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ABSTRACT The age of the Fourth Industrial Revolution (4IR) is the era of smart technologies and services.
The Internet of Things (IoT) is at the heart of these smart services. The IoTs are resource-constrain devices.
They act as middleware in intelligent systems and maintain communications between cloud servers and
smart services. Processing related to intelligent decision-making, including data processing, cleaning, feature
extraction, and analysis, is performed on the cloud servers. The IoT devices respond according to the
decisions the applications run on the cloud servers make. The massive number of internet-connected devices
is increasing by 8% per year. The cloud infrastructure backing these enormous numbers of IoT devices must
be scheduled efficiently to maintain Quality of Service (QoS). An optimized scheduling scheme is essential
to minimize the cost and enhance scalability. This paper proposes an innovative and novel algorithm, Neural-
Hill, which combines the Deep Neural Network (DNN) and Random Restart variant of the Hill Climbing
algorithm to schedule IoT-Cloud resources efficiently and ensure scalability. It is a preemptive scheduling
algorithm designed to operate in dynamic task scheduling. The performance of the Neural-Hill algorithm has
been evaluated in terms of optimal solution-finding time, execution time, routing overhead, and throughput.
The experimental results demonstrate the significant quality of service improvement with the assurance of
better scalability.

INDEX TERMS Internet of Things, cloud computing, efficient scheduling, cloud resources, deep neural
networks, hill climbing, optimization, scalability.

I. INTRODUCTION
The number of active Internet of Things (IoT) is expected to
surpass 27 billion by 2025, according to the current trends [1].
A remarkable 8% growth has been observed between 2021 to
2022 when the number of active IoT devices surpassed 12 bil-
lion. The IoTs are physical devices that communicate over
the internet [2]. They are connected to sensors, actuators,
control units, and other devices. These devices continuously
transmit data over the internet during their active periods [3].
It is no exaggeration to say that the IoTs are at the heart of
modern intelligent services, including smart homes [4], smart
healthcare systems [5], smart cities [2], smart parking man-
agement systems [6], and smart transportation management
systems [7]. However, limited resources make IoT devices
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unsuitable for running Artificial Intelligence (AI) applica-
tions [8]. That is why they mainly work as middleware. These
devices perceive the environment and send the data over to
cloud servers. The applications running on the servers receive
the data, process them, and make intelligent decisions. The
network consists of IoT devices and cloud servers known
as the IoT-Cloud network [9]. IoT-Cloud networks handle
large volumes of traffic [10]. It is essential to schedule cloud
resources optimally to process these large volumes of traffic
in real-time. The novel Neural-Hill algorithm presented in
this paper analyzes the traffic pattern, predicts the required
cloud resources in the successive scheduling cycle, and opti-
mally schedules the Virtual Machines (VMs) to process the
IoT data in real-time.

The IoT-Cloud network uses the Infrastructure as a Service
(IAAS) architecture [11]. The IoT-Cloud network remains
active 24 × 7 [12]. However, there are peak hours when
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the network experiences maximum traffic and off-peak hours
when the network traffic is average [13]. Moreover, cer-
tain IoT networks do not exhibit any regular pattern. Cloud
computing offers services on demand through the pay-as-
you-go payment method [14]. An IoT cloud server becomes
expensive without an efficient scheduling approach, and the
QoS degrades [15]. That is why cloud resource optimization
through efficient scheduling has become an active research
field. There are numerous techniques to ensure it [16]. How-
ever, the IoT-Cloud has some additional characteristics apart
from regular cloud computing [17]. That is why it is essential
to develop methods exclusive to IoT-Cloud by focusing on
unique characteristics. TheNeural-Hill algorithm proposed in
this paper has been developed from this observation. It sched-
ules IoT-Cloud resources to maintain QoS and scalability
efficiently.

The Neural-Hill algorithm is a combination of a Deep
Neural Network (DNN) [18], and a Random Restart Hill
Climbing (RRHC) algorithm [19]. The DNN predicts the
VM’s computation load in the successive task-scheduling
cycle. Based on this prediction, the RRHC schedules the
tasks for the underloaded VMs. The repetition of this process
ensures optimal distribution of computational load on VMs.
The following list shows the overall contributions of this
research.

