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ABSTRACT This paper proposes ZenFS+, a new storage backend of RocksDB for small-zone ZNS SSD.
RocksDB has complicated internal operations such as flush and compaction. Flush and compaction run in
separate threads, and it is well known that they closely interact around the sstables. Due to the concurrent
storage I/O between flush and compaction, ZenFS presents unsatisfactory performance for small-zone ZNS
SSD. We believe that ZenFS+ presents how ZNS SSD can support the performance and isolation of modern
key-value stores. Leveraging the ZNS SSD, ZenFS+ intelligently identifies the independent zones group
(IZG), which reveals the device’s internal parallelism.With the IZG information, ZenFS+ effectively isolates
the flush workloads of RocksDB from compaction. Besides, ZenFS+ spreads the sstables to multiple IZGs
so that the storage write can leverage the hardware parallelism. ZenFS+ presents up to 4.8x higher storage
throughput for write-intensive microbenchmark and stabilizing 99.9P tail latency by 1/51 from existing
ZenFS. Further, ZenFS+ implements proactive garbage collection, and presents sustainable performance
over longer lifespan of the device.

INDEX TERMS Data storage systems, flash memories, parallel architectures, storage management, system
software.

I. INTRODUCTION
A key-value store is one of the essential components in
modern big data systems. With the help of powerful storage
engines, Google, Facebook, Twitter, and Amazon could
handle a large volume of unstructured data in a timelymanner.
In a recent report [1], Amazon’s cloud key-value store handles
68.2 million requests per second with a high-availability
configuration. That shows a requirement for decent big data
systems, handling queries with significant I/O throughput and
small latency.

RocksDB is an open-source key-value store developed by
Facebook [2], [3]. It is widely used in research and industrial
projects such as social graph analysis [2], distributed file
systems [2], structured/unstructured DB [4], etc. RocksDB
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is popularly used in large-scale big data systems because
it presents improved write performance with concurrent
threads. Write performance is critical because large volumes
of data keep incoming in such systems, and KVS needs to
handle intensive ‘PUT’ requests within a small time budget.
Also, the recency in a database is essential to keep the
freshness of input data.

RocksDB manages multiple threads that conduct concur-
rent I/O operations. The user thread, flush, and compaction
threads make complicated interactions affecting overall
performance. Flush and compaction concurrently run in
separate threads, and they can interfere with each other,
collapsing the performance of RocksDB. In a recent study [5],
the authors observed the latency spikes in Put() operations
due to the delayed flush of in-memory data.

This paper presents a new approach to improve the
latency and controlled performance of RocksDB using zoned
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namespace (ZNS) SSD. ZNS SSD divides the address space
of an SSD device into sequentially-writeable zones [6]. ZNS
SSD allows the software to control the address space of
the storage device directly, minimizing the overhead from
device-level garbage collection and performance deteriora-
tion [7]. ZNS SSD claimed several benefits over traditional
SSD, including improved storage access latency thanks to the
unique firmware architecture that omits device-level garbage
collection and that supports per-zone controlled performance.

Recently, ZenFS has been proposed in [9], a storage
backend for RocksDB. ZenFS focused on the benefits of ZNS
SSD thanks to the simplified garbage collection and improved
performance deterioration throughout the device’s lifespan.
However, the original ZenFS disregards the small-zone ZNS
SSD, which allows more flexible and fine-grained software
control.

The primary goal of ZenFS+ is to improve ZenFS
to support high throughput and controlled latency of
RocksDB for big data systems with the help of ZNS SSD.
ZenFS+ achieves controlled performance for I/O threads
of RocksDB, leveraging the ZNS SSD. With the indepen-
dent zone group (IZG) information, ZenFS+ effectively
isolates the flush performance from compaction. ZenFS+
intelligently manages the internal parallelism of the SSD
device by supporting sstables striping, which improves the
overall storage performance. ZenFS+ devises the proactive
garbage collection (GC) to minimize the run-time overhead
and to quick zone reclaiming, not to delay the flush
operation.

There are two challenges in our ZenFS+: First, ZNS
SSD has some hardware design parameters about the zone
size, and the parameters significantly affect the storage
performance. Some ZNS SSD devices have a large zone size
(e.g., 1GB), and a zone has high internal parallelism. With
a large-zone ZNS SSD device, writing to a zone utilizes
the entire channels, presenting high bandwidth. However,
the large-zone ZNS SSD devices are weak at performance
isolation. For example, flush to using the entire channels
could interfere with reading or writing from compaction or
user requests.

In contrast, other ZNS SSD devices have a smaller zone
size (e.g., 72MB), and a zone has limited internal parallelism.
With a small-zone ZNS SSD device, reading or writing
to a zone utilizes limited internal channels, presenting low
bandwidth [8]. However, it is better to control bandwidth
between flush and compaction because we can flexibly
choose the flush zones to avoid interference from the
compaction zone. Therefore, we need to balance and leverage
the performance and isolation of ZNS SSD by intelligently
making design choices. This paper advocates the small-zone
ZNS SSD for better isolation among complicated flush and
compaction threads. This paper advocates the small-zone
ZNS SSD for better isolation among complicated flush and
compaction threads. ZenFS+ improves the previous ZenFS
design so that software concurrency can intelligently leverage
underlying hardware parallelism. Thereby, we can balance

and leverage the performance and isolation of ZNS SSD by
making intelligent design choices.

Second, garbage collection has not been implemented
in the state-of-the-art ZNS SSD software for RocksDB,
ZenFS [9]. In the current implementation of ZenFS, zone
reclaiming is triggered only when we use up all the zones.
ZenFS+ spreads the sstable over multiple zones for high
performance. With the current ZenFS zone reclaiming, this
incurs a considerable run-time latency because once the
zone is all used up, the ZenFS should find multiple zones,
repeatedly running its reclaiming algorithm. To mitigate the
zone reclaiming overhead, ZenFS+ needs a proactive yet
lightweight garbage collection.

