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ABSTRACT Today, Erasure Coding is one of the most significant techniques widely used in distributed
systems because it can improve reliability for large amounts of data with low storage overhead. However,
when the distributed system encounters a large number of data loss in stripes and requires batch-stripes data
recovery, current data recovery methods either repeat the single-stripe recovery method or only optimize
partial stripe recovery when recovering large-scale stripes, which incurs heavy upload and download repair
traffics and imbalanced load, affecting the efficiency of fault recovery and wasting additional resources.
In this paper, we propose BPR, an Erasure Coding batch parallel repair approach for distributed storage
systems. BPR reduces cross-rack network transfer time and increases recovery throughput by classifying the
stripes and recovering the data of stripes in batches through the forward and reverse parallel data recovery.
The experiment results show that for large-scale stripes recovery, BPR reduces the cross-rack network
transfer time by up to 10% and increases the recovery throughput by up to 8% compared with the rPDL
in some scenarios.

INDEX TERMS Distributed storage system, erasure coding, data recovery.

I. INTRODUCTION
Large-scale distributed clusters, such as Hadoop, are usually
composed of many independent low-reliability commercial
components, and unexpected failures of components are com-
mon. To ensure high reliability and availability of data in
such a distributed storage system, a common approach is
to use three-way replication redundancy technology, which
provides fault tolerance by storing multiple copies of the
same data on different nodes. When the amount of data is
small, the replication technique is simple and effective. But in
large data centers, three-way replication technology requires
twice the storage overhead, which is quite expensive and
unacceptable.

As an alternative, Erasure Coding can provide fault toler-
ance which close to replication technology with lower storage
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overhead. Among multiple Erasure Coding families, Reed-
Solomon code [1] is the most widely used code. An RS(n, m)
encodes n data chunks into m parity chunks, and these n+m
independent chunks form a stripe. These chunks of each stripe
are stored in vary racks called the host racks for the stripe.
By decoding any n of the remaining available chunks in the
stripe, failed chunks less than or equal to m can be recovered.
However, using Erasure Coding to recover failed chunks in a
stripe requires retrieving available chunks in multiple source
racks, which offer chunks to recover chunks through cross-
rack transfer, and incurs high recovery costs. Although Era-
sure Coding can improve storage efficiency, they significantly
increase disk I/O and network bandwidth occupation. Erasure
coding has been widely adopted in cloud storage systems,
e.g., Azure [20], Facebook [21] and distributed storage sys-
tems [9], [17], [20].

In modern large-scale data centers, storage nodes are
divided into different racks. Storage nodes are connected
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in a same rack through the switch. And, multiple racks are
then interconnected via the network core [2], [3]. In this
architecture, if you want to repair data of stripes, you need
to transfer data between multiple rack, and the cross-rack
bandwidth is often competed among the racks. In addition,
the available cross-rack bandwidth of each node is only 1/20
to 1/5 of the intra-rack bandwidth [4]. Therefore, cross-rack
bandwidth is much scarcer than intra-rack bandwidth [5],
and excessive cross-rack bandwidth slows down the recovery
process.

To mitigate the impact of cross-rack data repair, existing
works design new repair scheduling methods to minimize
cross-rack repair traffic [7], [8], [12], [14]. However, these
data recovery methods still face a non-trivial challenge. The
challenge is that the traffic of upload and download can’t
be well balanced when repairing large amounts of stripes.
Someworks begin to consider such reality and balance upload
and download traffics by means of substituting and swap-
ping repair solution, such as ClusterSR [12]. However, when
chunks are stored centrally on several racks, these works
will not avoid selecting the Rf with the failed node as the
destination rack. When it selecting the Rf with the failed
node as the destination rack, Rfwill suffer frommuch heavier
cross-rack traffic than the others when recovering large-scale
stripes. Xu et al. [14] have considered this question about Rf,
but this work repeats the recovery method which recovers
a single stripe so that some destination racks possibly suf-
fer download traffic congestion when recovering large-scale
stripes.

In order to scatter and balance the traffic of upload and
download during the recovery of large amounts of stripes,
in this paper, we propose BPR, an Erasure Coding batch
parallel repair approach for the distributed storage system.
BPR focuses on classifying the stripes and dividing recov-
ery operations into some small partial symmetry operations
for benefits of full-duplex transmission. First and foremost,
BPR distributes all chunks of the stripes into some racks
and then provides a stripe classification scheme. At last,
BPR constructs multi-stripe repair solutions based on the
classification results. Through forward and reverse parallel
transfer, BPR can significantly reduce cross-rack data transfer
time and increase recovery throughput in an Erasure Coding
distributed storage system.

Our contributions are summarized as follows:
• We present BPR, an Erasure Coding batch parallel repair
approach. It can recover data of stripes in batches and
effectively reduce cross-rack data transmission time and
total recovery time, greatly increase recovery throughput
in the event of chunks failed in the Erasure Coding
distributed storage system.

• In order to effectively recover data in batches, we also
propose a stripe classification method, which divides
strips into different Batchessingle according to a unified
classification method for data recovery.

