. The
results of the edge server training demonstrate that, with the
CNN model, the distribution was only different, and the test
results for edge 1 were not significantly lower than those of
the other two edges. Thus, the proposed plan is suitable only
when accuracy sharply increases in the first communication
rounds. Federated transfer learning is the pre-trained process
with the ImageNet framework that sup-ports optimizing the
call training phase.

E. PERFORMANCE TO COMPARE THE GLOBAL AUC AND
RECALL POINT CHART BOX PLOT WITH DIFFERENT
MODELS
We compared AUC score and recall point with different mod-
els in two cases: IID and non-IID. Based on Fig. 10, we see
the AUC scores of Xception-IID, DenseNet121-non-IID, and
ResNet50-non-IID, the AUC scores data of Res-Net50-non-
IID and Xception-IID show that the process is under per-
forming because it tends to concentrate data (median) at a
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TABLE 8. Evaluation of average precision, recall, F1-score results across classes in the case of FeAvg-CNN + MobileNet, IID and non-IID datasets.

TABLE 9. Average accuracy and AUC of five classes using non-Fold and 4-Fold validation in the case of balanced and imbalanced datasets.

FIGURE 9. Comparison of training, testing, and validation accuracy per
communication round for three edge servers with the same settings.

FIGURE 10. Comparing the AUC score, recall point on eight model
learnings as MobileNet, DenseNet121, Xception, ResNet50 for both case
IID and non-IID data distributions.

high level, large variability. Meanwhile, the quality control
of MobileNet and DenseNet121 was the best because the
AUC score for concentration was low and fluctuated within a
narrow range. In addition, the degree of dispersion for recall
points in the communication loop rapidly met the require-
ments in the case of MobileNet and DenseNet121. At the
same time, the remaining scenarios did not converge. Once
again, the effectiveness of the transfer learning method in
accurately classifying the area of breast cancer can be seen.

F. PERFORMANCE A HEAT MAP BASED ON A BREAST
CANCER STAGES
Consider directly at the breast cancer classification stage in
DDSM data. We performed a heat map review by applying
FeAvg-CNN +MobileNet (see Fig. 11). The results in order
img input > thresh > ROI mask > heatmap > overlay shows
an overview of the breast cancer recognition partition based

FIGURE 11. Heat map distribution for breast cancer classification stages
(a to e) in the DDSM dataset after classification.

on any input image, using a binary threshold to pick out the
region (high, low). Next, we initialized roi_mask to define the
area of interest. Finally, a heat map and overlaying are initial-
ized after classification. The heat map provided a full heat
index (MAM, MAC, BEM, BEC, NO), and live image of the
central areas with prominent pixels in the image. A heatmap-
based assessment can highlight the type of partition to be
diagnosed and indicate that it is worthy of investigation.
In addition to staging breast cancer based on the assess-
ments described in the previous subsection, a heatmap-based
assessment offers a different perspective of breast cancer and
provides doctors and medical staff with another assessment
method.

V. DISCUSSION
We demonstrated that FL with CNNs can be trained to deter-
mine whether part of a mammogram is abnormal, improving
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multiclass classification through each stage was positive
with 100% recall ability and 99.804% AUC when using
pre-trained MobileNet model to extract features. Adjusting
the decision threshold and communication parameters further
improved the use of SGD as a weight global update function.
These methods can be used in premammogram screenings to
allow radiologists to focus on scans that are likely to contain
multi-hospital and multinational abnormalities.

Although training on many units with each small dataset,
FL yielded the same classification accuracy results as the
centralized learning method. CNN is one of two topology
models that achieved the best and most accessible recall
performance for distributed modeling. A key advantage of
combining FedAvg-CNN and MobileNet feature extraction
was the ability to customize the ConvNet layer volume to
quickly obtain results that were equivalent to larger networks,
but long-distance connectivity was not guaranteed. There-
fore, FedAvg-CNN had the advantage of adapting well to
mobile devices with hardware that allows the rapid process-
ing of medium tasks. Finally, performing simulations with
a random number of stations for each round of FL demon-
strated that CNN can function even in unstable network
situations.

However, FL generally requires longer training time in
simulations than centralized learning. The CNN model still
requires many data processing steps and feature extraction
to achieve high accuracy for the request and the ability to
recall avoiding false positive detection. Moreover, although
it works in situations with changing station numbers, the per-
formance of the learning model associated with CNN in the
report is still significantly degraded (98% down) in the real
scenario with more individual data humanized and increases
over time and needs time to maintain the frequency of
updates.

VI. CONCLUSION AND FUTURE RESEARCH
In this study, we presented a solution for classifying breast
cancer images using feature extraction from multiple partici-
pating environments instead of a centralized learning facility.
The centralized environment consisted of an inter-national
group of hospitals and medical imaging centers that joined
collaborative efforts to train the model to be completely data-
decentralized, without sharing any data between hospitals.
Moreover, we focused on analyzing recall performance more
than accuracy because false negatives can be life-threatening.
By contrast, like studies, humans can consider false pos-
itives instead of a whole before. The results demonstrate
that the accuracy was higher than that of other models.
In the future, we plan to create a system that will scan
the entire mammogram as input, segment it, and analyze
each segment to yield results for the entire mammogram to
make an end- the complete to-end for mammogram analysis.
In addition to improved data processing, simulations can be
extendedwithmultiple clients or groups of clients on separate
devices, and individual patient interventions share privacy
security.
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