According to our experimental results, ZenFS+ provides
guaranteed bandwidth to flush, isolated from compaction
jobs. Also, ZenFS+ improves the write performance of
RocksDB. In our microbenchmark results, ZenFS+ achieves
up to 4.8x higher flush bandwidth, 2.6x higher put()
bandwidth, and reduces 99.9P tail latency by 1/51 com-
pared with original ZenFS. Namely, ZenFS+ improves the
user-perceived application performance as well as compli-
cated internal operations, achieving the promise of ZNS SSD:
stable and predictable storage performance.

The contribution of this paper can be summarized as
follows.

• This paper proposes ZenFS+, a new approach to
achieving performance isolation using small-zone ZNS
SSD.

• ZenFS+ improves the performance of RocksDB by
exploiting the internal parallelism via striping data
across multiple zones.

• ZenFS+ implements proactive GC for minimizing the
run-time overhead of zone reclaiming.

• The paper presents the viability of the performance
evaluation on a real ZNS SSD device.

II. BACKGROUND
In this section, we first explain the structure of an LSM
tree-based key-value store (KVS) and its internal operations,
including flush and compaction. Then, we discuss issues of
traditional SSDs and how ZNS SSDs address these issues.

A. ROCKSDB AND LSM TREE-BASED
1) KEY-VALUE STORE
KVS is an application that stores arbitrary typed key and
value pairs. There are diverse KVS implementations, but
KVS-based on log-structured merge tree (LSM-tree) is
popularly used for big data systems because it is write
optimized and manages data in recency order. KVS places
more recent data in higher-level storage in the hierarchy
so that the user can quickly obtain it. RocksDB is one of
LSM tree-based KVS implementations [3]. To enhance the
storage performance of LevelDB [10], RocksDB introduces
concurrent flush and compaction operations.
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FIGURE 1. The RocksDB storage stack.

Figure 1 illustrates the overall storage stack of RocksDB.
In RocksDB, flush and compaction run in separate threads
from user’s get() and put() operations. RocksDB takes
advantage of storage hierarchy, placing data to memory,
cache, and storage, according to the recency order.

First, when a user puts data into KVS, it is stored in
the memory. RocksDB uses a memtable, in-memory data
structure using skiplist. The size of the memtable increases
as the user writes data, and when the size hits a threshold,
it is changed into an immutable (read-only) state.

Second, RocksDB flushes immutable memtables to the
storage. RocksDB uses an in-storage structure called sstable.
In practical settings, a sstable is stored in a file. For efficiency,
sstables are also hierarchically structured. To search for a
key, RocksDB searches through multiple sstables from the
top level to the bottom level. In the current implementation,
RocksDB uses the Bloom filter to quickly checking the
existence of data in a sstable.

Third, RocksDB manages sstables in recency order,
allowing multiple entries for the same key in sstables. That
is, new and valid entry is always located at the higher level,
and obsolete entries are found in the lower-level hierarchy.
RocksDB introduces compaction of sstables to avoid wasting
the storage capacity and performance from redundant and
obsolete entries. When the number of sstables reaches a
threshold, compaction is triggered. The compaction is a
merge sort that combines sstables and removes unnecessary
entries. The compaction is repeatedly executed over multiple
levels, reading and writing a volume of sstables.

Along with the flush and compaction operations, RocksDB
uses WAL (write-ahead-log) for the recovery of in-memory
data. Although WAL uses small storage bandwidth, it is
known that WAL has a considerable impact on latency.

B. ZNS SSD AND ZENFS
As a next-generation SSD, ZNS SSD draws attention for
predictable latency and stable performance [11]. ZNS SSD is
a kind of open-channel SSDs that allows more direct control
of the flash device from users [6]. ZNS SSD divides the entire

flash address space into multiple zones, and the user can
directly write data on a specifically named zone. ZNS SSD
does not support random writing on a zone; thus, all writes
on the zone must be sequential.

Because ZNS SSD removes the complicated FTL abstrac-
tion from the device, the hardware operation becomes
more predictable, which promises predictable storage per-
formance. Besides, ZNS SSD reduces the cost of garbage
collection from the device firmware to software. Thus, the
hardware performance never deteriorates over the lifespan.

Recent ZNS studies [7], [8], [12] focus on various
aspects of hardware and software co-design. Traditional
SSDs have internal DRAM and over-provisioning (OP) flash
capacity for garbage collection, coined as block interface
tax in [7], which can be minimized by Zone-based flash
management. The study proposed ZenFS, a zoned storage
backend for RocksDB, and presented performance with
RocksDB. In ZNS+ study [12], the garbage collection
overhead from the file system (F2FS) can be efficiently
mitigated by introducing an internal block copy operation on
ZNS SSD.

Another potential benefit of ZNS SSDs is performance
isolation [8]. The authors presented two kinds of ZNS SSDs:
typical large-zone ZNS SSD and small-zone ZNS SSD. They
also discussed the performance implication of ZNS SSD
according to the internal structure. The authors advocate
the small-zone ZNS SSD because it can provide isolated
performance for concurrent workload leveraging multiple
small zones. They also proposed a technique for detecting an
inter-zone interference and an I/O scheduling for avoiding the
interference among zones.

Now let us discuss ZenFS in more detail [7], [9]. It is a
RocksDB storage backend for ZNS SSDs using hardware
from a commercial vendor [13]. In the original design of
ZenFS, it has a journaling zone and a data zone. Files for
sstables are stored in the data zone, whereas metadata for
recovery, superblock, and mapping information for WAL
and data files are stored in the journal zone. Sstables from
different levels are allocated into different zones [14].

ZenFS does not define any operation related to garbage
collection. Instead, ZenFS has a data zone selection algorithm
that best efforts for storing sstables and WAL. The algorithm
tries to choose the zone so that the zone’s data has a similar
lifetime. In the original design, a user can heuristically
choose 6 ∼ 12 active zones for running RocksDB on ZenFS.

III. A MOTIVATION: BROKEN PROMISE OF ZNS SSD
ZNS SSD claims benefits over traditional SSD. The claimed
benefits includes 1) ZNS SSD presents stable latency and
bandwidth because ZNS SSD removes the semantic gap of
using FTL, and 2) ZNS SSD minimizes block interface tax
from garbage collection and over-provisioning. This section
presents some experiments with ZNS SSD on RocksDB,
illustrating the motivating cases of ZenFS+. Our question
is how considerable the performance interference between
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FIGURE 2. Throughput fluctuation of put, flush, and compaction
operations of ZenFS.

flush and compaction is in ZNS SSD, even on a single KVS
application.

