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ABSTRACT An improved road impedance function in conformity with Chinese city road traffic is designed
for calculating the actual transportation time based on real-time traffic information and the complex road
environment in the city. The objective function minimizes the total distribution cost, including fixed cost,
transportation cost, damage cost, energy cost, penalty cost, and carbon emission cost. A mathematical
model is constructed for cold-chain logistics distribution path optimization considering the influence of road
impedance. The model is solved using three particle swarm optimization algorithms with improved weights.
The experimental results show that the self-adaptive weighted particle swarm optimization algorithm is more
efficient in solving this model. Experimental results obtained from the cold-chain logistics path optimization
model considering road impedance compared to those of the model without road impedance indicate that
the former are closer to the actual situation. Based on the changes in carbon emission and total cost under
different carbon taxes, we analyze the critical carbon tax value and the optimal carbon tax value range to
improve the economic and environmental benefits in the distribution process. This study should prove to be
of great practical significance and application value for logistics enterprises to conduct rational planning of
path problems.

INDEX TERMS Real-time traffic, road impedance function, particle swarm optimization algorithm, cold-
chain logistics, critical carbon tax value.

I. INTRODUCTION
With the improvement of social living standards, consumers
have higher requirements for the freshness of fresh and other
cold-chain foods. This also imposes serious challenges to
cold-chain logistics in distribution issues. Unlike ordinary
logistics products, cold-chain logistics products are perish-
able. Therefore, the distribution process of cold-chain logis-
tics can result in a loss of goods, increasing the cost of
logistics operation. Data show that spoilage rates in China
for fruits and vegetables, meat, and fish can reach 30%, 12%,
and 15%, respectively, while annual losses for fruits and
vegetables exceed $12.5 billion, accounting for >30% of the
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value of the entire industry [1]. Related research indicates that
reasonable path optimization for cold-chain logistics distri-
bution can reduce transportation costs, cargo damage costs,
and energy consumption in the distribution process, further
improving transportation efficiency and lowering enterprise
loss costs [2].

According to statistics, the transport sector will account
for 23% of global CO2 emissions in 2020. Transport delays
caused by traffic congestion can be addressed by avoiding
predictable traffic congestion in vehicle routing plans [3].
In cold-chain transportation, various studies have shown that
traffic congestion and changes in the speed of delivery vehi-
cles can affect carbon emissions [4], [5]. Nowadays, city
roads are becoming more and more congested because of the
increasing number of vehicles in various countries. Real-life
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road impedance and traffic congestion are already common.
Road impedance will result in the increase of transportation
time in the process of cold-chain logistics distribution. This
affects carbon emissions, cargo freshness, etc. Therefore,
in this study, we propose a road impedance function model
suitable for city traffic in China and apply it to the cold-chain
logistics path optimization problem.

The road impedance function model (referred to as the
road resistance function) is expressed as the relationship
between the travel time and traffic load of a road section. Cur-
rently, there is no unified road impedance function calculation
method in China. Most of the calculations directly quote the
traditional road impedance function calculation model. The
Bureau of Public Roads (BPR) function is the traditional
model for calculating the impedance function of a road sec-
tion. It reflects the relationship between travel time and traffic
flow on a freeway. Because traditional road impedance func-
tions are mostly used for intercity road calculations, which
differs from the mixed traffic situation in Chinese cities, there
is a large error in their practical application. In this study,
a road impedance function to meet the actual road conditions
in China’s city traffic is designed. The vehicle route opti-
mization problem (VRP) was first proposed by Ramse and
Dantzig [6]. The problem is an NP-hard problem. Numerous
studies have demonstrated that intelligent optimization algo-
rithms achieve better results in solving such problems. In this
study, we will use the particle swarm optimization (PSO)
algorithm with improved weights for solving the objective
function model.

In this study, the influence of road impedance is consid-
ered and a mathematical model for cold-chain logistics path
optimization is constructed with the objective of minimizing
total cost. The improved PSO algorithm is used to solve
the case. The research results obtained here are of practical
significance and of important value.

II. RELATED WORK
In this section, research related to cold-chain logistics path
optimization considering road traffic and carbon emissions is
discussed.

A. ROAD TRAFFIC
Many scholars have considered the impact of road traffic
conditions on cold-chain logistics. Some study the impact of
traffic congestion on logistics transportation. Chen et al. [7]
explored the impact of traffic congestion on cold-chain logis-
tics in former warehouses and quantified the level of traffic
congestion using the congestion index. Qi et al. [8] employed
the congestion index provided by Baidu Maps to describe
the actual traffic situation. They divided traffic into multiple
time periods to calculate the transport time and applying their
method to emergency cold-chain logistics scheduling prob-
lems. Xu et al. [9] used the Davidson road impedance func-
tion to calculate the transport time. For solving the fresh-food
cold-chain logistics path optimization problem, Barth [5]
embedded highway performance measurement systems into

loop detectors on California freeways to collect real-time
traffic data. The impact of traffic conditions on carbon emis-
sions was described by means of a computational function of
traffic density and volume. Figliozzi [10] collected data from
highway sensors and related cases, using them to analyze
the impact of traffic congestion on the carbon emissions
generated by logistics transportation.

Nowadays, there are many scholars studying the acqui-
sition of real-time road condition information. For exam-
ple, Chen [11] used big-data cloud computing technology to
obtain real-time road traffic information in logistics trans-
portation through a unified access interface. Guo et al. [12]
collected driving data from a large number of vehicles in the
city and constructed a vehicle fuel consumption and carbon
emission measurement model coupled with a dynamic traffic
network. Xu et al. [13] acquired the actual traffic condi-
tions of the road by GPS and analyzed the spatio-temporal
knowledge to plan an effective route. There are also many
scholars who have considered the impact of variable speeds
on cold-chain logistics distribution. Li et al. [4] investigated
the effect of vehicle speed on the total cost of cold-chain
logistics distribution. The relationship between the deterio-
ration rate and optimal speed was obtained from the case
study. Liu et al. [3] designed a computational model for the
variation of vehicle speed with time and proposed a method
to avoid traffic congestion and temporary traffic congestion.
Zhao et al. [14] considered the effects of time-varying road
network traffic volumes and road types. Constructing amodel
for the path optimization problem of electric vehicles, Heni
et al. [15] investigated the dynamic path of traffic and the
instantaneous speed of traffic networks. Poonthalir et al. [16]
proposed a computational model for the effect of triangularly
distributed variable speeds on fuel consumption. Their results
revealed that traffic moving at variable speeds leads to less
fuel consumption than constant-speed traffic.

