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ABSTRACT Metal oxide sensor is widely used in many research fields, including E-nose for gas detection
due to their tunable sensitivity, space efficiency and low cost. One of the most popular open data sets in
electronic nose research contains data on various gases sampled using a MOx sensor in a wind tunnel over
16 months. A recent study published in 2022 by Nik Dennler has reported the discovery of the drift effect
of a public dataset due to incorrect experimental design. they reported that the order of gas collection was
not randomized and further discovered that a select set of gases were collected over a particular period.
This paper expands the previous paper, by analyzing the drift effect with low signal, zero-offset subtracted
signal’s mean, and standard deviation value by location and time, and examining it with TSNE, a dimensional
reduction method. In addition, the accuracy by time and location was analyzed by applying it to various Deep
Learning methods. According to the results, we confirmed that gas information is already classified before
the gas leaks in terms of temporal and spatial domain. Therefore, the classification accuracy overestimates
the actual accuracy that can be obtained due to the drift effect. Based on the results of this study, it is necessary
to thoroughly verify the temporal and spatial validity of the gas dataset when using the publicly available
gas dataset to develop gas detection algorithms.

INDEX TERMS Metal oxide sensor, drift effect, gas recognition, electronic nose system, artificial olfactory.

I. INTRODUCTION
Over the past 50 years, the research field of electronic
noses has developed rapidly with the growth of information
technology [1]. The critical goal of artificial olfactory
research is to classify various materials with high specificity;
this requires multiple gas sensor arrays with relatively high
selectivity and low specificity alongside a pattern recognition
algorithm to predict what materials are exposed. Since
Taguchi commercialized a SnO2-based MOX (Metal OXide)
gas sensor in 1968, MOX gas sensors have been widely used
due to their various advantages (such as high sensitivity,
low cost, long life, and succinct peripheral circuits). Mox
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sensors are excellent at detecting a wide range of gases and
provide relative output depending on the variation of the
gas density. Since Persaud and Dodd [2] first introduced the
concept of imitating human olfactory senses using sensor
arrays and pattern-recognition technology in 1982, Gardner
and Bartlett [3] defined an electronic nose as a configuration
of a sensor array that does not have complete selectivity
for detecting odors or a pattern-recognition system that can
differentiate simple odors from complex odors. Since then,
MOX gas sensors have been adopted as a major sensor in
electronic noses, and the low selectivity of MOX gas sensors
has been improved dramatically by implementing pattern
recognition technology using arrays. However, a crucial flaw
of MOx sensors is their sensitivity to sensor drift (unpre-
dictable alterations in the signal response upon continuous
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exposure to uniform material) [4]. Sensor drift is primarily
caused by chemical and physical interactions of a sensor
site, such as sensor aging (restructuring of a sensor’s surface
over time) and sensor poisoning (irreversible or slowly
reversible combinations of previously measured gases or
other contaminants). Environmental factors such as changes
in humidity, temperature, and pressure also affect sensor
response. The effects of sensor drift can be reduced in the
experiment planning process by assigning random materials
to be exposed in the data-selection process. As another option,
it is crucial to construct an analysis algorithm by remaining
cognizant of the presence of sensor drifts.

One of the most popular open data sets in electronic nose
research contains data on various gases sampled using a
MOx sensor in a wind tunnel over 16 months [5]. This data
set was utilized in gas classification algorithms, gas source
location predictions, and other applications. Recent research
has reported on the fundamental limitations of data sets; they
reported that the order of gas collection was not randomized
and further discovered that a select set of gases were collected
over a particular period. Consequently, the sensor data had
been corrupted by sensor drift [6].

This paper aims to analyze the effects of sensor drift on
gas sensor data sets from temporal and spatial perspectives.
For this, various experiments related to the drift effect are
conducted using a data set from theMOx gas sensor array in a
wind tunnel. First, the drift effect of sensor data over time and
space is analyzed by measuring the change in sensor value
before gas leaks. Second, learning gas classification model
and recognizing eight gases to compare using the Zero-offset
subtraction method for drift reduction vs. using raw signals.
Lastly, the drift effect of gas data is analyzed by detecting
gases using the OODmethod since the electronic nose system
should not be classified as a specific class until it has first
been exposed to the gas.