We use a real small-zone ZNS SSD device, such that the
size of a zone is 72MB, the number of zones is 29,172,
and the total size of the ZNS SSD is 2TB. The host PC
is equipped with an Intel i7 CPU (8 cores) and 16GB
DRAM. ZNS SSD is connected through PCIe 3.0 × 4 (max
3.94 GB/s). The baseline system configuration is an Ubuntu
20.04 distribution, Linux kernel 5.15, RocksDB v6.22, and
ZenFS v2.1. To run with RocksDB, we use ZenFS from
a previous study [7] and fill random key-value pairs for
about 20 GB using dbbench_fillrandom.

Figure 2 shows the measured throughput for put(), flush,
and compaction I/O operation in (Kops/sec). In the figure, the
throughput seems stable for the first 40 seconds. Recall that
put() operation inserts key-value pairs in thememtable, and
no direct I/O operations are involved. Flush writes memtable
to ZNS SSD, making a new sstable. Compaction reads
sstables, and writes the merged sstable to ZNS SSD. Flush
and compaction introduce writing and reading/writing I/O
jobs, respectively.

After the first 40 seconds, the throughput in the figure
significantly fluctuates, and the throughput decreases for
flush and compaction. Specifically, the average through-
put of compaction, flush, and put operations decreases
from 151 to 94.7 kops/s, from 91.3 to 63.2 kops/s, and from
204.3 to 158 kops/s, respectively. The fluctuation of put()
throughput is dramatic. The throughput of put() changes
from 204.3 kops/s to 63∼213 kops/s, of which standard
deviation changes from 6.6 to 46.1.

The result is quite surprising because the ZNS SSD
promises stable performance and low latency for long-running
and write-friendly workloads. However, the results shows the
significant fluctuation in put() latency, that might be due to
the write stall for L0 flush, as pointed in [5]. The question to
us is why flush has been delayed because ZNS SSD could
write sstables on different zones, and the next level write
or compaction should not affect the L0 flush, and the flush
latency should be small.

We further investigated the reason for such degradation
and fluctuation at a low-level ZNS SSD design. Using the
raw ZNS interface, we concurrently access data blocks from

FIGURE 3. Read and Write latency to Zone X.

different zones and observe read and write latency from
different threads. Figure 3a shows the read latency from two
threads: one reads from zone 0, and the other thread reads
data from zone X on the X-axis. The measured latency for
reading zone X is presented in the graph. Similarly, Figure 3b
shows the measured latency for writing zone X while another
thread is reading from zone 0. The read and write block size
is 192KB.

Interestingly, the read andwrite latency show an interesting
pattern such that some zones are interrelated and interfere
with each other, and some other zones do not. In Figure 3a, the
read latency for zone X has three bands: 1) the read latency
for zone 32, 64, and 96 is much larger than the latency of
reading the other zones. For those zones, the read latency is
as large as 850 microseconds. 2) The latency for zones 8,
16, 24, and some more are slightly larger than the latency
of reading the rest of the zones. The latency in the spikes
is as large as 550 microseconds. 3) The read latency is as
small as 490 microseconds for the rest of the zones. Similar
to the read, peak write latency is observed in Figure 3b. In the
graph, the latency is as large as 4 milliseconds. In the figure,
we can distinguish a group of zones. Some zones affect the
performance of another zone, and some zones do not. If a
zone is independent from the other zones, the zones do not
affect the performance each other, keeping low latency. In the
figure, the low-latency zones are independent from zone 0.
However, zone 8, 16, 24 affect the performance of zone 0,
meaning that the zones are in the same group.

Based on the observation, we can define IZGs (indepen-
dent zone group) of an ZNS SSD device. An IZG is a set
of zones that are independently operable from the rest of the
zones. For example, zone 0, 8, 16, 24, 32, . . . are affecting
each other, but independently operable with the rest of the
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FIGURE 4. Overall structure of ZenFS+.

zones. Thus, the zones are grouped as an IZG. Note that there
could be multiple IZGs in the same ZNS SSD.

A reason could be the internal hardware design of ZNS
SSD that share parallelisms such as channels and ways.
That is, some zones share the internal channels. That causes
much worse performance in terms of bandwidth and latency
and results in the fluctuating performance of the flush and
compaction in Figure 2.
Also, we observe a possibility of performance enhance-

ment for concurrent workloads. If we carefully select the
multiple zones that do not affect the current zone, the
aggregated throughput can be improved over utilizing a single
zone. In summary, the zones in the same resources (e.g.
channels and ways) affect each other; however, the zones
in different resources could be concurrently utilized, without
any performance penalty, in terms of latency and bandwidth.

The current ZenFS manages zone reclaiming with lifetime
hint [7]. ZenFS tries to allocate sstables so that data
in the same zone would have a similar lifetime and
minimize the copy overhead for the live data at zone cleaning
time. In the current implementation, ZenFS limits the number
of active zones to 6∼12. That would work for large-zone ZNS
SSD that has GB-sized zones. However, the zone reclaiming
cost is considerable in large-zone ZNS SSDs [8]. For
small-zone ZNS SSD, zone utilization increases relatively
quickly than large-zone ZNS SSD. Thus, zone reclaiming
cost is relatively small but is more frequently required.

IV. DESIGN
As we observed in the previous section, small-zone ZNS
SSD needs more consideration for better performance and
isolation. Therefore, this section presents the design of
ZenFS+.

The overall structure of ZenFS+ is in Figure 4. Extending
the RocksDB interface of ZenFS [9], ZenFS+ introduces

FIGURE 5. Independent Zones Group (IZG) identification using pivot and
needle zones.

intelligent zone management functions. In the figure,
ZenFS+ has IZ identification for identifying independently
operable zones groups or Independent Zone Group (IZGs).
Based on the IZG information, ZenFS+ isolates the per-
formance of flush and compaction operations so that they
can concurrently run without harming the performance
of another. Also, ZenFS+ improves the performance of
flush and compaction by sstable striping. Leveraging the
small-zone ZNS SSD, we can achieve performance and
isolation of ZNS SSD. Further, ZenFS+ allows a quick zone
reclaiming using proactive garbage collection. The following
subsections will elaborate on the design points in detail.