B. CARBON EMISSIONS
The issue of carbon emissions has been an important research
topic under continuous improvement. Zhang et al. [17] ana-
lyzed the key factors affecting the development of green
logistics and explored the priority and hierarchy of the influ-
encing factors. There are many scholars who have designed
relevant carbon emission calculation models. Some schol-
ars have also studied carbon emissions under carbon tax or
carbon cap policies. Wang et al. [18] used a linear function
of unit fuel consumption to calculate carbon emissions. Liu
et al. [19] showed that a joint distribution is less costly than a
single distribution in terms of carbon emissions and that the
total cost is positively related to the cost of carbon emissions.
Hu et al. [20] first used the cycle evaluation method and the
input–output method to calculate the range of carbon emis-
sions during each stage of cold-chain logistics. To develop a
mathematical model for carbon footprint optimization, Ning
et al. [21] developed a quantitative analysis of the carbon tax
mechanism. Using carbon tax cost as a decision variable in an
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improved quantum bacterial foraging optimization algorithm,
Wang et al. [22] established a logistics path optimization
model including carbon emission costs. They analyzed crit-
ical carbon tax values for carbon emissions and allocation
costs in the example results. Li [23] proposed a mathematical
model to calculate the cost of carbon emissions and applied
it to the cold-chain logistics distribution path optimization
problem. Gong et al. [24] developed a mathematical model
for simultaneous multi-vehicle distribution based on consid-
eration of carbon emissions and time windows. With the
goal of minimizing driver wages and carbon emission costs,
Anna et al. [25] constructed time-dependent path optimiza-
tion problems.

C. VRP SOLUTION METHOD
With the innovation of planning models and the increase in
the size of nodes, traditional intelligent optimization algo-
rithms have some shortcomings in solving VRPs. Therefore,
many scholars have focused on the in-depth study of intelli-
gent optimization algorithms. Many improved optimization
algorithms and hybrid optimization algorithms have been
designed to solve the objective model. Zhao et al. [26] studied
a multi-objective path optimization model based on cost,
carbon emission, and customer satisfaction and designed
an improved ant colony algorithm solution model using a
multi-objective heuristic function. Zhang et al. [27] designed
an optimization algorithm combining RNA computation and
an ant colony algorithm to solve theVRP.Qin et al. [28] estab-
lished a cold-chain path optimization model with the objec-
tive of minimizing the cost of customer satisfaction and pro-
posed a circular evolutionary genetic algorithm to compute
the model. Ren et al. [29] constructed a multi-distribution-
center cold-chain logistics path optimization model consider-
ing soft timewindow constraints and adopted the hybrid algo-
rithm of an artificial fish swarm and an ant colony to solve the
model. Song et al. [30] designed a special coding method to
improve the artificial fish swarming algorithm by considering
the characteristics of different car models. Zhu et al. [31]
constructed a cold-chain logistics path optimization model
with a minimum total cost based on consideration of fuel
consumption and traffic congestion. A hybrid genetic–ant
colony algorithm based on response surface methodology
was proposed to solve themodel.Wang et al. [32] proposed an
adaptive genetic algorithm to solve the low-carbon cold-chain
logistics distribution path problem. Chen et al. [33] analyzed
the powerful global search capability of the improved ant
colony algorithm and the good local search capability of the
forbidden search algorithm. A hybrid optimization algorithm
was designed to solve the VRP.

In summary, research on considering road traffic aspects
in VRPs mostly focus of the impact of traffic conges-
tion or speed and real-time road condition data on vehicle
path optimization. However, few studies have considered
road impedance. Road impedance directly affects the actual
transportation time and indirectly affects the cost of each

distribution of vehicle transportation. Therefore, we believe
that it is important to consider the effect of road impedance
on the VRP. At the same time, the analysis from the above
study shows that cold-chain logistics will produce more
carbon emissions than ordinary logistics. In the context
of green logistics, it is essential to study low-carbon cold
chains. Therefore, here we construct a low-carbon cold-chain
logistics path optimization problem model with the objec-
tive of minimizing the total cost based on the influence of
road impedance. The effectiveness of intelligent optimization
algorithms in solving VRPs is also found. A PSO algorithm
with improved weights is then designed to solve the target
model.

III. ROAD IMPEDANCE FUNCTION ANALYSIS AND
IMPROVEMENT
The Bureau of Public Roads (BPR) function is the tradi-
tional model for calculating the impedance function of a road
section. It reflects the relationship between travel time and
traffic flow on a roadway. It is one of the most widely used
functional models in China. Of course, the BPR function also
has some shortcomings. First, when the traffic volume of the
traffic section is greater than the traffic capacity of the section,
it does not reflect the actual situation of road impedance.
Second, when the traffic volume on the road section is less
than the traffic capacity of the section and the parameter value
is larger, this leads to a travel time infinitely close to the free-
flow time. The travel time on the road is given by

t = t0

(
1 + α

(
Q
C

)β
)

(1)

where t0 is the free passage time during zero flow on the road
segment, Q is the traffic volume on the road segment, C is
the traffic capacity on the road segment, and α and β are
parameters to be calibrated. The values recommended by the
U.S. Highway Department are α = 0.15 and β = 4.0.

The urban road impedance function consists of two parts:
roadway impedance and intersection impedance. The actual
travel time of urban road impedance is given by

T = T1 + T2 (2)

where T1 is the travel time of roadway impedance and T2 is
the travel time of intersection impedance.

The road section travel time impedance function in this
study is based on the BPR function. In the BPR function
model, it does not reflect the fact that the traffic flow on the
road section increases and then decreases as the traffic flow
density increases. To solve this problem, so that the traffic
flow is not limited by traffic capacity, we use Wang’s [34]
idea of improving the BPR function.