• Design and development of an optimized Deep Neural
Network for predicting load on virtual machines running
on cloud servers.

• Development and implementation of the Neural-Hill
algorithm by combining DNN and RRHC.

• Performance evaluation of the novel Neural-Hill algo-
rithm, which proves the feasibility of the proposed sys-
tem to schedule IoT-Cloud resources efficiently.

The Neural-Hill algorithm is a Deep Learning technology
breakthrough in IoT-Cloud resource optimization through
efficient scheduling. The innovative application of predicting
the state space landscape using DNN instead of creating
them traditionally makes the proposed methodology unique.
The rest of the article has been organized into five different
sections. The literature review has been presented in the
second section. The details of the methodology have been
discussed in the third section. The fourth section presents the
results and performance evaluation of the proposed Neural-
Hill algorithm. The limitations of the paper and future scope
have been highlighted in the fifth section. Finally, the paper
has been concluded in the sixth section.

II. LITERATURE REVIEW
Nithiyanandam et al. [20] develop an ant colony-based algo-
rithm to optimize IoT-Cloud resources to schedule tasks
efficiently. It is a Markov chain-based approach. The com-
bination of ant-colony and Markov chain is used to sched-
ule resources in the IoT-Cloud environment optimally. Their
methodology improves the Quality of Service (QoS). How-
ever, the ant colony-based optimization suffers from three

limitations. The first limitation is the stagnation phase prob-
lem. The second limitation is the exploration and exploitation
rate-dependent performance. And the third limitation is the
convergence speed [21]. On the other hand, hill-climbing-
based optimization is more efficient. It is faster and ideal
for resource constraint systems. The proposed Neural-Hill
algorithm uses the Hill Climbing (HC) algorithm for opti-
mization. Another weakness of the methodology proposed by
Nithiyanandam et al. [20] is the application of the Markov
chain in IoT-Cloud resource scheduling. Markov models
are inappropriate for a random time interval [22]. That
means the system developed by Nithiyanandam et al. [20]
is inappropriate for scheduling where the VMs are allocated
for a random amount of time [20]. On the contrary, the
proposed Neural-Hill algorithm uses a Deep Neural Net-
work whose performance is not limited by random time
intervals.

A scheduling algorithm Javanmardi et al. [23] developed
for IoT-Fog network resource scheduling is worth attention.
However, it is not directly applied to or developed for the IoT-
Cloud network. It uses a Software-Defined Network (SDN)
architecture. Although the algorithm seems applicable to
the IoT-Cloud environment, the SDN introduces additional
complexity. The proposed Neural-Hill algorithm is straight-
forward to integrate with the system. Another study by
Apat et al. [24] addresses the increasing demand for comput-
ing resources for the Internet of Things (IoT). It aligns with
one of the observations that motivate the development of the
proposed Neural-Hill algorithm. However, the approach pre-
sented in [24] follows an edge computing paradigm focused
on ad-hoc networks.

Sangeetha et al. [25] address the increase in demand for
cloud resources from media content. They express the sig-
nificance of cloud resource management to maintain the
QoS. Although this methodology is not directly related to
IoT-Cloud networks, applying the Gray Wolf Optimization
(GWO) technique to optimize cloud resources has drawn
our attention. The GWO-based framework proposed in this
paper is a promising solution for optimally managing and
allocating cloud resources. They have enhanced the scala-
bility by using a Deep Neural Network (DNN) to reduce
the system delay in processing and storing resources on
the cloud. However, GWO-based optimization suffers from
poor convergence speed [26]. It is sensitive to initializa-
tion parameters, including population size, search space, and
the number of iterations. The proposed methodology uses
HC-based optimization, which converges faster than GWO.
At the same time, it is not sensitive to parameter initial-
ization [27]. Another weakness of GWO is getting stuck at
local minima [28]. The HC exhibits a similar weakness [29].
We used the Random Restart variation of the HC algo-
rithm to prevent getting stuck at local minima or local max-
ima. The proposed Neural-Hill algorithm uses DNN similar
to [25]. However, it combines the HC algorithmwith it, which
makes the proposed system faster, more efficient, and more
robust.
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A study conducted by Qu et al. [30] to optimize the QoS
in cloud, fog, edge, and IoT demonstrates promising results.
This research includes energy optimization as well. It encom-
passes amore extensive boundary where cloud, fog, edge, and
IoT are formed. The IoT-Cloud context from this study aligns
with the proposed Neural-Hill algorithm. This study shows
that IoT-Cloud network optimization is still a vibrant field
of research, and there is scope for improvements. One of the
challenges they addressed is efficient resource scheduling to
improve scalability. The proposed Neural-Hill algorithm is a
potential solution to this limitation.