A. IZG IDENTIFICATION
We devise an apparatus for identifying IZGs from a ZNS SSD
device that shares the internal parallelism as illustrated in
Figure 5. We prepare two threads: Pivot and Needle threads.
Pivot points to a zone (pivot zone), and the needle moves
around the zones (needle zones) from the pivot to the last
zone. We measure the read latency from the needle zone
thread while the pivot thread is concurrently reading the pivot
zone. If the read latency from the needle is similar to baseline
latency, that implies the pivot and the needle are in different
IZG and can independently operate. However, if the latency
is larger than a threshold, the needle zone is added to the IZG
of the pivot zone.

Once the IZG for the pivot is constructed, the zones are
independently operable with the rest of the zones. Similarly,
IZG identification is done for the next pivot zone and
constructs the next IZG. The overall process repeats until IZG
sets make the entire partition for all the zones.

Leveraging the IZG information, ZenFS+ can exploit the
internal parallelism as well as performance isolation between
flush and compaction.

B. FLUSH/COMPACTION ISOLATION
ZenFS+ isolates the performance between flush and com-
paction. With the help of IZG identification, all the zones are
partitioned into IZGs. The SSD used in our system has a total
of 32 different IZGs (IZG0 ∼ IZG31), and each IZG has about
910 zones.

A flush thread writes a sstable to the storage, and a
compaction thread reads sstables from storage, merges them
in the memory, and writes the merged sstable to the storage.
That is, flush makes write I/O, compaction makes read and
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write I/O. Note that the read andwrite speeds are different and
write latency is about four times longer than read in Figure 3.

With our design, we use different IZG zones for flush and
compaction. Reading sstable from ZenFS+ is presented in
Algorithm 1. In the pseudo-code, each IZG has a state, idle
or busy. As shown in the algorithm, compaction read should
operate on the designated zone where the sstable is stored.
Once the target zone is selected, the designated IZG is set to
busy. Once the sstable is read, the IZG is set to idle.

Algorithm 1 Read sstablei
Data: IZGi = {idle, busy}
Data: sstablei := sstable_index
len← sizeof (sstablei);
while len > 0 do

zone← FindZone(sstablei);
target ← FindIZG(zone);
mutex_lock(target);
IZGtarget ← busy;
Read the sstablei;
IZGtarget ← idle;
mutex_unlock(target);
len← len−sizeof (sstablei);

end

Writing sstable from ZenFS+ is presented in Algorithm 2.
Each IZG again has a state, idle or busy. On flush write,
ZenFS+ first finds one of the idle IZGs. Then, it sets the
selected IZG to busy and writes data on the zone in the
selected IZG. Once the write is completed, the IZG is set back
to idle. Note that the flush and the compaction threads can
concurrently operate. Thus, FindFreeZone() should be a
synchronized function. Further, compaction read should wait
for the target IZG if the IZG is busy, and used by flush thread.

Algorithm 2Write sstablei
Data: IZGi = {idle, busy}
Data: sstablei := sstable_index
len← sizeof (sstablei);
while len > 0 do

target ← FindFreeIZG();
zone← FindFreeZone(target);
mutex_lock(target);
IZGtarget ← busy;
Write the sstablei;
IZGtarget ← idle;
mutex_unlock(target);
len← len−sizeof (sstablei);

end

If the compaction thread is working on a zone, the IZG
should be busy, and the IZG would not be selected for
the flush. Because the flush operates on idle IZG, it can
efficiently avoid interference with compaction reading. If the

FIGURE 6. ZenFS+ with isolated flush from compaction.

FIGURE 7. ZenFS+ sstable striping: concurrent write to sst0,0, sst0,1 and
sst0,2.

flush thread writes on a zone first, and the compaction wants
to operate on that IZG, the flush thread always preempts the
compaction and delays the compaction job.

On compaction write, ZenFS+ can also flexibly choose the
zones from free IZGs. It also sets the selected IZG to be busy
during the writing and IZG to be idle after the writing. For
flush and compaction write, the flush and the compaction
threads compete for the IZG. However, the number of IZG
is as large as 32; the concurrency seems enough to isolate
the flush and compaction writes, considering the case when
the RocksDB have two threads (the flush and the compaction
threads) compete for IZG.

Figure 6 shows the conceptual illustration of flush write
from compaction read and write. In the figure, IZG0,
IZG1, and IZG2 can be concurrently accessed without
any interference. Thus, flush writing on zone 0 (Z0) is
isolated from compaction on zone 33’s read and zone 34’s
write. In summary, ZenFS+ tries to isolate the performance
between flush and compaction, which is our primary design
goal.

C. SSTABLES STRIPING
Besides the performance isolation, ZenFS+ improves the
overall performance by sstable striping. ZenFS+ can concur-
rently utilize multiple zones for faster reading and writing.
To increase the aggregated I/O bandwidth, free IZGs can also
be used for reading and writing if available.

Striping sstables over multiple zones is illustrated in
Figure 7. In the figure, sstable0 is spread over three zones,
zone0, zone1 and zone2. sst0,0, sst0,1, and sst0,2 represents
striped sstable0 in each zones, respectively. Then, ZenFS+
can concurrently flush sstable0 to three zones, increasing the
bandwidth utilization by three times.

VOLUME 11, 2023 26349



M. Oh et al.: ZenFS+: Nurturing Performance and Isolation to ZenFS

Striping of sstable makes ZenFS+ operations complicated.
If we spread a sstable over all IZGs when we flush
the sstable, then flush performance would get the best
bandwidth; however, compaction would starve until the flush
is completed. Also, once a compaction read has to utilize all
the IZGs, the flush cannot timely get free IZG because all
the IZGs are busy. If we use only one IZG for flush write,
the flush write will under-utilize the device bandwidth, and
RocksDB will suffer from low flush performance. To balance
between the wide striping for maximum bandwidth and
limited striping for guaranteed performance for flush and
compaction, we define the maximum striping width as a
control parameter of ZenFS+ so that the flush can get
guaranteed bandwidth, avoiding write stall. We set the default
maximum striping width as 16.