• We conduct a group of experiments to evaluate BPR.
The results show that comparedwith rPDL, BPR reduces

up to 10 % cross-rack network transmission time, and
increases recovery throughput by up to 8%.

The rest of this paper is summarized as follows. Section II
provides background and some preliminary work. Section III
introduces the latest work. Section IV introduces some prob-
lems we have observed. Section V introduces the stripe
classification method and BPR design. Section VI makes
theoretical analysis of BPR. Section VII evaluates the per-
formance of BPR. Section VIII summarizes this work.

II. BACKGROUND
In this section, we briefly review the basic properties of
Erasure Coding and the related work of partial decoding,
which are the basis of our recovery method.

A. ERASURE CODING
This paper focuses on a famous Reed-Solomon (RS) code.
Compared with replication storage, Erasure Coding storage
provides similar fault tolerance, but the storage cost is greatly
reduced. An RS code usually has two parameters, n and m,
which represent that an RS code encodes n into m parity
chunks, so that n data chunks and m parity chunks form a
stripe. Any remaining n chunks can be decoded to repair the
original data chunk, so that at most m data chunk failures can
be tolerated. Figure 1 presents the details of the matrix coding
process of a RS(5, 3) code. Here, data chunks and parity
chunks are organized into fixed-size units called chunks.

If we place n chunks of each stripe on n different data
nodes, the system can tolerate the node-level failure. Because
then, if one rack is damaged, we can find n-m chunks from
other racks where data is stored to participate in data recovery.

FIGURE 1. Encoding process of an RS (5, 3) code.

B. PARTIAL DECODING
In actual production, the inner-rack bandwidth is 10Gb/s, but
the cross-rack bandwidth is only 1Gb/s [9], so the cross-rack
bandwidth is extremely scarce. Then, the traditional data
recovery transfer all the chunks involved in the recovery
in the stripe to the destination racks which store the new
repaired chunk, which generates a lot of cross-rack traffic
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jams, greatly prolongs the total recovery time and causes
load imbalance. To solve this problem, we can distribute the
decoding and network transfer processes to other racks, and
these operations can be performed in parallel over a period of
time, thus reducing the data transfer time.

On the other hand, in the encoding/decoding process, the
RS code adopts the four algorithms defined in Galois Field
GF(2^w). The GF(2^w) field has 2^w values, each of which
corresponds to a polynomial of degree less than w, so that
the four operations on the field are converted into opera-
tions in the polynomial space. An important property of the
GF algorithm is that addition is XOR. Therefore, RS codes
are encoded/decoded by mathematical linear combination.
Therefore, we can partially encode the chunks involved in
recovery in the rack in advance to generate an intermediate
coding chunk whose size is the same as the size of the data
chunk. Therefore, in the process of data transmission, the
number of chunks that need to be transmitted across racks
will be greatly reduced, and the total traffic transmitted across
racks will be reduced, so the time of network transmission
across racks can be significantly reduced. Although there will
be a few more decoding processes, the total repair time is
greatly reduced because the cross-rack bandwidth is about
10 times the bandwidth within the rack.

III. RELATED WORK
With Hadoop3 becoming more dominant, there are more and
more solutions using Erasure Coding strategies. So far, a lot of
research has focused on the data recovery problem of Erasure
Coding, and the results are also widely used in distributed
systems such as Hadoop. According to different research
motivations, we briefly review the latest scientific research
achievements of Erasure Coding storage systems as follows.

To reduce the data transfer for data updates in Erasure Cod-
ing distributed systems, Hu et al. [10] proposed a data update
scheme based on the Ant Colony Optimization, ACOUS.
They employed a two-stage rendezvous data update proce-
dure to optimize themultiple data nodes updates. On the other
hand, for improving the storage efficiency of Erasure Coding
storage systems, Zhang and Hu [11] employed novel scaling
methods for E-MBR and Butterfly codes, and utilize parity
locally update and features of the two codes to reduce the
bandwidth cost.

More significantly, we focus on reducing the data transfer
for data recovery. Shen [12] proposed ClusterSR, a cluster-
aware decentralized repair method. He mainly focuses on
decentralized repair scenarios, observing that due to the wide
support for full-duplex transmission, data can be indepen-
dently sent and received at the same transmission rate in
actual production, by balancing cluster upload and down-
load traffic, to reduce repair traffic across clusters. However,
to maximize the advantage of partial decoding for saving
cross-rack repair traffic, chunks are stored centrally on sev-
eral racks. When single node failure occurs, in order to obtain
m-node fault tolerance for RS(n,m), ClusterSR will not avoid
selecting the Rf with the failed node as the destination rack.

When it selecting theRfwith the failed node as the destination
rack, Rf will suffer from much heavier cross-rack traffic than
the others when recovering large-scale stripes.