The remainder of this paper is organized as follows:
Section II presents the related works on electronic nose
system. Section III and IV explain the public gas data
analysis. Section V concludes this work.

II. RELATED WORKS
A. DATASET
Electronic devices and data analysis procedures must be
specifically tailored to develop an electronic olfactory
system. These designs and procedures must be created on
reliable data. Public datasets are frequently used in the
field of electronic olfactory research because they reduce
the need for data collection during the early stages of the
design of an electronic olfactory system [6]. Various datasets
that include many different case studies, as well as tasks
and applications, are publicly available [7], [8], [9]. Mox
sensor data, collected from wind tunnels over 16 months
for various experimental parameters and gases, is one of
the most well-known datasets [5]. This data set contained
18,000 time-series data from ten different chemical gas
substances, including acetone and acetaldehyde. It has also
been incorporated into algorithms for identifying different

types of gases, estimating the location of the gas source, and
other applications. Vergara spent three years developing a
dataset using an electronic nose system, which was made
public in the UCI Machine Learning Repository [7]. This
electronic nose system with 16 gas sensors collected six
different types of gases, including ammonia.

B. ELECTRONIC NOSE SYSTEM
Even though the first studies on specific odor detection began
in the 1920s, the idea of using chemical electronic sensor
arrays to detect odors was primarily discussed, and [2] in the
early 1980s. The term ‘‘electronic nose’’ appeared in [3] in
the late 1990s to describe sensor arrays that could distinguish
between one or more chemical components. With recent
advancements in sensor technology, the application field has
expanded significantly. Thanks to its dependable solutions,
speed, affordability, and miniaturization, the e-nose is used in
a variety of industries, including agriculture, food, medicine,
and security [10], [11], [12], [13], [14].

Electronic nose systems with oxide semiconductor gas
sensor arrays were thought to be promising platforms that
could be improved to identify gases and odors using machine
learning [15], [16], [17]. Due to their high sensitivity, quick
response times, and simple structures, oxide semiconductor
gas sensors have been widely used to detect harmful and
toxic gases; however, the sensors’ poor gas selectivity
frequently limited their ability to detect these gases [18].
As a result, simple techniques such as PCA were used
to analyze the sensing patterns obtained from the sensors
[19], [20], and the performance of sensor arrays was
subsequently improved using machine learning with various
algorithms including artificial neural networks, convolution
neural network (CNN), and recurrent neural networks
(RNN) [21], [22], [23], [24].

C. DRIFT CORRECTION METHOD
Various approaches have been proposed in research to
address the problem of drift, including drift compensation and
drift correction. Drift correction can be broadly categorized
into three approaches: 1) modeling methods that assume
sensor drift can be modeled separately from the analysis
signal, 2) composition correction methods that identify and
remove components that are sensitive to drift before the
model is built, and 3) adaptive correction methods based
on machine learning. The first approaches frequently used
baseline processingmethod and filteringmethod in frequency
domain. These methods compensate for the response of
each sensor. However, due to the complexity of the causes
of drifting, these methods can only reduce some of the
side effects caused by drift. The second approach attempts
to identify and remove components sensitive to drifting
before the model is constructed. However, since there is
not enough prior information, these methods usually cannot
effectively handle samples that differ significantly from the
initial distribution. Adaptive correctionmethods were applied
to drift revision through classifier integration by [25] for the
first time in 2012. According to the experiment, an ensemble
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method based on support vector machine was shown to
deal well with sensor drifts and was certificated to fulfill
the task better than baseline competing method. Domain
adaptation and transfer learning approaches [26], [27], [28]
focus on removing the influence of cross-domain sensitivity
to make the prediction model more robust. The balanced
distribution adaptor drift compensation method improved the
accuracy of drift compensation by reducing the discrepancy
between the two domains, as it can adjust the conditional
and marginal distributions between the two domains through
a weight balancing factor [25]. Additionally, to correct for
drift and device variation, a transfer learning-based drift
correction autoencoder model for adaptive domain adaptation
was proposed [29].

