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ABSTRACT To predict the damage resulting from an explosion in the middle of a city, where buildings
are concentrated, the peak pressure reaching the walls of the buildings or in between buildings should be
accurately and rapidly calculated. However, predicting peak pressure between buildings is known to be very
difficult because of the diffraction and reflection of blast waves, which have generally been analyzed by
numerical analysis methods. However, numerical analysis is not suitable in a military operation environment
which requires rapid analysis, because it takes considerable time and resources. This study proposes a deep
neural network that quickly and accurately predicts the peak pressure caused by the propagation of blast
waves, for the effective analysis of weapon effectiveness and damage in urban environments. The proposed
deep learning model is based on a 3-dimensional convolutional neural network (3D CNN) model that
processes the spatial information of explosion andmeasurement in the 3D spaces using 3D kernels. To predict
the peak pressure between buildings separated by an arbitrary distance using a single model, we also
propose using conditional convolution, which modulates the prediction output according to the building
distance. The proposed models were trained with a dataset constructed through finite element analysis with
various building distances, explosion locations, and explosive weights. The experiment with a fixed building
distance showed that the relative error of the proposed 3D CNN is less than 7%, which is 2.5 times more
accurate than a simple multi-layer perceptron (MLP) model. For unseen building layouts, the conditional
3D convolution showed 3.6 times lower error than the MLP model, demonstrating the effectiveness of the
conditional convolution for prediction in arbitrary building layouts. Most importantly, the proposed deep
learning models took less than one minute per prediction, which is significantly faster than finite element
analysis, which takes 6 to 8 hours to analyze a single simulation case.

INDEX TERMS Blast wave propagation, blast response, damage assessment, CNN, deep learning, CFD,
Ansys Autodyn.

I. INTRODUCTION
The task of weapon effectiveness analysis is to quantify
the degree of damage that can be inflicted on a target
by weapons. To accurately predict the damage inflicted in
internal or external components such as buildings, personnel,
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and machines by an explosion, it is necessary to calculate
the peak pressure at each target location, by analyzing the
blast wave propagation generated by the explosion [1]. The
propagation of blast waves varies greatly depending on the
local environment. The theory of blast wave propagation
in open areas and free spaces is well known, and physical
quantities such as pressure, impulse, and duration of blast
wave can be predicted with acceptable accuracy usingmodels
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such as Kingery-Bulmash model, which were developed
using experimental data [2]. When an explosion occurs
externally, blast damage to a single building and its internal
and external components can be assessed by calculating the
load caused by blast waves acting on the building structural
members according to the Kingery-Bulmash model, and
the methodology described in UFC-340-02 [3]. However,
when several buildings are located closely together, and
the gap between buildings is not large enough, it becomes
impossible to apply the Kingery-Bulmash model and UFC
340-02 methodology.When the distance between buildings is
less than the width or height of the building, it is very difficult
to predict the peak pressure in the space between buildings
due to the diffraction and reflection of the blast waves
[4], [5], [6]. Until now, numerical simulations using finite
element analysis tools ([7], [8], [9]) have been considered the
most accurate method for predicting blast wave propagation.
However, these models require considerable amounts of
processing time to complete the simulation run, even with
top-of-the-line computers. Therefore, numerical analysis is
not suitable for military operational environments that require
the rapid prediction of damage or weapon effectiveness.

While a few studies have improved prediction speed by
using equations empirically generated based on the results
of multiple finite element analysis [13], [14], they provide
fair accuracy only in specific configurations assumed by
the equations. In an effort to increase accuracy as well as
the speed, recent studies introduced neural networks that
can predict explosion pressures in complex environments
[15], [16]. However, these studies utilized simple multi-
layer perceptron (MLP) models, and they did not consider
various interference effects produced by buildings in a city
center.

In this study, we develop a method that can quickly predict
damage when an explosion occurs in the middle of the
city where buildings are concentrated. The proposed method
utilizes artificial neural networks to overcome the significant
computational cost required by numerical analysis based
peak pressure estimation. The explosion scenarios in actual
combat environment can be so diverse that a single deep
learning model cannot cover them all with high prediction
accuracy. Therefore, this study focuses on common scenarios
in structured environments with buildings of the same size
and shape placed in a straight line, which is generally
assumed to be the case in urban combat situations by most
weapon effectiveness analysis methods. In short, the purpose
of this work is to predict the peak pressure at certain locations
between buildings with arbitrary spacing, when variable
weights of TNT (trinitrotoluene) explosives are exploded at
diverse locations.