D. PROACTIVE GARBAGE COLLECTION
Zone garbage collection (GC) is a job that reclaims used
zones to regenerate newly available zones. It consists of three
steps: 1) selecting candidate zones, 2) copying valid data from
selected zones, and 3) sending the zone_reset command to
ZNS SSD. ZenFS+ requires more consideration on GC than
the existing ZenFS since it is based on small-zone ZNS SSD.
In this case, zone GC may takes less time due to small size,
but regenerating less free space, meaning that zone GC need
to be triggered more frequently.

There are several issues related to zone GC such as
triggering time, zone selection policy, hot-cold separation
policy, and metadata management after copying. We follow
most existing schemes of ZenFS except the triggering time.
In ZenFS, zone GC is triggered when all the zones are used
up. It requires considerable run-time, having a high potential
to delay user requests. In contrast, in ZenFS+, zone GC is
triggered periodically (e.g. every 10 seconds) or when the
available space is below a threshold (e.g. 10% utilization).

We implement two versions of zone GC, called as minor
GC and full GC, respectively. Note that ZenFS+ (also ZenFS)
allocates different levels into different zones to achieve the
hot-cold separation benefit since the lifetime of sstables in
level 0, L0, is short [15]. Hence, a zone allocated for L0 has
a high probability of containing all invalid data. Hence,
we search zones in L0 first and then find a zone that has
all invalid data. Then, we just send the zone_reset command
without copying. This is called as the minor GC. For the
full GC, ZenFS+ scans all zones ranging from L0 to Lmax
and selects candidate zones using the greedy policy selecting
lower zones first.

As already mentioned, ZenFS+ proactively triggers zone
GC every 10 seconds. In this case, ZenFS+ uses the minor
GC. ZenFS+ also runs zone GC when the ZNS SSD’s
available space is below a given threshold (fullGC_trigger).
In this case, it invokes the full zone GC. Although our
proactive GC runs frequently, the design makes it easy and
light weight because 1) the zone size is small and so does the
zone reset cost, and 2) minor GC avoids data copy, which is
the major source of the overhead in GC.

FIGURE 8. ZenFS+ write performance with fillrandom workload.

One additional issue in ZenFS+ is that it stripes sstables
over multiple zones for the high write throughput. Thus,
zone GC is conducted at the unit of multiple zones, like the
superblock based FTL in traditional SSDs [16]. The merit of
this coarse-grained GC is reducing the overall GC time by
utilizing IZGs in parallel.

V. EVALUATION
A. PERFORMANCE AND ISOLATION OF ZENFS+

UNDER FILL RANDOM WORKLOAD
We evaluate ZenFS+ with different configurations on
RocksDB benchmarks. Our hardware and software config-
uration for experiments are the same one in Section III.
We comparatively present the result of ZenFS+with the open
source ZenFS [9]. Firstly, we present the write performance
with a fillrandom workload.

To measure the bandwidth, we write about 20GB of
random key-value pairs. The default key size is 20 bytes, and
the value size is 800 bytes. Memtable size is 64MB.

Figure 8 shows the measured bandwidth during the fill
random. In the figure, ZenFS+ S, R represents the ZenFS+
with sstable striping and zone reclaiming. ZenFS+ S,I,R rep-
resents the ZenFS+ with sstable striping, flush/compaction
isolation, and zone reclaiming.

To present the performance enhancement from sstable
striping, we change the number of active IZGs. In the graph,
X-axis is the number of active IZGs. Original ZenFS uses
6∼12 active zones, and the performance in the range is
almost the same. A possible reason for the low bandwidth
of ZenFS is that we are using a small-zone ZNS SSD
device. For the small-zone ZNS SSD, the limited internal
parallelism in a zone makes it difficult to scale performance.
ZenFS+ S, R shows the performance scalability, overcoming
a zone’s limited internal parallelism. Utilizingmultiple zones,
ZenFS+ achieves higher aggregated bandwidth. Besides,
flush/compaction isolation further improves performance
because ZenFS+ isolates the IZG to guarantee flush perfor-
mance, avoiding the write stalls.

In terms of utilized bandwidth, ZenFS and ZenFS+
show different characteristics for fillrandom workload.
We measured the utilized bandwidth for put(), flush, and
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FIGURE 9. Fill random utilized bandwidth during the benchmark
execution.

compaction during the execution. For put(), we calculated
the amount of data by accounting for the completed trans-
actions multiplied by the number of bytes per transaction.
We plotted raw flush and compaction and put bandwidth from
the RocksDB log to present the time-series variation of device
utilization. The measured bandwidth with ZenFS (9a) and
ZenFS+ (9b) are presented in Figure 9.

In Figure 9a, flush shows the device utilization around
30MB/s, compaction ranges from 70∼90 MB/s. The put()
has two ranges: a high band around 50∼68 MB/s and a low
band around 5∼7 MB/s. With ZenFS, flush presents stable
bandwidth utilization; however, it would delay the put()
operation quite frequently, and put() operation cannot
enough bandwidth, resulting in low put() bandwidth.
With the ZenFS+ in Figure 9b, put() and flush can

get guaranteed bandwidth, which shows strong isolation of
flush from compaction. It shows much more stable flush
bandwidth usage than ZenFS and higher bandwidth usage.
A possible reason is that ZenFS+ segregates flush IZGs from
compaction IZG, and both operations can exploit the internal
parallelism of ZNS SSD hardware. In addition, compaction
bandwidth ranges from 230∼ 300MB/s, which is about three
times higher device utilization compared with ZenFS. The
fluctuation in the compaction might be due to the fact that the
priority of the compaction thread is lower than that of flush.

Additionally, observe that put() performance is stable
and predictable with ZenFS+. It has a very narrow single

TABLE 1. Tail latency of ZenFS+ for put() requests.

band, keeping the bandwidth as high as 91MB/s, whereas
the original ZenFS’s average put() bandwidth is about
35MB/s. The result supports that ZenFS+ improves the
perceived performance for the user 2.6 times higher.