III. GAS DATA ANALYSIS IN TERMS OF TIME AND SPACE
A. DATASET
The published gas sensor dataset comprises data collected
from 18,000 time-series signals over 16 months by releas-
ing 10 analysis gases (acetone, acetaldehyde, ammonia,
butanol, methane, methanol, carbon monoxide, benzene,
and toluene) [5]. The sensor platform consists of nine
modules, each equipped with eight MOx sensors. They were
placed at six different distances perpendicular to the wind
direction from a gas inlet on a flat plate wind tunnel of
size 2.5 m × 1.2 m × 0.4 m. Each sensor module was
integrated with a sensor controller that enables data collection
at a 100 Hz sampling speed and the airflow was adjusted by
controlling the wind speed of the exhaust fan. Combinations
of parameter gas, position, wind speed, and operating voltage
were selected prior to measurement until each combination
was repeated 20 times. This continued for 260 seconds and
the gas was released from t = 20 seconds to t = 200 seconds.
Data are saved in one file for each parameter combination.

B. GAS DATA ANALYSIS
The main task of the artificial olfactory sense is to identify
different gas materials at high specificity. MOx sensors are
mainly used for sensor arrays because they can streamline
the layout, reduce costs, and save space. One critical demerit
of a MOx sensor is that it has susceptibility to sensor drift.
Drift occurs due to influences such as sensor deterioration
and changes in temperature, humidity, or pressure. To reduce
the influence of gas and sensor drift, the order of gas exhaust
is assigned randomly. This paper analyzes drift’s influences
on the published gas datasets in terms of time and space.

The recording time was extracted from the file name to
analyze the temporal sequence of gases. Table 1 shows that
gas was collected in a specific sequence rather than in random
order. Hence, it is assumed that the collected gas data were
significantly influenced by the drift effect.

Figure 1 shows the sensor value in the 0–10 second section
of the no. 5 Board at the L2 position, strongly influenced by
gas, and the no. 9 Board at the L1 position, least affected by
gas in chronological order. According to the results, values
are distributed around 400 for all sensors on no. 9 Board at
the L2 position that was less influenced by drift, and it is

TABLE 1. The published gas sensor data sorted by time.

FIGURE 1. The sensor value in the 0–10 second sections of the no.
5 Board at the L2 position and the no. 9 Board at the L1 position.

assumed that this is because the drift effect did not occur as it
was less affected by the gas. In contrast, the sensor values are
categorized by class even before the gas was released since
the no. 5 Board at the L2 position was strongly influenced by
gas. This could engender fatal errors in utilizing the e-nose
system, so researchers are required to consider the drift effect
before devising gas detectors. However, numerous previous
types of research that used this dataset as one of the most
popular datasets reported wrong results without considering
the drift effect.

This paper analyzes the characteristics of not only the
temporal information reference dataset but also the spatial
information reference dataset. In the temporal information
reference dataset, each sensor was observed to be affected
by drift and whatever variation arose for each space in the
wind tunnel. For this, the data in the 0–10 second section
were sampled and the positions where the most and least drift
occurred were analyzed for each position and board.

Figure 2 shows the TSNE results for each gas on nine
boards at the L2 position. According to the results, the no.
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FIGURE 2. TSNE results for each gas on nine boards at the L2 position.

5 Board was strongly affected by the drift effect because it
was positioned nearest to the gas exhaust point, so the cluster
is formed even before any gas was released. In contrast,
clusters rarely formulated for the no. 9 Board positioned
farthest from the gas exhaust point; it could be presumed that
it was the least influenced by drift.