Among these diverse variables, the location of the explo-
sion, the weight of TNT, and the peak pressure at each mea-
surement location involve information in three-dimensional
(3D) space. Therefore, instead of simply supplying their
numerical values to the model, we propose constructing
them as 3D features. To effectively learn and infer these 3D

features, we design a model based on a 3D convolutional
neural network (3D CNN) that performs the transformation
between three-dimensional features.

As mentioned above, this work aims to predict the peak
pressure between buildings when the buildings are spaced
with arbitrary distances. Therefore, it is necessary to develop
a method that can effectively perform inference at different
distances using a single model, so that simulations of varying
distances do not require additional data collection and model
learning. To accomplish this, building layout information
should also be provided to the model so that the model
can consider the spatial relationship between the buildings
and the explosion/measurement space. This information can
be regarded as a condition variable that affects the CNN
model’s function between the input and output features.
Accordingly, we apply the conditional convolution technique,
which has been used to effectively supply condition variables
for deep learning models. Specifically, the building distance
information is supplied to the intermediate layer of the
model using the feature-wise linear modulation technique,
to effectively predict the peak pressure for various building
placement environments.

To train the deep learning model with high inference
accuracy, we constructed a large quantity of relevant data
through numerical analysis. The performances of the pro-
posed models, a 3D CNN and a conditional 3D CNN with
building layout conditions, were compared with a simple
multi-layer perceptron (MLP) model as well as a finite
element analysis technique. The experimental results showed
that the average root mean square error (RMSE) of the
peak pressure values predicted by the proposed model is
within 7% of the peak pressure values from a finite element
analysis technique, for an arbitrary explosive position and
TNTweight in a trained building placement scenario. The 3D
CNN showed 3.8 times and 2.5 times higher accuracy than the
MLP model using 3D coordinate features or distance-angle
features. In addition, the peak pressure prediction even in
unseen building placement conditions exhibited relative error
within 10%, which is 2.6∼3.6 times less than the prediction
from theMLPmodels. Most importantly, the proposed model
took only about 40 msec to predict one scenario, significantly
reducing prediction time compared to finite element analysis
techniques, which take 6-8 hours.

The key contributions of this paper can be summarized as
follows:

• This is the first study that utilizes an artificial neural
network to predict peak pressure between buildings after a
weapon explosion, as far as we know.

• This paper proposes an effective neural network archi-
tecture for predicting peak pressure in cases with diverse
building layout by exploiting 3-dimensional convolution and
conditional convolution.

• The proposed model achieved fair prediction perfor-
mance (less than 10% relative error) compared to finite
element analysis, with a significantly lower computing
latency.
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FIGURE 1. Diffraction and Superposition of blast waves between
buildings.

The rest of this paper is organized as follows. Section II
introduces related studies and the theoretical background
of this study. Section III describes the construction of
training/validation data. In Section IV, we propose three types
of deep learning models, a simple multi-layer perceptron, 3D
CNN, and conditional 3D CNN, for peak pressure prediction.
Section V evaluates the proposed method against other
approaches, and Section VI concludes our study.

II. RELATED STUDIES
To rapidly calculate the peak pressure of blast waves
propagated by weapon explosions in open space, Kingery-
Bulmash (K-B) charts [10] are commonly used. However,
the K-B chart is more limited in a city with many buildings
because it does not consider reflection and diffraction
generated between buildings.

When blast waves are propagated in a narrow passage
between buildings, reflected waves are generated from the
outer walls and the ground of the building as shown
in Figure 1. It is then diffracted by the corners of the
building, and the intensity of the peak pressure is reduced.
These reflected waves, diffraction waves, and waves with
interference effects are overlapped at the point where the peak
pressure is measured. To predict the peak pressure without
using simulations, the waves and their interference effects
have been theoretically calculated. The reflected wave can be
calculated by applying the reflection coefficient to the peak
incident pressure, as follows [11]:

Pr (t) = CR × PSO×

[
1 −

(t − tA)
t0

]
× e

−

(
t−tA

θ

)
(1)

where Pr (t) is the time-pressure history of the reflected wave
(kPa),CR is the reflection coefficient,PSO is the peak incident
pressure (kPa), tA is an arrival time of the initial shock front
(msec), t0 is the positive pressure duration (msec), and θ is
the shape constant of the pressure waveform.