Overall tail latency for 1,000 seconds fillrandom workload
is given as following Table 1. ZenFS+S shows the tail latency
of ZenFS+ with sstable striping, and ZenFS+S,I,R shows
the tail latency with sstable striping and flush/compaction
isolation. The 99th percentile tail latency of ZenFS and
ZenFS+ are 20.8 usec and 7.3 usec, respectively. ZenFS+
reduces tail latency by a factor of 3, which is a good
result. The gap increases when we magnify the 99.9 and
99.99 percentile tail latency. The tail latency of ZenFS is
over 1 millisecond, and ZenFS+ with sstable striping still
remains in 22.736 ms, 175.499 ms, respectively for 99.9P
and 99.99P tail latency. A reason is that the sstable writing is
spread over multiple IZGs; thus, write stall due to slow flush
could be further relaxed. ZenFS+ with flush/compaction
isolation further reduces the tail latency. For 99.999P tail
latency, ZenFS+S,I,R shows 1/8 latency values thanks to the
flush/compaction isolation. Note that the maximum latency
improvement is observed in 99.9P tail latency, in which case
ZenFS+ reduces the tail latency by 1/51.

To plot the latency trends in time-series, we separately
gather the tail latency statistics for every 100 ms put()
requests (requests bucket). Then, we measure the tail latency
for each put() requests bucket. Then, we plot 99P, 99.9P,
and 99.99P tail latency values. Thus, the graph in Figure 10
shows the time series trend of tail latency. Note that the Y-axis
has different scales due to the large gap in latency values
between the configurations.

In the graph, ZenFS+ presents much-improved latency
along with the sstable striping and flush/compaction isola-
tion. With sstable striping, the 99P tail latency decreases
from 1.5 ms to 20 microseconds. The 99.99P tail latency
shows much dramatic change of flush/compaction isolation,
compared with ZenFS+ stable striping.

B. ZENFS+ UNDER DIVERSE WORKLOADS
More than the fillrandom workload, we run the RocksDB
benchmark for the different workloads, including overwrite,
updaterandom, readrandom, and readwhilewriting. We mea-
sured the overall performance in terms of bandwidth.

Figure 11 shows the results from dbbench benchmarks.
ZenFS+ shows comparably better performance than previ-
ous ZenFS. For Fillrandom and overwrite, the bandwidth
has increased by 4.7∼4.8 times, and for updateRandom,
ReadRandom, and ReadwhileWriting, the ZenFS+ presents
improved bandwidth by 2.5∼2.8 times higher than ZenFS.
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FIGURE 10. ZenFS+ Tail latency per 100ms put() requests bucket.

FIGURE 11. More dbbench results with ZenFS+.

Tomake the ZNS SSDs aged, wewrite 10TB on the device,
resetting random zones. After writing the 10 TB of data,
we reset 20% of the zones for further writing. The aged
ZNS SSD performance in the graph shows almost negligible
differences (-2∼4%) for most cases. The largest outlier is
ReadRandom, of which overhead is about 8%.

The result contrasts with the result from traditional SSD.
We ran the same experiments with the traditional SSD. The
traditional SSD used for this experiment has the same internal

FIGURE 12. dbbench results from traditional SSD.

architecture as the small-zone ZNS SSD except only for the
feature that supports the ZNS interface. The traditional SSD
uses the traditional block interface. The traditional SSD is
aged with writing 10TB of data on the 2TB SSD. The device
has about 15% of over-provisioning capacity and runs with
full FTL that runs garbage collection.

With the traditional SSD, considerable performance deteri-
oration along with the lifespan of SSD is observed, as shown
in Figure 12. Due to the garbage collection and the block
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FIGURE 13. Copied bytes from GC during 5 TB put transaction.

interface tax, the performance drop ranges from 44∼58%.
The smallest overhead was 25% when we ran ReadRandom.

ZenFS+ shows a very narrow band of performance change
over time. Due to the limited IZGs in flush width, ZenFS+
performance is slightly lower than the SSD in the initial state.
However, the performance after aging contrasts with the clear
advantage of ZNS SSD over traditional SSD in the lifespan.

C. PROACTIVE GC AND WRITE AMPLIFICATION RESULT
ZenFS+ implements proactive GC with quick minor GC,
which affects the performance in a more prolonged execution
of RocksDB. To present the viability of proactive GC,
wemeasured the amount of copied data for a longer execution
run.

First, we fill the 1.5TB ZNS SSD storage with random
data using randomfill workload. Second, we run the overwrite
workload for 3.5 TB. In the given workload, RocksDB will
continuously put data to the memtable, flush them to the
sstables, and eventually trigger compaction. The compaction
would eventually result in storage consumption, and the
working set size is larger than the physical storage size; thus,
compaction should trigger garbage collection in the end.

ZenFS has no garbage collection. Thus, if the write size
is larger than the storage, RocksDB stops at the point.
We slightly modified the ZenFS to trigger the full GC at a
specific threshold (fullGC_trigger) like ZenFS+. ZenFS+
conducts minor GC every 10 seconds and full GC when the
device utilization hits the threshold.

Figure 13 shows the amount of copied data fromGC during
the execution. In the graph, full GC copies 1.1 ∼ 3.3 TB
of data due to GC, whereas ZenFS+ reduces the amount
of write to 0.5 ∼ 1.8 TB, which shows our proactive GC
is effective and improves write amplification for the long-
running workloads, also.

D. YCSB ON ZENFS+

To present the viability of ZenFS+ in more realistic cases,
we run the YCSB on ZenFS+. YCSB is a popular benchmark
suite for cloud data center transaction processing. With
the 20GBs of data, we ran YCSB A∼F workloads and

TABLE 2. YCSB workload.

FIGURE 14. ZenFS+ performance under YCSB workloads.

measured the execution time for the workloads. A summary
for workload A∼F is given in the following Table 2.
Figure 14 shows the completion time of each workload

under different configurations. Note that the Y-axis is the
runtime in seconds, and the lower values present the better
results. In the graph, ZenFS represents the result from the
original ZenFS, ZenFS+ S represents the ZenFSwith sstables
striping, ZenFS+ S, I adds the flush/compaction isolation,
ZenFS+ S, I, R adds the zone reclaim to the previous
configurations, respectively.