IV. DRIFT EFFECT ANALYSIS
A. DRIFT EFFECT ANALYSIS METHOD
Before analyzing the data, we converted the sensor voltage
value given in the data set to the resistance value resistance
values, according to the equation (1)

Rvalue = 10k� ×
3.11V − Vvalue

Vvalue
(1)

In general, the instability or drift of the sensor character-
istics means the change of the sensitivity or output level due
to time, temperature or certain cause. This paper uses zero-
offset method to compensate drift, and analyzes the gas data.
Assuming that the first 100ms of sensor data is the initial
output value of the sensor, and calculate the average value
of the 100ms data. This paper uses zero-offset method to
compensate drift, and analyzes the gas data. Assuming that
the first 100ms of sensor data is the initial output value of
the sensor, and calculate the average value of the 100ms data.
the sensor data was subtracted by the average value. This is
a standard procedure for dealing with the drift in sensor data.
Zero-offset subtraction method is as follows:

xcomp = x − AVG100ms, ∀x (2)

B. DRIFT EFFECT ANALYSIS THROUGH BY LOCATION
Figure 3 shows the sensor value for classes in each position
at the 0–20 second section. Before gas release, researchers
normally expect each sensor to have consistent values for
all classes at any position. According to Figure 1, sensors at

FIGURE 3. Sensor values for every class at specific location.

separate positions had disparate initial values. In addition, the
no. 1 and 9 Boards at the L1 position were least influenced
by gas as they are located at the ends of the wind tunnel, but
their initial values are different. The reason for this is that
the sensors on the no. 1 and 9 Boards were affected by drift.
Compared to the no. 1 and 9 Boards, which were less affected
by gas, sensors’ value fluctuations were significant in the two
no. 5 Boards that were at the L2 and L4 positions, which were
highly influenced by gas.

According to Figure 4, when analyzing changes in the
mean and standard deviation, they are more clearly marked
when using zero-offset subtraction rather than a raw signal.
This shows that while the raw signal has a high value even
when there are no changes in the actual sensor value, the
zero-offset subtraction method only activates when there is
a change in the sensor value.

Figure 5 is a visualization realized by composing all data in
the 1–200 second section at each position into a feature vector
and performing dimensional reduction by TSNE. In the
figure, each class is divided from 0 seconds when using
the raw signal. This is attributed to the strong influence of
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FIGURE 4. Mean and standard deviation of each sensor value at a
specific time. (1): Raw signal mean, (2): Raw signal standard deviation,
(3): Zero-offset subtracted mean, (4): Zero-offset subtracted standard
deviation.

drift. When using the zero-offset subtraction method, gas is
identified in each class after gas release, which manifests as
a reduced influence of drift.

C. DRIFT EFFECT ANALYSIS THROUGH DEEP NEURAL
NETWORK
In general, after gas was released, the 140–200 second
section was used to detect gas after a certain amount of
time had passed instead of for the entire interval. The
model was trained using two methods: raw signal and zero-
offset subtraction. As indicated in Figure 6, the date at the
20-second section was utilized. In other words, the one-
dimensional time-series data consist of eight gas sensors with
N data for 20 seconds (N20x8).

The classes to categorize gas are composed of eight classes
(Acetaldehyde_500, Acetone_2500, Ammonia_10000, Ben-
zene_200, Ethylene_500, Methane_1000, Methanol_200,
and Toluene_200). The training models are Bidirectional
Long Short Term Memory (LSTM) Attention [30] and
Bidirectional Temporal Convolution Network (BTCN) [31].
The models for two-dimensional training that include spatial
dimensions are CNN [32] and Convolutional Recurrent
Neural Network (CRNN) [33]. Softmax, Focal Loss [34],
Sphereface [35], Cosface [36], and Arcface [37] functions
were employed for Train Loss.

FIGURE 5. Each second of data in a 1–200 second interval visualized by
position as a feature vector using the TSNE method.

FIGURE 6. 140–200 seconds of data collection with a 20-second window
size.