By deriving the relationship among the three urban-road
parameters (speed, density, and traffic volume), the variation
between density and traffic volume can be derived. Their
linear expression is given by

Q = VK (3)
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The linear relationship between velocity V and density in the
Greenshield model can be expressed as

V = Vf

(
1 −

K
Kj

)
(4)

where Vf is the speed of free travel, K is the traffic density,
and Kj is the density of road blockage at a vehicle speed of
zero.

Substituting Eq. (4) into Eq. (3) yields

Q = Vf K −
Vf
Kj
K 2 (5)

Let dQ/dK = 0. Then, when V = 0.5Vf ,K = 0.5Kj.Q has a
maximum value of 0.25Vf Kj,The traffic volume at this point
is the traffic capacity of the roadway. that is C = 0.25Vf Kj.
Substituting Eqs. (5) and C = 0.25Vf Kj into Eq. (1) yields

t = t0

1 + α

(
1 −

(
1 −

K
Kj

)2
)β
 K ∈

[
0, 2Kj

]
(6)

From the above, the degree of saturation Q/C is replaced by
the density formula. Letting x = Q/C , we have

x = 1 −

(
1 −

K
Kj

)2

(7)

We used the road impedance function model proposed by
SPIESS [35]:

T1 = t0

(
2 +

√
β2 (1 − x)2 + γ 2 − β (1 − x) − γ

)
(8)

where γ =
2β−1
2β−2 , α > 0, β > 1, and the degree of saturation

is x = 1 −
(
1 − K/Kj

)2.
In China’s urban road intersections, which have different

forms, to facilitate the calculation, we assumed that the signal
intersection for a type. Among them, the Webster model is
a well-known model for calculating road signal intersection
delays [36]:

T2 =
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)
− 0.65(

c
Q2 )

1
3 x(2+5x) (9)

where Z2 is the time impedance of vehicles (i.e., vehicle
delays), c is the signal cycle, x is the saturation level of
the road, λ is the ratio of green lights to signal lights, and
Q is the traffic flow arriving at the intersection. The first
part of this equation is the basic delay term resulting from
vehicles arriving at the intersection and stopping or queuing.
The second part is the random delay term. The third part is
the correction term for the random delay term.Webster’s later
study revealed that the third component was less weighted in
the overall model. Therefore, the equation can be simplified
as

T2 =
9
10

[
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)

]
(10)

FIGURE 1. Change of saturation and traffic density.

Therefore, the urban road impedance function is a function
of the traffic density K :

T = T1 + T2

= t0

(
2 +

√
β2 (1 − x)2 + γ 2 − β (1 − x) − γ

)
+

9
10

[
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)

]
(11)

where x = 1−
(
1 − K/Kj

)2
, γ = 2β−1/2β−2, and α and β

are parameters to be calibrated. In this study, we used the U.S.
Highway Department recommended values of α = 0.15 and
β = 4.0.

A. DATA COLLECTION
The section between the subway entrance of Central Street
and the Shenyang University of Technology in the Tiexi
District, Shenyang, was selected for an example analysis. The
data acquisition methods commonly used were the photo-
graphic method and the access method. Because the survey
road section is not obscured by shelters, the photographic
method was used to obtain relevant data such as road traffic
density.

We collected traffic data from 06:00 to 21:00 on this road
section. In Figs. 1 and 2, the curves represent the trends in
traffic density and saturation from 06:00 to 11:00 and from
17:00 to 21:00, respectively. The trends of traffic density and
saturation from 6:00 to 11:00 and from 17:00 to 21:00 show
that the traffic density varies with saturation.

B. MODEL COMPARISON AND VALIDATION
Roadway data collected at 18:00 were taken as an example.
We obtained the traffic density of each road section K , and
intersection traffic volumes Q using a road blockage density
of Kj =125vehicles/km and parameters α = 0.15 and β =

4.0.
The travel time of the road section from 06:00 to 21:00 was

calculated using the BPR road impedance functionmodel, the
improved road impedance function equation of Wang [34],
and the improved road impedance function model of this
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FIGURE 2. Change of saturation and traffic density.

study, respectively. The results obtained from the three road
impedance functions were further compared and verifiedwith
the actual driving time. The comparison graph shows that
the whole driving time calculated by using the BPR function
is significantly lower than the actual value. This is because
the principle of the BPR road impedance function does not
account for road node impedance. While the travel time cal-
culated using the improved road impedance functionmodel of
Wang is greater than the actual value, the calculation results
of the improved road impedance function model in this study
are closer to the actual driving time, being significantly better
than those of other road impedance functions.

In the following sections, the actual travel time T under
road impedance conditions will be used as the actual transport
time of the vehicle.

IV. PROBLEM FORMULATION
A single distribution center problem was considered in which
the actual transportation time in the cost function was calcu-
lated for the above improved road impedance function. The
detailed assumptions of this study are as follows: (1) The
refrigerated truck is the same model, and the vehicle cannot
be overloaded. (2) The maximum distribution distance on
each distribution path shall not exceed the maximum distance
the vehicle can travel. (3) The amounts of cold-chain goods
in distribution centers are adequate. The vehicle departs from
the distribution center and has to return to the distribution
center after the distribution is completed. (4) Each demand
point can only be delivered by one vehicle and only delivered
once. (5) The delivery time window of each customer demand
point, the demand quantity, and the geographical location are
all known. (6) The density of road blockage during vehicle
transportation is known.

A. SYMBOLS AND DECISION VARIABLES
We set the following relevant parameters according to the
need for building the model:
m : number of vehicles (k = 1, 2, · · · ,m);
n : number of customers (i = 1, 2, · · · , n;j = 1, 2, · · · , n);
Q0 : weight of the refrigerator truck itself;

FIGURE 3. Comparison of travel times.