Diffraction waves have been continuously studied to
determine diffraction coefficients. Miller et al. noted that the
diffraction coefficient of a rectangular structure is 0.35 [12].
When theoretically calculating the overlap of waves with this
interference effect, it is impossible to calculate all waves
reaching the pressure measurement position, so only a few
waves with high pressure are added. While theoretical equa-
tions have been used when quickly considering interference
effects such as reflection and diffraction, the accuracy was
inevitably reduced by the many assumptions and limited
theoretical predictions. Therefore, in an environment where
reflection and diffraction occur a lot, peak pressure analysis
is generally performed using a numerical analysis tool, which
has been proven to be the most accurate compared to the
actual experiments.

Using numerical analysis to predict blast propagation
involves a considerable amount of computing time. However,
in a military environment, much faster prediction methods
are required than is possible with a numerical analysis
program to provide rapid analysis of the damage or weapon
effectiveness. Recently, studies have been conducted to
improve prediction speed with high accuracy, by developing
empirical prediction equations based on numerical analysis.
For instance, Sung et al. proposed a simplified explosion
prediction method acting on structures located at the rear
of a single barrier [13]. In this technique, the peak pressure
is predicted based on a wave propagation distance and a
diffraction coefficient empirically generated by the finite
element analysis results. In [14], a model was developed that
predicted the magnitude of the pressure acting on the column
by calculating an interpolation equation based on the results
of a finite element analysis when the blast wave propagated.
However, it still has poor predictive performance compared
to finite element analysis and cannot be applied to various
environments such as the space between two buildings.

In an effort to increase accuracy and the speed of
calculation, research has also begun to predict peak pres-
sure using neural networks. Remennikov et al. [15] and
Bewick et al. [16] developed high-speed analysis models that
can predict the effects of explosion pressure on structures
above a barrier by applying neural networks. Zhou et al.
proposed an approximate similarity analysis formula based
on the optimal curve of numerical simulations [17]. Because
neural network approaches are nonlinear and perform well
on problems involving many independent variables, they
are suitable for predicting explosion pressures in complex
environments.

Until now, there has not been much research using neural
networks that predict blast propagation or blast pressure
under the various interference effects produced by buildings
in a city center. In addition, existing studies of neural network
based peak pressure prediction have mainly utilized simple
multi-layer perceptron (MLP) based models, and no study
has used CNNs to predict the peak pressure of a blast wave.
In this study, we propose using 3D CNN models to speed up
the online prediction of peak pressure while maintaining a
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FIGURE 2. (a) Model for finite element analysis shown in top view and
(b) shown in bird-eye view.

level of accuracy similar to that achieved by finite element
analysis.

III. DATA CONSTRUCTION
To train and test the proposed neural network models that
predict the peak pressure, we first constructed a dataset by
performing the finite element analysis using a commercial
software called AUTODYN [18]. An analysis was performed
using commercial hydrocode under various scenarios, with
the goal of establishing a database to develop a rapid-
process model capable of analyzing a blast wave while also
considering interference phenomena such as reflection and
diffraction produced by buildings.

A. DESIGN OF FINITE ELEMENT ANALYSIS SCENARIOS
Figure 2 shows the environment for the blast wave propaga-
tion analysis considering the interaction between buildings.
The buildings were assumed to be rigid, and the size of each
building is 24 m (width) × 24 m (length) × 24 m (height).
Since the distance between buildings in the city is generally
about 7m, two buildings that are placed with an interval of
7 m on the X-axis, as illustrated in Figure 2. The variable
environmental settings for AUTODYN analysis are shown in
Table 1.

TABLE 1. Environmental variable value set for AUTODYN.

TABLE 2. Detailed information on explosive set.