III. METHODOLOGY
The proposed Neural-Hill (NH) algorithm is a combination of
a set of Deep Neural Network (DNN) blocks and the Random
Restart Hill Climbing (RRHC) Algorithm. The overview of
the proposed methodology has been illustrated in figure 1.
The DNN blocks are constructed of a seven-layer Deep Neu-
ral Network. Each block receives the Virtual Machine (VM)
processing log as input, and it predicts the load on the VM in
the next cycle. Each DNN block does the same thing for dif-
ferent VM. The predictions from the DNN blocks form a state
space landscape. The random restart hill-climbing algorithm
receives the state space landscape as input. It uses the cost and
objective functions to find the underloaded and overloaded
VMs. The response from the random restart hill-climbing
algorithm is transferred to the VM task manager. The task
manager assigns new requests to the VMs, which are under-
loaded. This is how the proposed novel Neural-Hill algorithm
optimally schedules tasks for IoT networks connected to the
cloud.

1) NETWORK ARCHITECTURE
The Deep Neural Network, the DNN block’s building unit,
has been constructed by following a Fully Connected (FC)
network architecture [31]. Following the regression principle,
this network has been designed to predict a VM’s operational
load at a particular time [32]. It has four hidden layers with
32 hidden nodes in each layer. The experimenting network
has one output node. The output from the network is governed
by equation 1.

Ol = σ l(Bl +W l
∗ Ol−1) (1)

In equation 1, Bl is the bias at layer l. Here, W l refers to
the weight matrix of l th layer. The output from every layer
is generated through the convolution operation between the
input signals and the layer’s weight matrix. It is expressed as
W l
∗ Ol−1 in equation 1. The signals of a layer are further

processed by an activation function, which is expressed as
σ in equation 1. Here, σ l refers to the activation function
of l th layer. The network designed in this experiment uses
two activation functions: Rectified Linear Unit (ReLU) [33]
and Sigmoid function [34]. The ReLU, defined by equation 2,
has been used for the hidden layers. The Sigmoid function is
used at the output layer of the network, which is defined by

equation 3.

σReLU = max(0, x) (2)

σsigmoid =
1

1+ e−x
(3)

The bias specified in equation 1 has been used in this
research to mitigate the effect of the overfitting problem by
turning on and off neurons which have been expressed in the
relation presented in equation 4.

B =

{
0, off
1, on

(4)

A. LEARNING ALGORITHM
In this research, we used the back-propagation algorithm as
the learning rule for the network [35].We use a log-based cost
function which finds the difference between the prediction
and expected output from a layer. The cost function has been
defined by equation 5.

Cf = −
1
|x|

|x|∑
i=1

ln(P(yi|x i|)) (5)

The weights of the hidden nodes are updated based on the
response of the cost function of equation 5. Updating the
weights optimally is essential to train the network properly.
The performance of the entire Neural-Hill algorithm depends
on the correct prediction from the network. We used Adap-
tive Moment Estimation (ADAM) optimizer to update the
weights of the hidden nodes of the proposed network [36].
The ADAM optimizer used in this paper is defined by
equation 6.

mt = β1mt−1 + (1− β1)[
δCf
δωt

] (6)

Themt in equation 6 refers to gradients that are aggregated
over time t . The previous aggregated average, expressed in
mt−1, is multiplied by the moving average. The moving
average is expressed using β. The β is a constant in this
paper, which defines how much gradient will be moved on
an average at the given time t . The empirical analysis shows
that β = 0.9 is the optimal value of this constant. The ADAM
is dependent on the derivative of the cost function, which is
expressed as δCf

δωt
. The ADAM aims to find the optimal values

to update the weights. It has been done using equation 7.