Q : maximum load capacity of a refrigerator truck;
D : furthest delivery distance for refrigerated trucks;
P1 : fixed costs per refrigerated truck;
P2 : cost of transportation per unit of time;
P3 : price per unit of product quality;
P4 : cost per unit of refrigerant;
P6 : unit cost of carbon emissions;
tijk : actual transport time of refrigerated truck k in section

i, j;
tjk : service time when refrigerator truck k is unloading for

customer point j;
Tijk : time for refrigerated truck k to complete the whole

distribution process from customer point i to customer point
j;
ti : time of arrival of goods at customer point i;
qj : demand for customer point j;
α1 : rate of cargo damage per hour of transport process;
α2 : rate of cargo damage per hour of unloading process;
Q1 : heat load generated by heat inside and outside the

carriage;
Q2 : heat load generated by heat leakage from the carriage

compartment;
β : heat leakage coefficient, usually taking on value in the

range of [0.1,0.3];
Q3 : heat load generated by opening doors during unload-

ing;
µ : frequency factor of door opening;
V : refrigerated truck compartment volume;
[Ei,Li] : time window for delivery of goods requested by

customer i;
θ1 : cost factor for damage to goods delivered by distri-

bution vehicles earlier than the time specified in the time
window;

θ2 : penalty cost factor for delivery vehicles exceeding the
time specified in the time window for delivery;
ti : time of arrival of goods at customer point i;
ρ0 : fuel consumption per unit distance at no load;
ρm : fuel consumption per unit distance at full load;
ε : carbon emission factor;
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σ : carbon emission factor in the refrigeration process;
qij : refrigerator truck load when transporting between

customer i and customer j;
ρ (x) : fuel consumption per unit distance;
a : constant factor;
b : constant value;
xkij : 0-1 variable (when refrigerator truck k is transported

on route i, j, xkij = 1; otherwise, xkij = 0);
yki : 0-1 variable (when the refrigerator truck k is the

distribution for customer point j, yki = 1; otherwise, yki = 0).

B. MODEL BUILDING
1) FIXED COSTS
The fixed costs in cold-chain logistics distribution mainly
include the wages of vehicle drivers, maintenance costs for
the loss or depreciation of refrigerated vehicles, and the
usual vehicle preservation costs. Therefore, fixed cost C1 is
expressed as follows:

C1 = mP1 (12)

2) TRANSPORTATION COSTS
In this study, the actual transportation time obtained from the
road impedance function was used to calculate the transporta-
tion cost as follows:

C2 = P2
m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij (13)

3) COST OF CARGO DAMAGE
The cost of cargo loss in the cold-chain logistics distribution
optimizationmodel is determined by twomain aspects. One is
the actual transit time in the distribution, which is calculated
from the road impedance function in the previous chapter.
The second is the service time to unload the car door at the
customer’s point of arrival. Then the cost of goods damage is
calculated using

C3 = P3α1

m∑
k=1

n∑
i=0

n∑
j=0

xkijα1tijkqj

+P3α2

n∑
j=1

m∑
k=1

ykj qjtjk (14)

4) ENERGY CONSUMPTION COSTS
The cost of energy consumption is divided into the cost of
cooling in transit and the cost of refrigerant consumed when
opening the door during unloading. The heat load in the
model is calculated using the empirical formula; that is, the
heat load generated by the heat exchange inside and outside
the refrigerated room is Q1 = RS1T [27], where R is the
heat transfer coefficient of the compartment, S is the average
irradiated surface area of the compartment, and 1T is the
temperature difference between the inside and outside of the
compartment. In addition to this, the heat load generated by
the heat leakage from the compartment is Q2 = βQ1, where

β is the heat leakage coefficient, usually taking on values in
the range of [0.1, 0.3].
The cooling costs incurred by the vehicle during trans-

portation are as follows:

C41 = P4
m∑
k=1

n∑
i=0

n∑
j=0

xkij (Q1 + Q2) tijk (15)

The cooling costs incurred for unloading are

C42 = P4
m∑
k=1

n∑
j=1

ykj Q3tjk (16)

In summary, the cooling costs for the entire distribution pro-
cess are

C4 = P4
m∑
k=1

n∑
i=0

n∑
j=0

xkij (Q1 + Q2) tijk

+P4
m∑
k=1

n∑
j=1

ykj Q3tjk (17)

5) PENALTY COSTS
Because the freshness of cold-chain products is very demand-
ing in terms of time. In terms of delivery, customers generally
have certain restrictions on delivery time. There is a soft
time window and a hard time window. This model selects
soft time windows for calculation according to the actual
situation of urban distribution. That is, the customer requires
delivery within [Ei,Li] to describe the time window range.
If delivered early, waiting costs are incurred. Penalty costs
will be incurred if delivery is overdue. Therefore, the time
penalty cost of this model is

C5 = θ1

n∑
i=1

max (Ei − ti, 0)

+θ2

n∑
i=1

max (ti − Li, 0) (18)

6) COST OF CARBON EMISSIONS
The cost of carbon emissions is mainly generated by the fuel
consumption of refrigerator trucks on the transport road and
vehicle cooling. In the transport process, fuel consumption is
not only related to the transport distance but is also influenced
by the amount of cargo carried. We selected the following
approximate linear function between fuel consumption per
unit distance and cargo capacity from the literature [37]:

ρ (x) = a(Q0 + x) + b (19)

By assuming that the maximum cargo capacity of the
refrigerator truck isQ, the fuel consumption per unit distance
when the refrigerator truck is empty and fully loaded, respec-
tively, is given by

ρ0 = a× Q0 + b (20)

ρm = a (Q0 + Q) + b (21)
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FromEqs. (20) and (21), we can see that a = (ρm−ρ0)/Q and
b = ρ0 − aQ0. Substituting into Eq. (19) yields the formula
for calculating fuel consumption per unit distance:

ρ (x) =
ρm − ρ0

Q
x + ρ0 (22)

When the load transported between customer points i and j is
x = qij, the fuel consumption per unit distance is

ρ
(
qij
)

=
ρm − ρ0

Q
qij + ρ0 (23)

The carbon emissions in transit can be expressed as the
product of fuel consumption per unit distance and a carbon
emission factor as follows:

C61 = ερ
(
qij
)
dij (24)

Carbon emissions from refrigeration equipment are lin-
early related to transport distance and cargo capacity [22].
The carbon emissions from refrigeration during the distribu-
tion process are given by

C62 = σqijdij (25)

In summary, the total carbon emission cost of the cold-
chain logistics distribution process is:

C6 = P6
m∑
k=1

n∑
i=0

n∑
j=0

xkij
(
ερ
(
qij
)
+ σqij

)
dij (26)

C. PATH OPTIMIZATION MODEL
By considering the impact of road impedance on the actual
transportation time, the cold-chain logistics path optimization
model with the objective of minimizing the total cost can be
established as (27), shown at the bottom of the page.