It was assumed that the explosive is hemispherical TNT
without a shell that explodes on the ground, and simulations
of seven TNT weights (900 kg, 1000 kg, 1100 kg, 1200 kg,
1300 kg, 1500 kg, and 2000 kg) were performed, considering
that typical weapons used to hit buildings are about 1 to
2 tons. The explosion occurs in an area 14 m (horizontal) x
14 m (vertical) forward of Building 1, as shown in Figure 2.
To determine the explosion distance, we performed an initial
simulation by changing the distance from a distance of 0 m
(the lower right corner of Building 1) to a distance of 24 m,
which is the horizontal length of Building 1. The case of the
distance 14 m was determined to best represent the pressure
difference between buildings, and the diffraction at the corner
of Building 1.

We selected explosion locations at six points about 14 m
distance from the origin. Figure 2 shows the explosion
locations whose coordinates were (−14, 0), (−13, −4),
(−11, −8), (−8, −11), (−4, −13), (0, −14), assuming the
explosion takes place on the ground. A total of 42 scenarios
were composed using a combination of seven TNT weights
and six explosion locations. Detailed information about the
explosives is provided in Table 2.
The locations of gauges (sensors) used to measure the peak

pressure are shown in Figure 2, from a top view and a birds-
eye view. When the distance between buildings is 7 m, three
planes containing the gauges are located on the right wall
of Building 1 (X = 0 m), the middle point between two
buildings (X = 3.5 m), and the left wall of Building 2 (X =

7 m), respectively. Figure 3 shows the gauge locations in each
plane. Twelve rows and columns of gauges were arranged at
intervals of 2 m starting from a point 1 m from the origin on
the Y and Z axes, respectively. In three planes (X=0m, 3.5 m,
7 m), the positions of the gauges are the same. Therefore, the
total number of gauges used for one analysis is 432, which is
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FIGURE 3. Position of gauges for the peak pressure measurement on the
side wall of Building 1 (X=0).

the product of the number of gauges, 144, and the number of
planes, 3.

In order to compare the predictive performance on an
arbitrary building layout, the analysis model was additionally
composed of cases with building distances other than 7m.
That is, the spacing between buildings also included 3m, 5m,
9m, and 11m in addition to 7m. In these cases, one plane of
gauges was located in the middle between two buildings, and
other two planes were located on two walls of the buildings,
as in the 7m distance case.

B. FINITE ELEMENT ANALYSIS RESULTS AND DATA
CONSTRUCTION
Figure 4 compares the analysis result when the distance
between buildings was 7m and the explosion location was at
(−13, −4) and (−4, −13), with 1200 kg of TNT weight. The
figure shows that the explosion pressure measured at X= 0m
is smaller than the pressure measured at X = 7 m, although
the gauges at X=0 were closer to the explosion point. This is
because the large diffraction angle of the blast wave at X =

0 resulted in a reduction in peak pressure. Figure 5 shows
the pressure distribution of the gauges on the left wall of
Building 2 when 1200 kg of TNT explodes at (−13,−4) with
varying spacing between buildings. It shows that the narrower
gap between buildings leads to greater peak pressure,
because of more reflection and overlapping of the blast
waves.

IV. PROPOSED MODEL
The goal of this study is to predict the peak pressure at
measurement positions when the explosion position, the
weight of TNT, and measurement positions are given as
input variables. Various forms of deep learning models
can be designed to map these input/output variables to the
input/output layers of the neural network model. In this
section, we propose three types of deep learning models:
(1) a multi-layer perceptron (MLP) model that predicts a
peak pressure value corresponding to the input features
such as explosion information and a measurement position.

FIGURE 4. Results of AUTODYN analysis for the peak pressure (kPa)
between buildings (X = 0 m (right wall in Building 1), X = 3.5 m
(intermediate between Building 1 and Building 2), and X = 7 m (left wall
in Building 2)).

(2) a 3D CNN model where explosion information and
measured peak pressures are treated as an input and output
in 3D space, respectively. (3) a conditional 3D CNN model
with building layout conditions that performs prediction in
different building distance environments.

A. MLP MODEL
Assuming the distance between buildings is fixed, we can
design an initial neural network model using a simple MLP
structure. The input feature of the MLP model includes the
measurement position along with other input variables, and
the corresponding output is the maximum pressure at the
input measurement position. The input features such as the
explosion location, the spatial information of the buildings,
and the measurement location can be supplied either as
cartesian coordinates or as coordinates of the relative distance
and angle values.