ωt+1 = ωt − αmt (7)

The mt in equation 7 is the mt obtained from equation 6.
It is used tomodify and update theweight of the hidden nodes.
The α of equation 7 is the learning rate that is dynamically
updated during the network training phase.

B. DATASET PREPARATION
Different data center handles various levels of computational
load. The purpose of the data center, regional location, sea-
son, special events, type of service, and many other param-
eters control the nature of the computational load of a data
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FIGURE 1. The overview of the methodology.

FIGURE 2. Dataset preparation.

center [37]. This is why a dataset prepared from one data
center may not apply to another. This is one of the challenges
of the deep learning-based cloud scheduling process.We used
an innovative approach to tackle this challenge. Figure 2
illustrates our data preparation process.

Every Virtual Machine (VM) that runs on the cloud server
maintains an operational log. This log includes computational

load information along with other information [38]. Not
every information available in the log is helpful for resource
scheduling. The information related to the usage of CPU,
memory, disk space, GPU, Power, and the active period of
the applications is useful for scheduling cloud resources. The
data related to these fields are extracted from the log during
the data processing. These data are the training dataset for the
proposed Neural-Hill algorithm. The proposed system uses
the existing log and extracts its relevant data fields. After the
extraction, it stores the data. And this is the dataset for the
proposed Neural-Hill algorithm. We’ve already mentioned
that the dataset prepared for a data center may not apply
to another dataset. That is why this paper has presented the
dataset preparation process instead of the dataset itself. This is
an indication of the robustness of the proposed methodology.

C. TRAINING THE NETWORK
The proposed network has been trained using the dataset
prepared from the process explained in the previous section.
There are 17,00,000 instances in the dataset. These instances
are divided into five categories which are listed in table 1.
These categories are dependent on how cloud resources are
used. The instances reflect the least amount of cloud resource
utilization, falling into the Negligible category. In contrast,
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TABLE 1. Different categories of instances of the dataset.

instances that resulted in the highest resource use fell into the
Peak Category. BelowAverage, Average, and Substantial cat-
egories are in between the Negligible and Choose categories.

We used a dynamic learning rate for the proposed net-
work [39]. The initial learning rate was set to α = 0.001,
and the final learning rate is α = 0.00001. The network
learns from 10,000 epochs, with 1200 iterations in every
epoch. The dataset has been divided into training, testing, and
validation dataset by maintaining a ratio of 70 : 15 : 15,
respectively. The training dataset has been used to train the
network, with a total of 11,90,000 instances. The testing and
validation datasets contain 2,55,000 each. The training and
validation datasets have been used to train and validate the
system. The testing dataset was used later to evaluate the
performance of the trained network. The network learns to
predict the VMs’ computational load with 91.31% training
and 90.55% validation accuracy. The learning curve of the
training process has been illustrated in figure 3.

Figure 3a shows the accuracy of the network in terms of
training and validation dataset over 10,000 epochs. The 3b
is about the training and validation loss. The training and
validation learning curve is observable to follow a similar
pattern in both accuracy and loss curves. It indicates that
the network is neither overfitting nor underfitting [40]. It is
observable from 3a that the accuracy increases with almost a
constant slope rise. There is no sudden rise or a sudden drop
in accuracy. Similar characteristics are visible in the 3b. The
loss falls smoothly from 40% to 9.07%. The learning curve
presented in figure 3 has not been smoothened to demonstrate
the actual characteristics.