In the graph, workloads A, E, and F show meaningful
execution time enhancement. Workloads A and F have
write-heavy and update-heavy operations, and the sstable
write performance is going to be important. Workload E is
a range scan workload, and the workload reads 100k data for
the scanned entry. If we stripe data over multiple zones, the
reads could also get help from striped reading.

In the graph, the primary performance gain comes from
sstable striping. Also, flush/compaction isolation helps in
overall performance. The performance gain in terms of
throughput for A, E, and F are 105%, 50%, and 57%, respec-
tively. The result supports that ZenFS+ design effectively
achieves performance enhancements.

For read-heavy workloads (B, C, D), the execution time
has slightly increased in ZenFS+. That might also be due
to sstable striping. Contrary to the write, when a user reads
sstable, the reading zones are designated based upon the
location of the data file. Thus, the reading threads could
compete for the IZG, presenting some overhead of reading
from the same IZG. Note that YCSB workload queries
randomly distributed key-value pairs. The distribution of
accessing keys are Zipfian, yet the spacial locality of
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TABLE 3. Reduced execution time and performance gain (ratio over
ZenFS).

accessing key is not considered. The locality of accessing
keys makes random access in different sstables, rather than
reading keys from nearby sstables; thus, it is known that read
performance in production could be better in practice [2].

Thus, the performance gain is less than expected. The
reduced performance for B, C, andD are 32%, 26%, and 29%,
respectively. A reason could be the asymmetric read-write
performance of flash I/O, and the writing has a more
significant impact than the reading.

The reduced execution time and more detailed results
compared with ZenFS is presented in Table 3. In summary,
the ZenFS+ results from YCSB macro benchmark shows
50% ∼ 100% enhancements in write-intensive workload,
and about 20% ∼ 30% enhancements in read-intensive
workloads.

E. ZIPPYDB ON ZENFS+

Although YCSB has long been a standard benchmark
for NoSQL databases [17], a recent study [2] reported
that the real-world workload on production systems is
slightly different from synthetic YCSBworkloads.We further
run ZenFS+ with ZippyDB workload, where ZippyDB is
a storage engine for Paxos-based distributed KVS, and
RocksDB stores metadata of ObjStorage file or a data block
with its address information. The exact parameter we used is
the same in the paper [2].

ZippyDB workload has much more reading requests than
writing requests, and the key-value size varies according to
the modeled pattern. ZippyDB creates randomly generated
50 million KV entries before execution, and the loaded
RocksDB size is about 4GB. Then, according to the workload
patterns, put, get, and seek operations are conducted on the
database. For specific parameters, the key size is 48 bytes,
and get(), put(), and seek() operations are 83%, 14%,
and 3% of total queries, respectively.

We measured the throughput for the main workload
execution, mixed reading, writing, and seeking workloads.
ZenFS achieves 17.6 MB/s, and ZenFS+ achieves 20.5 MB/s
in terms of throughput. The result from our experiment shows
ZenFS+ improves 18% throughput under production-close
workloads.

VI. DISCUSSION
ZNS SSDs, like any other SSDs, have several hardware
design parameters. The number of zones, the size of zones,
the number of channels and ways, the number of pages in
blocks, etc. One concern around the ZenFS+ is whether the

design fits large-zone ZNS SSD or not. For example, a large-
zone ZNS SSD device would easily get the write performance
without sstables striping. ZenFS+ intelligently identifies the
IZG information; thus, ZenFS+ configures a single IZG for
large-zone ZNS SSD device. In the case, it inherently limits
the sstable stringwidth to 1, and compatibly workwith ZenFS
settings.

Currently, ZenFS+ assumes small-zone ZNS SSD as
an alternative to large-zone ZNS SSD because small-zone
ZNS SSD has a substantial benefit with regard to perfor-
mance isolation under concurrent workloads. Also notice
that large-zone ZNS SSD is inherently hard to achieve
performance isolation because it does not allow to control
the internal parallelism from software side. Namely, it gives
much freedom in software design, considering the zones
allocation and fine-grained garbage collection.

ZenFS+ focuses on RocksDB and KVS applications.
However, the proposed primitives, such as IZG-based striped
writing and minor GC, are generally applicable to small-zone
ZNS SSD and can be used in different applications. Large-
zone and small-zone ZNS SSD devices would have different
applications that fits its usages. Large-scale machine learning
system’s model check pointing would like to leverage
large-zone ZNS SSD, maximizing the device bandwidth.
On the other hands, multi-tenant applications’ performance
provisioning would require small-zone ZNS SSD, guaran-
teeing isolated performance between each tenant. ZenFS+
provides a new perspective of leveraging ZNS SSD, not only
in terms of long-running GC-related benefits, but also in
terms of performance and isolation, extending the ZenFS
study.

Yet, some information from the hardware could improve
the current ZenFS+. For example, IZG identification is
a software guessing method for obtaining information on
internal parallelism. For some ZNS SSD devices, the internal
mapping between the channels and zones could be different.
The software can flexibly leverage internal parallelism if any
public interface gives such information.

VII. RELATED WORK
There are lots of studies on RocksDB. First of all, Siying et al.
presented extensive experience in developing RocksDB
in practical systems [3]. It presents how RocksDB has
been evolving and optimizing various aspects of perfor-
mance, including write/space amplification, data format
and compression, backward compatibility, backup and data
corruption handling, and scalability under multi-RocksDB
instances.

YCSB has been a standard benchmark in NoSQL
databases. Workload statistics from real-world applica-
tions are the precious basement for further optimization.
Zhichao et al. have reported how a real-world application’s
workload differs from the synthetic model in YCSB [2].
The authors revealed the locality pattern in searching keys,
the distribution of keys and value sizes, and time-varying
search patterns with the three representative workloads.

26354 VOLUME 11, 2023



M. Oh et al.: ZenFS+: Nurturing Performance and Isolation to ZenFS

Also, Yoshinori et al. have reported how RocksDB supports
large-scale social graph applications [4].