The constraints that should be satisfied by this model are
as (28)–(33), shown at the bottom of the page.

Equation (28) specifies that the number of distribution
refrigerated trucks is equal to or greater than the number of
distribution routes. Equation (29) specifies that each distri-
bution refrigerator departs from the distribution center and
must return to the distribution center after performing the
distribution task. Equation (30) specifies that each customer
can be served by only one refrigerated truck and only once.
Equation (31) specifies that the total demand of customer
points in each distribution pathmust not exceed themaximum

minC = C1 + C2 + C3 + C4 + C5 + C6

= P1m+ P2
m∑
k=1

n∑
i=0

n∑
j=0

tkijx
k
ij + P3α1

m∑
k=1

n∑
i=0

n∑
j=0

xkijα1tkijqj

+ P3α2

n∑
j=1

m∑
k=1

ykj qjt
k
j + P4

m∑
k=1

n∑
i=0

n∑
j=0

xkij (Q1 + Q2) tkij + P4
m∑
k=1

n∑
j=1

ykj Q3tkj

+ θ1

n∑
i=1

max (Ei − ti, 0) + θ2

n∑
i=1

max (ti − Li, 0)

+ P6
m∑
k=1

n∑
i=0

n∑
j=0

xkij
(
ερ
(
qij
)
+ σqij

)
dij (27)

m∑
k=1

n∑
i=1

xkij ≤ m, i = 0 (28)

m∑
k=1

n∑
j=1

xkij =

m∑
k=1

n∑
j=1

xkji, i = 0, k = 1, 2, · · · ,m (29)

m∑
k=1

yki = 1, i = 1, 2, · · · , n (30)

n∑
i=1

qiyki ≤ Q, i ̸= j, k = 1, 2, · · · ,m (31)

n∑
i=0

n∑
j=0

dijxkij ≤ D, i ̸= j, k = 1, 2, · · · ,m (32)

Tijk = tijk + tjk (33)
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TABLE 1. PSO specific steps.

carrying capacity of the refrigerator truck. Equation (32)
specifies that the total distribution distance of each distribu-
tion path shall not exceed the refrigerator truck’s maximum
distribution distance.

Equation (33) specifies that the distribution process of each
refrigerator truck is continuous.

V. ALGORITHM RESEARCH
A. PSO ALGORITHM
The PSO algorithm is straightforward and easy to implement.
It converges quickly and has group search and cooperative
search features. Consequently, it is widely used in solving
VRPs. The specific steps of the PSO algorithm used to solve
the logistics distribution path optimization problem are given
in Table 1.

The standard PSO algorithm for updating the velocity and
position of particles is formulated as

vi(n+ 1) = wvi(n) + c1r1(pi − xi(n))

+ c2r2(pg − xi(n))

xi(n+ 1) = xi(n) + vi(n) (34)

B. WEIGHT IMPROVEMENT OF THE PSO ALGORITHM
Although the standard PSO algorithm is an efficient and
intelligent optimization algorithm, its development time has
been short and there are still many aspects that need to
be improved. The inertia weight w is the most important
adjustable parameter in the PSO algorithm. A larger w can
improve the global search capability, while a smaller w can
enhance the local search capability. The weight improve-
mentmethods for linear decreasingweight PSO (LINWPSO),
adaptive weight PSO (SAPSO), and random weight PSO
(RANDWPSO) are described in the following.

1) LINWPSO
If the PSO falls into local convergence early on or generates
oscillatory situations near the global optimal solution later

on, LINWPSO can be used to solve this. The w-improved
equation is

w = wmax − t
wmax − wmin

tmax
(35)

2) SAPSO
The SAPSP formula can also be used to balance the local and
global search capabilities of the algorithm as follows:wmin −

(wmax − wmin)(f − fmin)
favg − fmin

, f ≤ favg

wmax, f > favg
(36)

3) RANDWSPO
Setting random weights w obeying some random distribution
of random numbers can overcome the deficiency caused by
the linear decrease of w. The formulas are{

w = µ + σN (0, 1)
µ = µmin + (µmax − µmin)rand(0, 1)

(37)

VI. EXAMPLE ANALYSIS
A. DATA AND PARAMETER SETTINGS
The data for this study were obtained from the Dongpu
Fresh Food Distribution Center and 20 Xindagang fresh
food supermarket chains in the Tiexi District, Shenyang.
First, the latitude and longitude coordinates and location
information of the distribution center and the 20 fresh food
supermarkets were obtained through the coordinate picker of
Baidu Map [37]. Each fresh produce supermarket was further
selected to collect and obtain demand information such as
the specified time window, maximum daily fresh produce
demand, and unloading service time in May. The relevant
location and demand information is given in Table 2. In the
first column of the table, 0 represents the distribution center,
and 1–20 represents the fresh supermarket.
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TABLE 2. Demand information of distribution centers and points.

FIGURE 4. LINWPSO iteration diagram.

FIGURE 5. RANDWPSO iteration diagram.

In this study, the parameters related to the target model
were obtained from other literature reports and based on
practical assumptions. The data are given in Table 3.

FIGURE 6. SAPSO iteration diagram.

B. ANALYSIS OF THE RESULTS
1) DIFFERENT PSO ALGORITHMS
The previous section introduced the basic principles of the
PSO algorithm and improvements to the weight correlation.
In this study, LINWPSO, RANDWPSO, and SAPSO were
used. The above-established cold-chain logistics path opti-
mization model considering the influence of road impedance
was solved. The minimum total cost of the objective function
was obtained by running the algorithm program for 1000 iter-
ations separately through MATLAB software. The iterative
plots of the total distribution cost for each algorithm are
shown in Figs. 4–6. The LINWPSO algorithm can be seen
in the iterative plots as the weights decrease linearly in the
mid-iteration, leading to a decrease in the convergence rate.
The iterative process of the RANDWPSO algorithm is not
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TABLE 3. Objective-related parameters.

stable enough. Comprehensive comparison of the SAPSO
algorithm’s convergence speed and stability is better and thus
more suitable for solving the target model of this study.