1) CARTESIAN COORDINATE-BASED FEATURES
The explosion and measurement locations can be represented
as cartesian coordinates. The six input variables in the MLP
model include two-dimensional explosion positions (Ex, Ey),
TNT weight (W), and the three-dimensional coordinates
(x, y, z) of the measurement position. The output of the model
is the explosion pressure at the measurement position. With
these input and output feature dimensions, we constructed an
MLP model with three hidden layers, each having 100, 300,
and 50 nodes.
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FIGURE 5. Results of AUTODYN analysis for the peak pressure (kPa)
between buildings with different distances.

2) DISTANCE-ANGLE BASED FEATURES
As blast waves propagate, the magnitude of the explosion
is greatly influenced by the distance and diffraction angle
from the explosion location. Therefore, if each location and
structure information can be entered as relative distances
and angles rather than cartesian coordinates, the effects can
affect the model learning and inference more explicitly. For
this conversion, it is necessary to interpret the locations
of the explosion and sensors geometrically in a 3D space,
as illustrated in Figure 6, and the distance and angle to be
used as input feature are calculated as

L ′

1 =

√
Ex2 + Ey2, L ′

2 =

√
X2 + Y 2, Z ′

= Z ×
L ′

1

L ′

1 + L ′

2

L1 =

√
L ′

1
2
+ Z ′2 , L2 =

√
L ′2

2 + (Z − Z ′)2

θ1 = cos−1
(
L ′

1

L1

)
, θ2 = cos−1

(
L ′

2

L2

)
. (2)

Five variables, including TNT weight (W), the distance
from the explosion to the diffraction position (L1), the
distance from the diffraction position to the measurement
position (L2), the angle from the explosion to the diffraction
position (θ1), and the angle from the diffraction position to
the measurement position (θ2) form the input features, and
the model is configured to output the explosion pressure at
the corresponding measurement position. We used the MLP
model structure with three hidden layers of 100, 300, and
50 nodes.

B. 3D CNN
Since theMLP structure described above quantifies all spatial
information for its input and output features, it is limited
to directly learning the relationships of the explosion and
measurements in the 3D space. More effective learning of

FIGURE 6. MLP model based the distance-angle features.

the spatial information requires the use of CNN models,
which have been widely used in various spatial vision
tasks such as image classification, object detection, video
understanding. In 2D CNNs, convolutions are applied to the
2D features to compute 2D spatial dimensions. To effectively
process 3D information, a number of studies have used 3D
CNNs that convolve a 3D kernel to the cube formed by
stacking multiple channels of the feature maps [19]. 3D
CNNs are known to be very effective at analyzing volumetric
data, because the feature maps in the 3D convolution can
be connected to multiple channels [19], [22]. With the
advantage of processing an additional dimension, several
studies have utilized 3D CNNs for a variety of applications.
An early study applied a 3D CNN in video-based human
action recognition [19], and another study proposed learning
spatiotemporal features in videos using 3D CNNs [20].
Recent studies have also exploited 3D CNNs for object
recognition [21] and medical imaging applications [22].

We propose adopting a 3D CNN to effectively process the
spatial information in the explosion space and to generate a
peak pressure value in the 3D measurement space through
convolution operations. In the proposed CNN model, the
input feature is structured as a 2D matrix including the
location and degree of explosion, as shown in Figure 7(a).
The pixel values of the places where the explosion does not
occur are all 0, and the pixel values of the explosion locations
have a normalized explosion intensity where the maximum
explosion intensity (2000 kg) is represented as 1. Similarly,
the output of the proposed 3D CNN model is structured as a
3-dimensional matrix, as shown in Figure 7(b), where each
pixel value is interpreted as a detonation pressure predicted
at a corresponding position.

The model structure consists of a combination of con-
volution layers and pooling layers that extract information
from features and reduce dimensions, as well as a transposed
convolution layer that restores the dimensions of features.
The proposed 3D CNN model consists of three pairs of
convolution layers and transposed convolution layers, and the
strides and paddings of each layer are appropriately adjusted
to match the dimensions of the input/output feature, as shown
in Figure 8.
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FIGURE 7. (a) input feature and (b) output feature for the CNN model.