LSTM is the neural network structure designed to enable
long- and short-termmemory, making up for the disadvantage
of existing the RNN that cannot memorize information
located far from the output. It is employed for time series
processing or natural language processing. RNN applies
backpropagation to all time steps from beginning to end,
and when a time step is large, it becomes a deep network
causing gradient vanishing or exploding problems. To settle
this issue, the LSTM cell was suggested that can hold
long-term memory. CNN is a neural network model in
which learning and testing are available while maintaining
the image’s space information. While a traditional neural
network model comprised only of fully connected layers
has the problem of losing space information during the
process of flattening the input data, CNN has an advantage
in that it improved accuracy by retaining space information
through filter calculation. CNN applies sliding convolutional
filters across the input data and extracts the feature map.
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FIGURE 7. Deep learning model using the experiments.

Feature map sizes vary depending on the filter size, stride,
padding, and pooling, and users can customize it to their
purposes. CRNN is a mixture of CNN and RNN, and it
extracts feature sequences by receiving images as inputs and
processes classification through RNN based on the extracted
feature sequence. It obtains text information through a feature
extractor, and converts it into a feature in the form of
a sequence with map-to-sequence. Feature sequence holds
information related to the image’s text, and predicts the
text through RNN at the last stage. It has merits as it
recognizes sequences from inputs. Temporal Convolution
Network (TCN)model uses a 1D-dilated causal convolutional
network that expands the receptive field with convolution’s
locality feature and dilation. It overcomes the limitation of
layers, where layers could be accumulated significantly in a
simple causal convolution but a larger receptive field cannot
be formulated, by applying dilated convolution, so that the
receptive field can grow exponentially.

Figure 8 indicates the accuracies of the one-dimensional
models at each position.

This paper applies two evaluation indices to assess gas
classification models. Accuracy is the ratio of the number of
correctly predicted samples to the total number of samples.
Loss is an index that represents the error between the answer
predicted by the artificial intelligence model and the original
answer. For loss functions, the method of applying the
Negative Log-Likelihood Loss function (NLL) to results from
Log Softmax, Focal Loss that gives more weight to hard-
to-detect or misclassified cases, Sphereface that employs
Angular margin, Cosface, and Arcface loss function were
used.

In the case of using raw signal, the accuracy means at
all positions were brnn SoftmaxLoss: 0.59, brnn cosface:
0.53, tcn SoftmaxLoss:0.87, and tcn-cosface: 0.85, while in
the case of using zero-offset subtraction, they were brnn
SoftmaxLoss: 0.3, brnn cosface: 0.27, tcn SoftmaxLoss:

FIGURE 8. Accuracy of the model for one-dimensional data at each
location (1) Raw signal brnn, (2) Raw signal tcn, (3) Zero-offset subtracted
brnn, (4) Zero-offset subtracted tcn.

0.44, and bi_tcn-cosface: 0.39. According to the experiment’s
results, the tcn model tends to have higher accuracy than the
other models and the models’ accuracy tends to be high at
positions where the sensor is exposed to gas release. In the
case of zero-offset subtraction, the accuracy remarkably
declined at the position where the gas did not reach the
sensors. Evidently, the accuracy declined when the effect of
drift was reduced by removing offset values compared to the
raw signal having a biased sensor value even if the actual gas
was not released.

The accuracies of the two-dimensional models at each
position are as indicated in Figure 9.

When using raw signal, the accuracy means at all
positions were cnn SoftmaxLoss: 0.99, cnn cosface: 0.99,
crnn-SoftmaxLoss: 0.96, and crnn-cosface: 0.99, while in
the case of using zero-offset subtraction, they were cnn
SoftmaxLoss: 0.86, cnn-cosface: 0.87, crnn-SoftmaxLoss:
0.66, and crnn-cosface: 0.89. Using raw signals showed
higher accuracy than using zero-offset subtraction, and
zero-offset subtraction had higher accuracy when using
cosface loss. Using two-dimensional data exhibited com-
paratively higher accuracy because their structure included
position information for the nine modules. Additionally, L2,
L3, and L4 positions had higher accuracy than the others as
they were more exposed to the gas.
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FIGURE 9. Model accuracy with 2D data for each location (1) Raw signal
cnn, (2) Raw signal crnn, (3) Zero-offset subtracted cnn, (4) Zero-offset
subtracted crnn.