2) CONSIDERATION OF ROAD IMPEDANCE
For illustration purposes, the target model considering road
impedance is considered as model A, and the target model
not considering road impedance is considered as model B.
According to the relevant data, the head distance was set at
2 m and the average length of the motor vehicle was set at
6 m. The theoretical blockage density Kj for a single lane was
determined to be 125 vehicles/km through Baidu Map’s real-
time road development tool. By querying the nature of the
roads between the stores of each Xindagang fresh supermar-
ket in Shenyang, we derived average traffic density K values
for different road properties. The actual transportation time
between each customer point of model A was obtained from
Eq. (11). The transportation time without the effect of road
impedance was taken as the zero flow time; i.e., the actual
transportation time of model B can be obtained by using the
distance and speed between each customer point [37]. The

optimal vehicle path and the minimum total cost of the two
models were obtained by solving the SAPSO algorithm. The
results are given in Tables 4 and 5.

A comparison between the costs of the two models in
Tables 4 and 5 shows that Model A has higher transportation
costs, damage costs, energy costs, and penalty costs relative to
Model B. This is because the actual transport time calculated
using the road impedance function is greater than the free
transport time ofmodel B.Moreover, all four costingmethods
of the target model in this study are related to transporta-
tion time. The carbon emission cost is mainly related to the
load weight and transportation distance, so does not change
much between the two models. However, the cost of carbon
emissions accounts for a significant proportion of the total
cost and therefore cannot be ignored in cold-chain logistics
transportation.

The percentage difference between the total costs of model
A and model B is 32.6%, which indicates that whether road
impedance is considered in cold-chain logistics transporta-
tion has a great impact on the total cost. It is therefore
necessary to consider the influence of road impedance on
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TABLE 4. Optimal vehicle routing.

TABLE 5. Optimal cost comparison.

TABLE 6. Carbon emissions and total costs under different carbon taxes.

FIGURE 7. Trend of carbon emissions and total cost under different carbon taxes.
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cold-chain transportation because it makes the transportation
time more relevant to reality.

3) DIFFERENT CARBON TAXES
Different carbon tax values were selected in Model A.
We separately solved for carbon emissions and associated
costs. According to the current relevant policies and studies,
the carbon tax value was selected in the range of [0.01,1]. The
experimental results are given in Table 6. Figure 7 depicts the
trend of carbon emission and total cost with carbon tax based
on data analysis of the obtained results.

It can be seen fromTable 6 that the cost of carbon emissions
and the total cost both increase with the increase of carbon
tax value, and carbon emissions decrease with the increase
of carbon tax value. When the carbon tax value varies in the
range of [0.01,0.1], the total cost increases slowly and the
carbon emission reduction is not significant. Therefore, it has
no control effect on energy saving and emission reduction in
enterprise transportation. When the carbon tax value is taken
in the range of [0.1,1], the total cost increase is greater and
of similar magnitude. After the carbon tax value is >0.4,
the carbon emission reduction rate is slow; therefore, 0.4 is
considered the critical carbon tax value. That is, when the
carbon tax value is in the range of [0.1, 0.4], enterprises need
to pay attention to cost planning so that the economic and
environmental benefits can be balanced and the sustainable
development of green logistics can be promoted.

VII. CONCLUSION
With the increase of vehicle ownership in China, road traffic
density in cities has increased, resulting in a greater impact
of road transportation on cold-chain logistics and distribu-
tion. Therefore, the aim of this study is to improve the road
impedance function and derive a road impedance function
that is consistent with the current urban traffic environment.
Toward that goal, we constructed an optimization model of
the cold-chain logistics distribution path considering road
impedance and compared it with the optimization model
without considering the influence of road impedance. The
results reveal that whether you consider road impedance has a
strong influence on transportation costs, cargo damage costs,
penalty costs, and energy costs. Therefore, the optimal distri-
bution path planned by the objective model considering road
impedance is closer to reality. It provides important guidance
for cold-chain logistics and distribution enterprises. LINW-
PSO, SAPSO, and RANDWPSO algorithms are adopted to
solve the target model, respectively, and experimental results
are analyzed to show that SAPSO is more suitable for the
model. The experimental results under different carbon taxes
are compared to analyze the range of carbon tax values for
enterprises to control operating costs, save energy, and reduce
emissions in environmental aspects of cold-chain logistics
transportation.

Compared with existing studies, we considered the
actual transportation time during the transportation pro-
cess. An improved road impedance function was designed.

In addition, we consider the cooling cost and carbon emission
cost during transportation to make the model more reliable.
We also take into account the time window constraint with
penalty costs. The cold chain logistics path optimization
model is constructed with the objective of minimizing the
total cost. On this basis, the optimal cost under different car-
bon taxes is investigated. The carbon emissions and associ-
ated costs under different carbon taxes are solved separately.
The trend in Figure 5 shows that when the carbon tax value
is taken as [1, 0.1], the total cost increase is larger and of
similar magnitude. After the carbon tax value is greater than
0.4, the reduction of carbon emissions is slow. Therefore,
0.4 is considered the critical carbon tax value. In view of
the coordination between the current social economy and the
environment, this paper uses the research on the scope of
the carbon tax in path optimization to coordinate the balance
between the cost and carbon emissions in logistics. It will
maximize the attention of enterprises to cost planning and
contribute to the sustainable development of logistics distri-
bution. We produce that when the carbon tax value is in the
range of [0.1, 0.4], which is the best range of carbon tax to
advocate green logistics and can be used for reference by
logistics enterprises.

ACKNOWLEDGMENT
The authors would like to thank the helpful comments and
suggestions of the editor and anonymous referees.

REFERENCES
[1] H. Deng, M. Wang, Y. Hu, J. Quyang, and B. Li, ‘‘An improved distribu-

tion cost model considering various temperatures and random demands:
A case study of Harbin cold-chain logistics,’’ IEEE Access, vol. 8,
pp. 105521–105531, 2021.