More specifically, an input feature with dimensions of
15 × 15 × 1 as in Figure 8 is first 2D-convolved with
24-channel 7 × 7 kernels and appropriate zero-padding,
to generate feature dimensions of 13 × 13 × 24. Then,
the feature is downscaled in every dimension by 3D max
pooling, which makes the feature dimensions 7 × 7 × 12.
By considering the channel depth (twelve here) as the z-axis
dimension of the 3D shape, we can perform 3D convolution
of the feature. With successive 3D convolution and pooling
operations, a 3 × 3 × 3 latent vector with 128 channels
is generated. The reconstruction of the output feature (3 ×

12 × 12) is performed by the transposed convolution using
proper stride values. That is, to upscale the second and
third axes by four, the stride of 2 is set twice for each
axis in three transposed convolution layers. The number
of intermediate layers and the number of hidden nodes by
layer were designed considering prediction accuracy and
computational complexity. In Section V-C, we compare the
performance of the CNN structure of Figure 8 with various
other structures.

C. CONDITIONAL 3D CNN WITH BUILDING LAYOUT
CONDITION
In the 3D CNN model of Figure 8, the output is determined
only by the input feature which represents the explosion
information. However, in actual explosion scenarios, the
location and the distance between buildings affect the
propagation of the blast wave. Therefore, the conditions
of the building layout (distance between buildings) should
be properly supplied to the model. One of the ways of
modulating output features according to the condition is to
use a conditional convolution.

Conditional convolutions aim to control the behavior of
convolution operations by modulating intermediate features
or kernels using a condition input, as opposed to the
conventional static convolutional kernels. One of the initial
approaches included a dynamic filter network that adaptively
generates sample-specific filter parameters conditioned on
the network’s input [23]. Another early work presented
CondConv that conditionally parameterizes convolutional
kernels as a function of the input [24].

FIGURE 8. The structure of a CNN model.

More recently, Feature-wise Linear Modulation (FiLM)
[25] adaptively influences the neural network output by
applying an affine transformation to the intermediate features
based on some input. Specifically, FiLM generates two
features γi,c and βi,c using functions f and h, which can be
arbitrary functions such as a multi-layer perceptron or an
identity function:

γi,c = fc (xi) βi,c = hc (xi) , (3)

where xi refers to the input and the subscripts i and c refer to
the input and channel number, respectively. Then, γi,c and βi,c
modulate the model’s intermediate feature Fi,c via a feature
wise affine transformation:

FiLM
(
Fi,c | γi,c, βi,c

)
= γi,cFi,c + βi,c. (4)

The FiLM layers are known to manipulate the feature maps
of a target, by scaling, negating, shutting off, selectively
thresholding them, and more. With the ability to effectively
control the neural network output, the feature modulation
technique has beenwidely adopted in various areas, including
for image synthesis [26], transfer learning [27], and image
compression [28].

In this work, we propose adopting conditional convolution
to modulate the CNN according to the building layout infor-
mation. Specifically, the scalar value of the building distance
is processed through a two-layerMLPwith 128 hidden nodes,
generating a condition feature with the same channel size as
the target feature to be modulated. The condition feature is
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FIGURE 9. (a) A conditional 3D CNN model and (b) conditional
convolution using FiLM.

then applied to perform a feature-wise affine transformation,
as in FiLM [25], using a Hadamard product and addition
as Figure 9(b) shows. Note that we use the condition
feature generated by one MLP for both the Hadamard
product (γ ) and addition (β), as this reduces complexity
with performance similar to the original FiLM structure,
which uses separate MLPs for γ and β. By modulating the
feature using the spatial condition information, it is possible
to predict the progress of the explosion more effectively when
the building distance varies. Figure 9 shows the structure of
the proposed 3D conditional CNN model. With the same
baseline architecture as the regular 3D CNN presented in
Section IV-B, FiLM layers are added with the building
distance as a condition variable.