D. THE NEURAL-HILL ALGORITHM
The Neural-Hill algorithm combines the proposed Deep
Neural Network (DNN) and Random Restart Hill-Climbing
(RRHC) algorithm. The random restart hill climbing algo-
rithm is a variant of the hill climbing algorithm where it is
randomly restarted multiple times. In this experiment, we set
the value of random restart (r) to 5. The RRHC uses the State
Space Landscape (SSPL) predicted by the DNN. The pro-
posed Neural-Hill algorithm uses objective and cost functions
to determine the VMs under minimum and maximum com-
putational load. At every iteration, the transferable processes
from the highest-loaded VMs are moved to lowest loaded
VMs. The proposedNeural-Hill algorithm has been presented
in the algorithm 1.
The algorithm 1 uses the DNN presented in this paper to

predict the SSPL. Then it finds the VMs where the maximum
and minimum processes run from the predicted SSPL using

Algorithm 1 The Neural-Hill Algorithm
SSPL← DNN(VM-logs)
max = obj(SSPL, 5)
min = cost(SSPL, 5)
Lx = len(max)
Ln = len(min)
while Lx ̸= Ln do

ProcessTransfer(min← max)
end while
function obj(SSPL, R)
current← initial state of SSPL
while current = true do

neighbor = highest valued neighbor of current
if neighbor is not better than current then

return current
else

current = neighbor
end if

end while
function cost(SSPL, R)
current← initial state of SSPL
while current = true do

neighbor = lowest valued neighbor of current
if neighbor is not better than current then

return current
else

current = neighbor
end if

end while

the RRHC algorithm at r = 5 from both objective and
cost function perspectives. Afterward, the processes are trans-
ferred from the VM operating at the highest computational
load to the lowest.

IV. RESULTS AND PERFORMANCE EVALUATION
The proposed Neural-Hill algorithm combines the Random
Restart Hill Climbing (RRHC) algorithm and Deep Neural
Network (DNN). The DNN is the predictor, and RRHC is
the optimizer. The predictor predicts the operational load
on VMs, and the optimizer optimizes the load by allocating
processes to underloaded VMs. As a result, the entire system
stays ahead of time and optimally schedules the resources
before the IoT network requests those resources. This section
presents the details of experimental results and performance
evaluation of the proposed system. First, the performance of
the DNN is presented. After that, the experimental setup is
discussed. Finally, the performance of the Neural-Hill algo-
rithm in cloud resource scheduling for IoT networks has been
discussed.

A. PERFORMANCE OF THE DNN
The performance of the Neural-Hill algorithm-based effi-
cient cloud resource scheduling to optimize IoT-cloud perfor-
mance and enhance the scalability depends on the accurate
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FIGURE 3. Learning curve.

prediction of the DNN. We used state-of-the-art evaluation
metrics to evaluate the performance of the DNN. The first
evaluation metric is the Coefficient of Determination (R2).
It indicates how well the experimenting DNN predicts the
outcomes [41]. The second evaluation metric is the Root
Mean Square Error (RMSE). It measures the average differ-
ence between the predicted and actual computational loads.
The third evaluation metric is the Mean of Absolute Error
(MAE). It shows the significance of an error the DNN may
make while predicting the SSPL [42]. The fourth and last
metric is the Mean Absolute Percentage Error (MAPE). It is
the sum of absolute errors in the prediction divided by the
ground truth [43]. The R2, RMSE, MAE, and MAPE are
defined in the equation 8, 9, 10, 11, respectively.

R2 = 1−

∑m
i=1(ai − pi)

2∑m
i=1(ai − mean(a))2

(8)

RMSE =

√√√√ 1
m
×

m∑
i=1

(pi − ai)2 (9)

MAE =
1
m
×

m∑
i=1

|pi − ai| (10)

MAPE =
1
m

m∑
i=1

|
pi − ai
ai
| (11)

Here in equation 8, 9, 10, and 11, the ai is the ground
truth in the dataset. The pi is the target variable the network
predicts, and m is the number of instances on the dataset.

B. EXPERIMENTAL SETUP
The effectiveness of the Neural-Hill algorithm was inves-
tigated in an experimental environment. The experimental
setup includes a data center and physical and virtual IoT
devices. Replicating an IoT-Cloud network with physical
nodes is expensive. That is why We used both physical and
virtual IoT devices.