[2] J. Peng, ‘‘Optimizing the transportation route of fresh food in cold chain
logistics by improved genetic algorithms,’’ Int. J. Metrol. Quality Eng.,
vol. 10, no. 1, pp. 14–20, Oct. 2019.

[3] C. Liu, G. Kou, X. Zhou, Y. Peng, and H. Sheng, ‘‘Time-dependent
vehicle routing problem with time windows of city logistics with a
congestion avoidance approach,’’ Knowl.-Based Syst., vol. 156, no. 188,
pp. 140715–140745, Aug. 2020.

[4] L. Li, Y. Yang, and G. Qin, ‘‘Analyzing the impact of vehicle speed on
distribution cost for cold chain logistics,’’ in Proc. IEEE Int. Conf. Ind.
Eng. Eng. Manag., Oct. 2019, pp. 263–267.

[5] M. Barth and K. Boriboonsomsin, ‘‘Real-world carbon dioxide impacts of
traffic congestion,’’ Transp. Res. Rec., vol. 2058, no. 1, pp. 163–171, 2008.

[6] L. Zhang, Y. Gao, Y. Sun, T. Fei, and Y. J. Wang, ‘‘Application on cold
chain logistics routing optimization based on improved genetic algorithm,’’
Autom. Control Comput. Sci., vol. 53, no. 2, pp. 169–180, Jun. 2019.

[7] J. Chen, W. Liao, and C. Yu, ‘‘Route optimization for cold chain logistics
of front warehouses based on traffic congestion and carbon emission,’’
Comput. Ind. Eng., vol. 161, no. 1, pp. 107663–107679, Aug. 2021.

[8] C. Qi and L. Hu, ‘‘Optimization of vehicle routing problem for emergency
cold chain logistics based on minimum loss,’’ Phys. Commun., vol. 40,
no. 1, pp. 101085–101092, Jun. 2020.

[9] J. Xu, D. Hu, and Y. Liang, ‘‘Optimization of distribution route of fresh
products considering carbon emissions and traffic congestion,’’ in Proc.
CICTP, 2020, pp. 4433–4444.

[10] M. A. Figliozzi, ‘‘The impacts of congestion on time-definitive urban
freight distribution networks CO2 emission levels: Results from a case
study in Portland, Oregon,’’ Transp. Res. C, Emerg. Technol., vol. 19, no. 5,
pp. 766–778, Aug. 2011.

[11] Y. H. Chen, ‘‘Intelligent algorithms for cold chain logistics distribution
optimization based on big data cloud computing analysis,’’ J. Cloud Com-
put., vol. 9, no. 1, pp. 1–12, Jul. 2020.

124066 VOLUME 11, 2023



A. Zhang et al.: Low-Carbon Cold-Chain Logistics Path Optimization Problem

[12] D. Guo, J.Wang, J. B. Zhao, F. Sun, S. Gao, C. H. Li,M.H. Li, andC. C. Li,
‘‘A vehicle path planning method based on a dynamic traffic network that
considers fuel consumption and emissions,’’ Sci. Total Environ., vol. 663,
no. 1, pp. 935–943, May 2019.

[13] J. Xu, Y. Gao, C. Liu, L. Zhao, and Z. M. Ding, ‘‘Efficient route search on
hierarchical dynamic road networks,’’Distrib. Parallel Databases, vol. 33,
no. 2, pp. 227–252, Mar. 2015.

[14] Z. Zhao, X. Li, and X. Zhou, ‘‘Distribution route optimization for electric
vehicles in urban cold chain logistics for fresh products under time-varying
traffic conditions,’’ Math. Problems Eng., vol. 2020, no. 1, pp. 1–17,
Oct. 2020.

[15] H. Heni, J. Renaud, and L. C. Coelho, ‘‘Time-dependent vehicle routing
problemwith emission and cost minimization considering dynamic paths,’’
Interuniv. Res. Centre Enterprise Netw., Logistics Transp., 2018.

[16] G. Poonthalir and R. Nadarajan, ‘‘A fuel efficient green vehicle routing
problem with varying speed constraint (F-GVRP),’’ Expert Syst. Appl.,
vol. 100, no. 1, pp. 131–144, Jun. 2018.

[17] M. Zhang, M. Sun, D. Bi, and T. Z. Liu, ‘‘Green logistics development
decision-making: Factor identification and hierarchical framework con-
struction,’’ IEEE Access, vol. 8, pp. 127897–127912, 2020.

[18] S. Wang, F. Tao, and Y. Shi, ‘‘Optimization of location-routing problem
for cold chain logistics considering carbon footprint,’’ Int. J. Environ. Res.
Public Health, vol. 15, no. 1, pp. 127897–127912, Jan. 2018.

[19] G. Liu, J. Hu, Y. Yang, S. Xia, and M. Lim, ‘‘Vehicle routing prob-
lem in cold chain logistics: A joint distribution model with carbon
trading mechanisms,’’ Resour., Conservation Recycling, vol. 156, no. 1,
pp. 104715–104745, Aug. 2020.

[20] B. Hu, B. Huang, Z. Liu, H. X. Guo, and L. H. Shi, ‘‘Optimization
model of carbon footprint of fresh products in cold chain from the energy
conservation and emission reduction perspective,’’ Math. Problems Eng.,
vol. 2021, no. 1, pp. 1–11, Apr. 2021.

[21] N. Tao and A. Lu, ‘‘Optimization of cold chain distribution path of fresh
agricultural products under carbon taxmechanism: A case study in China,’’
J. Intell. Fuzzy Syst., vol. 40, no. 6, pp. 10549–10558, Jun. 2021.

[22] S. Wang, F. Tao, Y. Shi, and H. L. Wen, ‘‘Optimization of vehicle routing
problem with time windows for cold chain logistics based on carbon tax,’’
Sustainability, vol. 9, no. 5, pp. 694–717, Apr. 2017.

[23] J. Y. Li, L. N. Fan, and D. Y. Dong, ‘‘A new route optimization approach
of cold chain logistics distribution based on fresh agricultural products,’’
in Proc. Chin. Control Decis. Conf. (CCDC), 2018, pp. 6652–6657.