V. RESULTS
A. EXPERIMENTAL SETTINGS
As described in Section IV-A, the data constructed through
finite element analysis includes five building layouts with
different distances between two buildings, 42 explosion
scenarios by the combination of six TNT weights and seven
explosion locations per building layout, and peak pressure
values from 432 measurement locations per scenario. As a
result, we constructed a total of 90,720 data points from 5 ×

42 × 432.
The performance of each technique is evaluated by the root

mean square error (RMSE) and the relative error (%). RMSE
is computed as

RMSE =

√∑n
i=1 (Ppred,i − Pref ,i)2

n
, (5)

where Ppred and Pref are the peak pressure values predicted
by DNN models and the reference peak pressure values from
numerical analysis tools, respectively, and n is the number of
measurement sensors. Relative error indicates how large the
RMSE error value is compared to the average of the reference
peak pressure values, and it is calculated as

Relativeerror =
RMSE∑n

i=1 (Pref ,i/n)
. (6)

The deep learning toolbox of MATLAB R2022a was used
to process the data and to design and train deep learning
models. For the training loss, we used the root mean square
error (RMSE). The maximum training epochs were set to
300 and 200 epochs for the MLPs and CNNs, respectively.
We used the Adam optimizer and reduced learning rate with
a factor of 0.7 every 10 epochs.

B. ACCURACY AND COMPLEXITY ANALYSIS
The performance of the 3D CNN models proposed in
this paper was compared with other DNN structures and
finite element analysis methods. The analysis was conducted
with two experiments. The first experiment was to test
the prediction performance for explosion scenarios different
from the trained ones when the distance between buildings
was fixed. The second experiment was to evaluate the
prediction performance with a building layout not included
in the training.

1) PREDICTION PERFORMANCE FOR A FIXED BUILDING
LAYOUT
First, to compare and analyze the prediction performance for
a fixed building layout, 42 scenarios (18,144 data points) in an
environment with a distance of 7 m between buildings were
randomly divided into 33, 3, and 6 scenarios (14,256, 1,296,
2,592 data points) at a ratio of 11:1:2, for model training,
validation, and evaluation. The validation set was used to
tune the hyperparameters and to decide early stopping during
training. We tried a minibatch size of {21, 22,. . ., 27} and
the size 4 was chosen for the best performance. The initial
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TABLE 3. Prediction performance in a fixed building layout.

learning rate was determined to be 1E-3 among 1E-2, 1E-3,
and 1E-4. Please note that this experiment used a 3D CNN
without a conditional convolution, since the building distance
is fixed.

Table 3 represents the prediction accuracy of the two types
of MLP and the proposed 3D CNN. The table shows that,
for MLP, using distance-angle information as an input feature
was about 1.6 times more accurate than using cartesian
coordinates.

This indicates that using relative information between the
explosion and measurement positions can be more effective
than cartesian coordinate values. However, it can be seen that
the proposed 3D CNN structure provided prediction results
closer to the finite element analysis than the MLP structures.
Specifically, with an RMSE value of 16.2, the proposed
model achieved 2.5∼3.8 times improvement in accuracy
compared to the RMSE value range of 40.2∼62.5 when
using MLP. This indicates that it is more effective to perform
operations in 3D space using a 3DCNN rather than supplying
spatial information as coordinate values in MLP.

2) PREDICTION PERFORMANCE IN UNSEEN BUILDING
LAYOUTS
In actual weapon-effect analysis applications, accurate explo-
sion predictions should be performed for any arbitrary
building layout, not always on a learned building layout.
To compare and analyze the performance in this approach,
four cases out of a total of five different building-to-building
distances were used for training, and the accuracy of the
model was evaluated with the remaining one building-to-
building distance layout data. We set model hyperparameters
such as the minibatch size and the learning rate to the same
values determined in the previous subsection.

Since a 3D CNN cannot reflect the distance information
between buildings on the 3D matrix representing the peak
pressures measured in the space between buildings, the 3D
CNN cannot be used in this situation. Instead, we applied a
conditional 3D CNNwhere the building distance information
is given as a condition feature. Table 4 compares the
prediction performance of peak pressure for unseen building
layouts. Like the results with the fixed layout in Table 3,
the MLP with distance-angle information achieved more
accurate results than using the coordinate information.

However, the prediction using the conditional 3D CNN
structure achieved results closer to the finite element analysis.
On average, with an RMSE value of 22.7, the conditional 3D
CNN showed an accuracy improvement of 2.6 to 3.6 times

TABLE 4. Prediction performance in untrained building layouts.

TABLE 5. Complexity and running time analysis.

TABLE 6. Ablation study for model structure.

compared to the MLP models. It outperformed other models
in all training/test combinations, with less than 10% errors
from the ground-truth peak pressure values. These results
confirm that it is more effective to perform spatial feature
operations through 3D conditional convolutions even on
arbitrary building arrangements.