FIGURE 10. Accuracy by location in the range of 0–20 seconds before the
gas was released.

Figure 10 describes the accuracy at each position when
using the data at the 0–20 second section before gas release.
The TCN model and Softmax loss function were employed.

The average accuracy at all positions was 0.86 when using
raw signal and 0.42 for the case of zero-offset subtraction.
Even without gas release, the model demonstrated higher
accuracy since the raw signal was influenced by drift. For
zero-offset subtraction, dealing with the drift effect improved
but the effect remained at the position heavily exposed to gas,
resulting in increased accuracy.

Figure 11 is the result of applying zero-offset subtraction
to data at the 0–20 second section that does not have gas
exposure. The changes in sensor values for the no. 9 Board
at the L1 position are insignificant, –0.8–+0.8, but those at
the no. 5 Board at the L2 position are significant, –2–+10.
This reveals that changes in sensor value vary depending on
the position even in the 0–20 second section has no exposure
to gas.

Figure 12 is the result of training the model with
three classes—Methanol, Ethylene, and Butanol—that are
expected to be least affected by the drift effect at the wind
tunnel experiment. The TCN model and SoftMax loss were
employed; the average accuracy was 0.79 for the raw signal
and 0.57 for zero-offset subtraction. Furthermore, when the
data from sensor no. 4, which was the one most affected by
drift, were ruled out when using the raw signal, the average
accuracy was 0.68; this was 0.51 in the case of zero-offset
subtraction.

D. DRIFT EFFECT ANALYSIS THROUGH OUT OF
DISTRIBUTION
A typical e-nose system should not classify a particular
class until first exposure to gas. Out of Distribution (OOD)

FIGURE 11. Zero-offset subtracted value in the range of 0–20 seconds.

FIGURE 12. The subset least affected by the drift effect using six sensors
and eight sensors.

FIGURE 13. When one-dimensional time series data is input, OOD AUROC
at any position in 0–20 seconds (a) Raw signal, (b) Zero-offset subtracted.

Detection implements an In-distribution dataset to train a
multi-class classification network, and when testing models,
its objective is to accurately predict in-distribution test sets
while not detecting Out-of-distribution data sets. In most
cases, when an Out-of-distribution dataset is input into a
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FIGURE 14. When two-dimensional data are input, AUROC of OOD at any
position in 0–20 seconds (a) Raw signal, (b) Zero-offset subtracted.

FIGURE 15. AUROC of ODD for each position with 1D input (a) Raw
signal, (b) Zero-offset subtracted.

model, there are still problems of high-confidence errors
being observed. This paper examines the effect of drift on
the gas dataset by detecting gas with the OOD method.
ViM [38], Mahalanobis [39], KLMatching [40], MaxSoft-
max [41], EnergyBased [42], MaxLogit [40], ODIN [43],
OpenMax [44] and OOD methods were implemented for the
experiment. AUROCwas estimated from data of all positions
in the 0–20 second gas leak-free section to analyze the drift
effect using the OOD method.

According to the results in Figure 13, when using a
typical detectionmodel, the accuracy of Softmaxwas highest,
but when using the OOD method, the results that used
cosfass loss manifested higher accuracy. Mahalanobis and
ViM demonstrated the highest accuracy, and high accuracy
was observed when using the raw signal (brnn: 0.93, tcn:
0.71) and when using zero-offset subtraction (brnn: 0.94, tcn:
0.66).

Figure 14 illustrates the results of inputting two-
dimensional data that include location information to models.
ODD with two-dimensional data input demonstrated the

FIGURE 16. AUROC of ODD for each position with 2D input.