1) DATA CENTERS
The proposed methodology has been implemented in an
experimental setup to analyze and evaluate the performance.
This experiment used a 64-bit Ubuntu Server Operating
System (OS). The experimental setup comprises two data
centers, 10 Virtual Machines (VMs), and 150 to 2000 sim-

ulated dummy tasks. The experimenting data centers use
Dell PowerEdge R940 Rack Server computers with 8 Solid
State Hard Drives (SSDs) for each server. It is powered by
a 2× Intel®Xeon®Gold 6252 processor. This processor
has 24 cores with 48 threads. The maximum clock speed is
10.4 GT/s. It has 35.75MB Cache memory. This device has
32GB dual rank of primary memory distributed in 4 slots.
These primary memories have 3200 MT/s data transmission
capability. These server computers have used the PERCH330
Adapter FH international storage controller. It has a total
storage capacity of 15.36TB connected to eight different SSD
ports. These storage devices have a maximum 6Gbps data
transmission capability.

2) IoT DEVICES
We used Raspberry Pi 4 Model B as the IoT device. It has
4GB primary memory with a storage capacity of 32 GB. It is
powered by a Broadcom BCM2711, quad-core Cortex-A72
(ARM v8) 64-bit processor at 1.5GHz clock speed. Because
of the resource constraints, we used two physical Raspberry
Pi 4 Model B and 18 simulated versions of the same device.
Each IoT device has 8 sensors connected to it. There are a
total of 160 active sensors in the experimental settings.

C. EVALUATION METRICS
We used four different evaluation metrics to analyze the
performance of the proposed scheduling algorithm. These are
the Optimal Solution Finding Time (OSFT), Execution Time
(ET), Routing Overhead (RO), and Throughput (TP).

1) OPTIMAL SOLUTION FINDING TIME (OSFT)
IoT devices are resource-constrained systems. That is why
they are not suitable for heavy computing. In most cases, they
perform basic computations and forward the data to the cloud
server. The IoT-cloud servers are responsible for receiving
the data from the IoT devices and locating the appropriate
application intended to process the IoT data. The time the
IoT-cloud server takes to search for optimal solutions for a
particular IoT node is the Optimized Solution Finding Time
(OSFT).

2) EXECUTION TIME (ET)
In order to choose the best virtual machines (VMs) for an
IoT node, the proposed framework uses a set of criteria.
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FIGURE 4. Optimal Solution Finding Time (OSFT).

Usually, there are some time delays when doing so. The term
‘‘execution time’’ is used to describe this lag. The proposed
framework demonstrates excellent performance in optimally
allocating resources. However, an execution time delay is a
sensitive issue in IoT-cloud servers because IoT devices don’t
have extensive computational and storage capabilities. At the
same time, they transmit and receive responses from differ-
ent connected systems serving real-time services, making it
essential for the IoT-cloud servers to respond in real-time.
Suppose the framework optimally allocates resources within
a short period. In other words, it takes longer execution time.
In that case, the overall service quality of the system will be
unacceptable.

3) ROUTING OVERHEAD (RO)
The routing overhead is the quantity of the packets sent
from the IoT devices for maintenance and to keep track of
the route for discovery. Each IoT device is connected to
the IoT cloud server. This communication happens through
packet switching circuits without any dedicated route. The
IoT devices generate small packets to update the routing
table frequently. For a single device, the routing overhead
is ignoble. However, an IoT-cloud server serves thousands
of IoT nodes. As a result, routing overhead becomes a vital
performance measurement parameter for IoT-cloud servers.

4) THROUGHPUT
IoT nodes are diversely distributed throughout the network.
Most of these nodes don’t have high bandwidth because of
being resource-constrained systems. Even if the intermediate
devices have high bandwidth, IoT devices’ limitations impose
challenges on the overall data exchange rate. This is where
the throughput becomes an important performance evaluation
criterion.