3) MODEL COMPLEXITY AND RUNNING TIME
While accuracy is the most critical requirement for weapon
effectiveness analysis in a battlefield environment, the
analysis time should also be short to allow for rapid damage
calculation and response. To this end, this section compares
and analyzes the complexity and execution time of each
model and the finite element analysis technique.

The complexity of the artificial intelligence model is
expressed in terms of parameter size (#Params) and number
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of operations (FLOPs) required to perform inference for one
scenario, and execution time is expressed as inference latency
for a single scenario. All the experiments were performed
with a computer equipped with an NVIDIA RTX 3060
GPU. The finite element analysis is difficult to quantify by
parameter size or computation amount, so it is expressed by
inference time, on an 8-core CPU workstation. As shown in
Table 5, the CNN model had a somewhat larger computation
amount and model size compared to the MLP, and thus
took more execution time. However, as discussed in the
previous section, the 3D CNN enables a much more accurate
inference compared to MLP, so this increase in complexity
can be justified. More importantly, even when a conditional
convolution technique was applied, it resulted in only a
very slight increase in the complexity of model inference.
In particular, the finite element analysis required six to
eight hours, while inference using the CNN required less
than one second, even in lighter computing environments.
This confirms that it can be effectively used in battlefield
environments that require rapid weapon effect analysis.

C. ABLATION STUDY
The 3D CNN model proposed in this study consists of
6 hidden layers and 32 to 128 channels per layer. As the deep
learning model structure greatly affects training inference
performance, complexity, and execution time, we analyzed
complexity and accuracy on six different structures. From
the 3D CNN model with six convolutional layers shown in
Figure 8, we constructed a 4-convolutional-layered model
by removing the two convolutional layers in the middle,
and an 8-convolutional-layered model by adding two layers.
For each model, we also created a variant by changing the
number of channels in each layer, resulting in a total of six
models, as shown in Table 6. We analyzed complexity by the
parameter size and computation amount of the models.

As shown in Table 6, as the number of layers and
nodes increased, the inference accuracy generally became
higher. If the number of layers was increased to 8 and
the number of nodes increased, the error was reduced
accordingly. However, the error was not significantly reduced
compared to the proposed model structure with 6 layers.
Meanwhile, expanding the structure of the model in this
way greatly increases the required amount of computation
and memory capacity. Therefore, considering the results in
this study, the combination of six layers and the number of
nodes 24-64-128-64-32-1 seems to be appropriate for use.

VI. CONCLUSION
In this paper, we proposed a deep learning model that can
quickly and accurately predict peak pressure when a blast
wave propagates in urban environments. We designed a con-
ditional 3D CNN model for learning the peak pressure data
from various scenarios constructed through finite element
analysis. We demonstrated that the prediction performance
of the model was comparable to results from finite element
analysis. The proposed conditional 3D CNN model had a

relative error of less than 7% and the execution timewas about
one million times shorter than the finite element analysis.
Importantly, conditional convolution enables flexible predic-
tion for various building spacings, using just a single model.

However, it should be mentioned that the proposed neural
networkmodel is not immediately applicable to peak pressure
prediction in all urban areas. The data used in developing
this model should not be applied to environments different
from those built here. The environment assumed in this paper
was developed to predict the peak pressure between two
identical buildings when an explosion occurs in front of one
of the buildings. This study is meaningful for predicting peak
pressure with high accuracy and fast analysis, similar to finite
element analysis in a limited environment where data is built.

Nonetheless, we have demonstrated that deep learning-
based algorithms can be applied to predict the interference
effect between buildings at high speed. If it is not a ground
explosion but an aerial explosion, or the prediction of blast
propagation is pursued with a different building layout,
we can create amodel by constructing training data with finite
element analysis.

The model developed through this study can be used
to determine where weapons should be aimed to inflict
maximum damage on the enemy in the military field. Also,
in the urban construction design field, it can be used to
optimize the design of buildings that can mitigate damage
from deployment and explosions. It should also be noted
that the proposed model can be used for various kinds of
explosives other than TNT, as long as the explosion weight
is represented as equivalent TNT in the input feature to the
model. In the future, research will continue to be conducted
to create a generally available model for various scenarios
with more variables applied.
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