FIGURE 17. AUROC value of ViM and Mahalanobis in OOD for each
model, moving a 20-second window within 0–100 seconds in 1-second
units (a) Raw signal, (b) Zero-offset subtracted.

highest accuracy when using Softmax loss, and then Vim,
Mahalanobis, and OpenMax showed the highest accuracy in
that order.

Figure 15 describes the AUROC results at each position.
The gas detection accuracy of the tcn model is high on
average for all positions, and in the case of OOD, brnn shows
better performance than tcn. However, it is observed that the
accuracy of tcn is higher than that of brnn at positions where
gas is released.

Figure 16 illustrates the AUROC results at each position
when inputting two-dimensional data that includes spatial
information. When using the raw signal, the accuracy
of Mahalanobis was highest at 0.94, while the accuracy
of OpenMax was highest at 0.91 when using zero-offset
subtraction.

Figure 17 describes the OOD results of each model in
accordance with the time sequence. In the case of the no.
9 Board at the L1 position, it had a high value at the
initial stage, which stiffly decreased as time passed. This
demonstrates that there were changes in value at the initial
stage before gas release. For the no. 5 Board at the L2
position, the increase of AUROC value since the gas release
can be noted; the value fluctuates after gas release and the
fluctuation decreases as the gas dissipates.
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V. CONCLUSION
This paper conducted various experiments related to the
drift effect using data sets from a MOx gas sensor array
in a wind tunnel Vergara et al. [5]. Since MOx sensors are
susceptible to sensor drift, we analyzed the effects of sensor
drift on the gas sensor data set from temporal and spatial
perspectives. In addition, one-dimensional time series data
in the range 140–200 seconds were extracted after the gas
was fully released and a variety of deep-learning models
were learned based on this input. The training data were raw
signal data or data with the zero-offset subtraction method.
The experiments of each location were conducted to verify
the accuracy of gas classification at different locations, and
the location affected by gas release and the location less
affected by gas release were analyzed. The results showed
that the performance of the TCN model was higher, and We
confirmed that the sensor close to the location where the
gas is emitted had high accuracy. Also, for the zero offset
subtracted data, the accuracy was significantly decreased.
This is because the farther sensor from the gas emission
location was already outputting a certain level of sensor
value before the gas was emitted, and by removing the initial
offset value it was confirmed that the actual accuracy is
low. Furthermore, to examine the effect of drift on the gas
dataset this paper analyzed the drift effect at each location
in terms of OOD by calculating the AUROC of OOD at
one-second intervals. According to the experimental results,
brnn showed high performance with an average AUROC of
0.94 for every location, and also performed well at locations
far from where gas was emitted. On the contrary, TCN
had a low overall average AUROC of 0.66, but showed
relatively high performance for OOD at locations where gas
was emitted. This means that even though the overall average
of BRNN was higher, in terms of OOD, TCN was superior to
BRNN.

Other papers acknowledged that the accuracy of classifi-
cation from those datasets is exceptionally high compared to
other datasets, and reported the problem of datasets unveiled
in the previously published paper and the resulting drift
effect for the first time. This paper expands the previous
paper, by analyzing the drift effect with low signal, zero-
offset subtracted signal’s mean, and standard deviation value
by location and time, and examining it with TSNE, a
dimensional reduction method. The Zero-offset subtraction
method compensated for the gas data by subtracting the
average value of the initial 100ms data acquired from the
sensor from the total data. It mitigated the drift effect by
deducting the sensor value affected by the drift from the total
data, assuming all sensor data were influenced by the drift
effect before the initial gas leak. In addition, the accuracy by
time and location was analyzed by applying it to various Deep
Learning methods. According to the results, we confirmed
that gas information is already classified before the gas leaks
in terms of temporal and spatial domain. Therefore, the
classification accuracy overestimates the actual accuracy that
can be obtained due to the drift effect. Based on the results
of this study, it is necessary to thoroughly verify the temporal

and spatial validity of the gas dataset when using the publicly
available gas dataset to develop gas detection algorithms.
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