To optimize the search time, MatrixKV [18], DiffKV [19]
separates keys from values. By separating the keys from
values, we can efficiently utilize the I/O bandwidth for
searching keys. Write with a guard, PebblesDB [20] divides
the key space into fragments and proposes a fragmented LSM
tree-based KVS. Bourbon [21] uses learned index for quickly
pinpointing the index location in the sstable, TridentKV [22]
also uses adaptive index for read-optimization. Remix [23]
proposes re-indexing the tree for range query, S3 [24] uses
CPU-optimized data structure [25] and semi-ordered skiplist,
respectively.

Some recent studies observed that complicated flush and
compaction would interfere with each other resulting in long
tail latency [5], [26]. In a study, the authors proposed a
scheme that prioritizes the flush thread over compaction
threads [5]. In the scheme, the prioritized flush can preempt
compaction so that the flush and write operation cannot be
delayed by compaction. In a recent study [26], the authors
proposed a KVS flush scheme on a new operation mode
(Predictable Latency Mode or PLM) of SSD. With the
PLM mode, the device’s internal channel can be flexibly
configured so that other operations cannot block the flush
channel.

Optimizing KVS performance, some studies leverages
the storage hierarchy and advanced memory technologies.
Studies focus on the different performance characteristics
of DRAM, NVM, and relatively slow SSDs. SpanDB [27],
[28] allows the user to place low-level sstables in slower
SSDs, whereas putting top-level sstable and WAL on the
faster NVMe SSD. With high-performance hardware on
a higher-level storage hierarchy, SpanDB adopts parallel
WAL writes via SPDK, improving throughput and latency.
MatrixKV [18] and TriangleKV [29] are approaches to
leverage NVMe with SSD. The authors proposed a matrix
container that packs level-0 sstable within NVM. Also, the
authors focused on write stalls from L0 − L1 compaction
and proposed column compaction that conducts L0 − L1
compaction at fine-grained key ranges. Pacman [30] intelli-
gently leverages persistent memory in garbage collection and
compaction operation of log-structured KVS. The authors
minimize the indexing and copying overhead in compaction
and garbage collection. Placing index and staged buffer [31]
and WAL [32] on persistent memory could accelerate
LSM-style KVS performance.

Minwoo et al. recently presented a newRocksDB accelera-
tion scheme leveraging parallel I/O access of ZNS SSD [33].
The authors pointed out that the level of SST could affect the
parallelism in ZNS SSD utilization. The proposed striping
idea takes the advantage of small-zone SSD, similarly to
our paper. On the other hand, our work considers lever-
aging the hardware parallelism aligning with the software
threading such as flush / compaction. Thus, we improve the
application’s tail latency as well as throughput. Also, minor
GC of ZenFS+ largely reduces the unpredictable overhead

FIGURE 15. Various key-value store storage stack with different SSD
architecture.

from GC, which is essential component for long-term
execution.

Figure 15 presents the software layers for KVS and the
internal structure of traditional SSD devices. The software
layer consists of device firmware and host software. Device
firmware includes a flash translation layer (FTL) that maps
logical blocks to physical blocks, conducts garbage collection
(GC), and so on. Host software includes a file system inside
the OS kernel and KVS engine in the application.

There have been concerted efforts toward efficient, stable,
and intelligent next-generation SSDs. One approach tries to
move the host software into an SSD device, known as ISP (In-
Storage Processing), as depicted in Figure 15(b). A typical
example of this approach is KVSSD (Key-Value SSD) [34],
[35], [36], [37], which implements a key-value store within
SSDs. In the figure, the user application directly sends
put() and get() commands to the device, and device
firmware handles all the application-specific operations
internally. KVSSD have already been standardized [38]
although there are several application-specific SSD studies
such as in-flash acceleration [39], in-storage ransomware
filter [40] and in-storage file system indexing [41].

The other approach tries to move FTL functionalities
out of the device and let the host software drives the
hardware, as presented in Figure 15(c). In this approach,
hardware exposes the internal structure of SSDs so that the
host software makes the best use of underlying hardware.
In the figure, the device has minimal FTL with device
software, and host software drives the hardware and runs the
KVS application. Typical examples of this category include
OCSSD (Open-Channel SSD) [42], [43], [44], [45], SDF
(Software Defined Flash) [46] and Multi-streamed SSD [47].

In the context of ZNS SSD, several optimizations in the
storage stack have been published in the literature. For
example, an RDB application running on an LSM-style
based storage engine makes duplicate logging functions
at different layers. Kecheng et al. presented an LSM-
tree-based RDB system, removing the redundant logging
function from the storage stack [48]. Also, some KVS
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studies optimize the software overhead of unnecessary
file system interfaces for KVS applications, introducing
minimal filesystem adaptation layers such as TopFS [27]
and ZenFS [7]. Hee-rock et al. observed the zone’s lifetime
prediction inaccurately in ZenFS [14]. Instead, the authors
proposed compaction-aware zone allocation that makes the
lifetime of a zone more accurately predictable. Jung and Shin
observed that compaction of KVS makes partially invalid
zones in ZNS SSD [15]. To minimize the garbage collection
overhead, the authors selectively put sstables that have similar
lifetimes into the same zone, relaxing the write and space
amplification from garbage collection. Shai et al. presented
an approach to using ZNS SSD as a swap device [49].
Because ZNS SSD has a little cost of firmware-level garbage
collection, the swap performance has significantly increased.

VIII. CONCLUSION
This paper proposes a new approach to KVS, using ZNS
SSD. Extending ZenFS, the state-of-the-art ZNS-supporting
software, we present ZenFS+. ZenFS+ presents how ZNS
SSD can support the performance and isolation of modern
KVS. ZenFS+ intelligently distinguishes independent zones
group and isolates the performance of flush job from
compaction. Thus, flush utilizes much stable bandwidth and
latency for write intensive workloads. In our experiments,
ZenFS+ reduces 99.9P tail latency by 1/51. Also, ZenFS+
leverages the IZG information to exploit the device’s internal
parallelism. With the striped sstable, ZenFS+ achieves up
to 4.8x higher flush throughput and 2.6x higher application
throughput for microbenchmark, and about twice throughput
in macro benchmark, compared with the current ZenFS
implementation. We further implement a proactive GC,
a missing part in the current ZenFS, making it more
sustainable in real-world systems.
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