D. PERFORMANCE ANALYSIS
1) OSFT ANALYSIS
We analyzed the performance of the proposed framework
using the evaluation metrics discussed in the previous sub-
section. The first evaluation criterion is the Optimal Solution

FIGURE 5. The execution time with respect to the number of IoT nodes.

Finding Time (OSFT). We evaluated the OSFT with a max-
imum of 2,000 user requests simultaneously. We divided the
range from 0 to 2000 requests equally with a 250-step gap
to analyze the performance easily. The performance of the
experimenting framework is illustrated in figure 4. The anal-
ysis demonstrates the scalability of the proposed framework.
The time to discover the optimal path and find the solution
for 0 to 600 requests increases slowly. However, there is a
sharp rise from 600 to 750 requests. After that, the slope of
the curve falls further. The resource allocation becomes more
stable for 750 to 2000 requests. It proves that the proposed
Neural-Hill algorithm optimally allocates the resources and
maintains scalability even if the number of requests increases.

2) ET ANALYSIS
The proposed framework has been designed to simulta-
neously process requests from multiple IoT devices. Each
request is optimally assigned to an intended application run-
ning on some certain VM. Request distribution, process-
ing, and response transmission time for different numbers
of nodes have been illustrated in figure 5. The ET analysis
shows similar characteristics to the OSFT analysis. The time
to find the optimal solution and time to execute the request is
expected to follow a similar pattern which has been achieved
through the proposed framework. This means the experiment-
ing framework optimally distributes the resources and makes
the IoT-cloud server scalable.

3) RO ANALYSIS
The Routing Overhead (RO) analysis illustrated in figure 6
demonstrates that the proposed framework reduces the rout-
ing overhead. Figure 6 shows both routing overhead before
and after using the Neural-Hill algorithm. It shows notice-
able improvement made by the proposed algorithm over the
performance of the existing algorithms.

The effect of the Neural-Hill algorithm on RO has been
further studied with a spider chart illustrated in 7. The RO is
directly related to the period the applications run on the cloud
server and respond to the IoT requests. It is very impressive
that the proposed algorithm does not significantly impact
RO when the active period of the applications is less than
15 seconds. Usually, RO increases simultaneously with the
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FIGURE 6. The routing overhead of the proposed framework and existing
solution.

FIGURE 7. The routing overhead analysis.

increment of the active period of the algorithm. However,
it shows different characteristics when the Neural-Hill algo-
rithm is applied. This algorithm reduces the rate of incre-
ment of routing overhead. This behavior is observable for
longer active periods only. That means the proposed algo-
rithm enhances the scalability of the IoT-Cloud network.

The overhead routing reduction in percentage has been
listed in table 2. The percentage improvement is marginally
visible in figure 6 and 6 because of the scaling factor. How-
ever, it is easily noticeable in table 2. The maximum overhead
reduction is 22.26% for 40 seconds of active time, and the
minimum overhead reduction is 8.02% for 30 seconds of
active time.

E. DYNAMIC SCHEDULING
The experimentingNeural-Hill algorithm dynamically sched-
ules the tasks in every Task Cycle (T). It ensures optimal task
distribution to every virtual machine. After optimal distribu-
tion, it dynamically relocates the tasks from right most VM
to other VMs to optimize resource usage. Figure 8 illustrates
the experimental results up to the fifth task cycle. The initial
approach of this research was to schedule the tasks based
on continuous task influx dynamically. However, it initiates

TABLE 2. Routing overhead reduction in percentage.

temporary service disruption during the allocation and reloca-
tion of the tasks. The revised approachmaintains discrete task
cycles where {T |T ∈ N , 1 ≤ T ≤ ∞} and applies the algo-
rithm in every task cycle. As a result, the ongoing processes
are not disrupted. The tasks on the active VMs are relocated in
between the task cycle when the existing responses are sent to
the IoT network, and subsequent requests are assigned to the
VMs. As a result, process disruption becomes insignificant.
Figure 8 demonstrate the dynamic scheduling of the tasks to
different VMs at different task cycle. It is noticeable that the
VM10 becomes idle after the fifth task cycle.