[24] M. Gong, S. Lin, and D. Y. Dong, ‘‘Study on cold chain logistics with
time windows based on carbon emissions considering simultaneous pick
up and distribution,’’ in Proc. 8th Int. Conf. Ind. Technol. Manag. (ICITM),
vol. 2019, pp. 301–305.

[25] A. Franceschetti, E. Demir, D. Honhon, T. W. Woensel, G. Laporte, and
M. Stobbe, ‘‘A metaheuristic for the time-dependent pollution-routing
problem,’’ Eur. J. Oper. Res., vol. 259, no. 3, pp. 972–991, Jun. 2017.

[26] B. Zhao, H. Gui, H. Li, and J. Xue, ‘‘Cold chain logistics path optimization
via improved multi-objective ant colony algorithm,’’ IEEE Access, vol. 8,
pp. 142977–142995, 2020.

[27] L. Y. Zhang, M. L. Tseng, C. H. Wang, C. Xiao, and T. Fei,
‘‘Low-carbon cold chain logistics using ribonucleic acid-ant colony
optimization algorithm,’’ J. Cleaner Prod., vol. 233, pp. 169–180,
Oct. 2019.

[28] G. Qin, F. M. Tao, and L. X. Li, ‘‘A vehicle routing optimization prob-
lem for cold chain logistics considering customer satisfaction and carbon
emissions,’’ Int. J. Environ. Res. Public Health, vol. 16, no. 4, pp. 576–593,
Feb. 2019.

[29] X. Ren, C. Chen, Y. Xiao, and S. C. Du, ‘‘Path optimization of cold
chain distribution with multiple distribution centers considering carbon
emissions,’’ Appl. Ecol. Environ., vol. 17, pp. 9437–9453, May 2019.

[30] M. X. Song, J. Q. Li, Y. Q. Han, Y. Y. Han, L. L. Liu, and Q. Sun,
‘‘Metaheuristics for solving the vehicle routing problem with the time
windows and energy consumption in cold chain logistics,’’ Appl. Soft
Comput., vol. 95, pp. 106561–106576, Oct. 2020.

[31] L. Zhu and D. Hu, ‘‘Study on the vehicle routing problem considering
congestion and emission factors,’’ Int. J. Prod. Res., vol. 57, no. 19,
pp. 6115–6129, Oct. 2019.

[32] Z. Q. Wang and P. Wen, ‘‘Optimization of a low-carbon two-echelon
heterogeneous-fleet vehicle routing for cold chain logistics under mixed
time window,’’ Int. J. Prod. Res., vol. 12, no. 5, pp. 1967–1987,
Mar. 2020.

[33] J. Chen, P. Gui, T. Ding, S. Na, and Y. T. Zhou, ‘‘Optimization of trans-
portation routing problem for fresh food by improved ant colony algorithm
based on Tabu search,’’ Autom. Control Comput. Sci., vol. 11, no. 23,
pp. 6584–6604, Nov. 2019.

[34] S. X. Wang, L. Z. Wang, L. Gao, X. G. Cui, and X. M. Chen, ‘‘Improve-
ment study on BPR link performance function,’’ J. Wuhan Univ. Technol.,
vol. 33, no. 3, pp. 446–449, Jun. 2009.

[35] B. Zhou, L. P. Zhi, and B. Li, ‘‘Improved BPR impedance function and
its application in EMME,’’ J. Shanghai Maritime Univ., vol. 34, no. 4,
pp. 67–70+90, Dec. 2013.

[36] Y. Y. Pan, T. Yu, and J. X. Ma, ‘‘Improvement of urban road impedance
function based on section impedanceand node impedance,’’ J. Chongqin
Jiaotong Univ., Natural Sci., vol. 36, no. 8, pp. 76–81, Aug. 2017.

[37] R. Ma, X. Wang, and P. Zhou, ‘‘Research on optimization of fresh cold
chain logistics distribution path considering road impedance,’’ in Proc.
Int. Signal Process., Commun. Eng. Manage. Conf. (ISPCEM), 2021,
pp. 185–192.

AOBEI ZHANG received the degree from the
School of Management, Shenyang University of
Technology. He is currently pursuing the Ph.D.
degree. His major is logistics engineering and
management. His research interests include com-
plex system decision making and optimization,
logistics path optimization, and intelligent opti-
mization algorithms.

YING ZHANG was born in 1964. She is cur-
rently a Doctoral Supervisor with the School of
Management, Shenyang University of Technol-
ogy. She has presided over and completed eight
projects, including the Natural Science Founda-
tion of Liaoning Province, the Liaoning Doctoral
Start-Up Fund Project, the Liaoning Science and
Technology Research Project, and the Key Sup-
port Project of Shenyang Science and Technology
Bureau. She has participated in six projects of the

National Natural Science Foundation of China and 863 projects. She has
published more than 30 academic articles. She has edited Soft Computing
Methods (Science Press). Her research interests include complex system
modeling and optimization, logistics optimization management and control
in agile manufacturing environment, e-commerce-based pricing model and
optimization decision, bidding process optimization strategies and methods,
and the research and use of soft computing methods.

YANQIU LIU was born in April 1963. He is cur-
rently pursuing the Ph.D. degree. He is a mem-
ber of the CPC and a Professor. He is also the
Head of the TeacherWork Department of the Party
Committee with Shenyang University of Technol-
ogy, the Director of the Human Resource Manage-
ment Division, and a supervisor of Ph.D. students.
As a project leader, he has completed more than
20 projects, including one major project of the
National Natural Science Foundation of China,

one special project of the Ministry of Education for postgraduate education,
the Natural Science Foundation of Liaoning Province, the Science and
Technology Plan of Liaoning Province, and the Science and Technology
Plan of Shenyang City. He has published more than 100 academic articles
in international and domestic important journals, including 20 SCI retrieved,
30 EI retrieved, seven CSSCI retrieved, one monograph in Science Press, and
one textbook in People’s Post and Telecommunications Press. His research
interests include complex system optimization design and intelligent control.

VOLUME 11, 2023 124067