V. LIMITATION AND FUTURE SCOPE
The Neural-Hill algorithm performs remarkably efficiently,
scheduling IoT-Cloud resources and improving scalability.
However, it is not immune to limitations. There are several
limitations of this algorithm which have been discussed in
this section. However, instead of limitations, these have been
considered as future scope to conduct more experiments and
further strengthen the algorithm.

A. SCHEDULING SCHEME
There are different types of scheduling, for example,
immediate scheduling, batch scheduling, static scheduling,
dynamic scheduling, preemptive scheduling, etc. The pro-
posed Neural-Hill algorithm works with preemptive schedul-
ing only. However, there are scopes of modifying the algo-
rithm to apply it to other scheduling schemes. It paves the
path to further research and enables the Neural-Hill algorithm
to cover various scheduling schemes.

B. EXPERIMENT IN LABORATORY SETUP
The proposed Neural-Hill algorithm has been experimented
with in an experimental laboratory environment. Although a
real-world cloud server has been used, the researcher pre-
pared the IoT infrastructure used in this experiment. The
real-world scenario may deviate from the experimental setup.
This is one of the limitations of this paper. An initia-
tive has been taken to apply the Neural-Hill algorithm in
a medium-scale private IoT-Cloud network to analyze its
impact of it in a real-world scenario. The findings will be
presented in subsequent research.
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FIGURE 8. A subset of the dynamic scheduling up to the fifth task cycle.

C. DATASET LIMITATION
The dataset prepared for the Neural-Hill algorithm applies to
similar cloud servers to the experimenting server. However,
it is unlikely that different cloud servers will have similar
usage patterns. That means there is no assurance that the
dataset prepared for one IoT-Cloud network can be effectively
used for another network. It is a general limitation of the
IoT-Cloud research domain and an active field of research for
future endeavors.

The limitations of the proposed Neural-Hill algorithm do
not undermine its potential of it. They reflect the opportunity
to conduct more experiments to develop better versions.

VI. CONCLUSION
The IoT-Cloud is more dynamic than traditional cloud com-
puting. The rapid growth of IoT devices has made IoT-Cloud
resource optimization a challenging task and appealing
research field. The Neural-Hill algorithm has been developed
to optimally and efficiently schedule IoT-Cloud resources to
maintain scalability. IoT-Cloud networks handle large vol-
umes of traffic and massive process requests. The volume of
the request varies depending on multiple factors. As a result,
optimally allocating cloud resources is a major concern. This
is where the Neural-Hill algorithm demonstrates the contri-
butions. It takes advantage of Deep Learning technology to
predict the computational load. As a result, the system knows
the number of service requests about to come beforehand.
The state space landscape for the hill climbing algorithm
is produced through this prediction. Applying the random
restart variants of the hill climbing algorithm discovers the
underloaded and overloaded virtual machines. It ensures that
all availableVMs handle an almost equal amount of processes
at a particular time, leaving room for more requests. As a
result, the IoT-Cloud network experience maximum scalabil-
ity. The unique concept of combining Deep Neural Network
and Random Restart Hill Climbing algorithm presented in
this paper maintains scalability even at 2000 simultaneous
requests. It minimizes the execution time by distributing tasks
to idle VMs. A remarkable 22.26% routing overhead reduc-

tion has been achieved through this innovative algorithm as
well. The Neural-Hill algorithm’s unique architecture, effi-
cient design, and impressive performance signify its impact
on the IoT-Cloud resource scheduling research domain. How-
ever, the effectiveness of the Neural-Hill algorithm has been
studied only for dynamic task scheduling in a laboratory
environment. The dataset prepared and used in this research is
exclusive to the experimenting cloud server. These limitations
of the Neural-Hill algorithm pave the path to the future scope
of conducting subsequent experiments. The methodology of
this paper will be further developed to encompass dynamic
and static scheduling. There is another scope for expanding
the scope of the dataset to generalize it so that it can be used
for cloud servers operating in different settings and serving
different purposes. This future scope will be explored, imple-
mented, and studied in subsequent versions of the Neural-Hill
Algorithm.
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