Shi and Lu [13] propose a set of coherent in-network
EC primitives, named INEC, which can be integrated into
five EC schemes. And, INEC can significantly reduce laten-
cies, and accelerate the throughput, write, and degraded read
performance. Xu et al. [14] proposed a restoration method
rPDL based on PDL data layout. rPDL proposes two restora-
tion schemes R-w-PD and R-w/o-PD for PDL data layout
and aiming at reducing cross-rack traffic. R-w-PD transmits
chunks directly to the rack which stores new repaired chunk,
while R-w/o-PD uses partial decoding to reduce the num-
ber of chunks that need to be transmitted. Then compare
the cross-rack traffic required by R-w-PD and R-w/o-PD in
the scenarios, and choose a recovery plan with low traffic.
Finally, fault recovery is realizedwith high parallelism, which
reduces the time cost of cross-rack recovery. However, this
work randomly selects destination racks so that some des-
tination racks possibly suffer serious download traffic con-
gestion. Bai et al. [15] propose PPT and PPCT, which use
a special bandwidth gap to transfer data parallel to bypass
low-bandwidth links. But this method will bring network
congestion and competition. Zhou et al. propose SMFRe-
pair [16], a single-node multi-level forwarding repair tech-
nique. SMFRepair carefully selects the helper nodes and uses
idle nodes to bypass low-bandwidth links. Idle nodes have
sufficient and unused network bandwidth. It also pipelines
the repair links that are optimized by idle nodes. However,
SMFRepair rarely take into account the multi-stripes repair
and total repair time is not always the least time.

IV. OBSERVATIONS AND PROBLEM
Given the scarcity of the cross-bandwidth, we have the fol-
lowing observations. For short, we call the ith stripe Si and
the ith rack Ri. In order to introduce our observations, we use
four stripes labelled by {S1, S2, S3, S4} and six racks labelled
by {R1, R2, R3, R4, R5, R6} as a storage system instance as
illustrated in Figure 2(a). These racks are numbered by the
position. For S1, racks {R2, R3, R4, R5} store all chunks of
this stripe, and we call these four racks host racks for S1.
Racks {R1, R6} don’t store chunks of S1 so we call these two
racks non-host racks for S1. In order to tolerate single-rack
failures for RS(n, m), we would place at most m chunks of
the same stripe to the same rack. Meanwhile, racks {R2, R3,
R4, R5} all exactly store four chunks of S1 in the RS(12, 4) so
these four host racks is full racks for S1. Otherwise, the host
racks which store less than four chunks of a stripe are called
non-full racks for this stripe.
According to the data layout in Figure 2(a), we assume that

each stripe of the four RS(12,4) stripes has one failed chunk
as illustrated in Figure 2(b), and the system needs to restore
all these failed chunks. We use Rf to denote the rack which
stores the failed chunk for a stripe. The rack which stores the
new repaired chunk of a stripe is called destination rack.

VOLUME 11, 2023 44511



Y. Song et al.: BPR: An Erasure Coding Batch Parallel Repair Approach in Distributed Storage Systems

FIGURE 2. Examples of a data layout of an RS (12, 4) code of 4 stripes.

FIGURE 3. Examples of recovering four stripes.

In the existing recoverymethod, if all host racks are full, the
system randomly selects a non-host rack as a destination rack
to store new repaired chunks. For S1, these three host racks
{R2, R3, R4} offer chunks to recover chunks through cross-
rack transfer, we call these racks source racks. Meanwhile,
to avoid Rf suffers from much heavier cross-rack traffic than
the other racks [16], we don’t select the Rf as the destination
rack and source rack.

In the regular repair strategy, there are two observations.
Observation1: As shown in Figure 3(a), the repair solu-

tion retrieves 12 surviving chunks from {R2, R3, R4} in the
{S1, S3}, and stores two new repaired chunks in the same
rack R1. To avoid the rack Rf which stores the failed chunk
suffering from much heavier cross-rack traffic than the other
racks, racks {R5, R6} will not take part in the reconstructions
of stripes {S1, S3}. Through the partial decoding technology,
a stripe only needs to aggregate and transmit three chunks
from racks {R2, R3, R4} to R1 for repair. But if the two stripes

are recovered at the same time, R1 needs to download six
chunks at once, and its serious congestion of download traffic
will greatly increase the total time of network transmission.

Observation2: As shown in Figure 3(b), the repair solution
retrieves 12 surviving chunks from racks {R2, R3,R4} and
racks {R4, R5, R6} in the stripes {S2, S4}, and stores repaired
chunks in the different rack like racks {R3, R5}.

In this case, the download traffic of chunks is scattered to
racks {R3, R5}, but R4 still has to transmit four chunks to
other racks considering Observation1 andObservation2 at the
same time. The upload traffic of chunks is still blocked, and
the total time of the network transmission also increases.

We find that once most stripes need to be recovered at the
same time, multiple stripes may select same non-host racks
to store new repaired chunks and the same source racks to
transmit data together at the same time, resulting in download
or upload traffic congestion of the single or multiple racks.
The total time of network transmission is greatly increased.
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FromObservation1 andObservation2 we learned that solv-
ing the problem of traffic congestion of upload and download
is the key to reducing the total time of network transmission
so as to greatly reduce the total repair time cost.

V. THE DESIGN OF BPR
In order to solve the above mentioned problem of upload
and download traffic congestion, we propose an Erasure
Coding batch parallel repair method, BPR. BPR focuses on
classifying the stripes and divide recovery operations into
some small partial symmetry operations for benefits of full-
duplex transmission. BPR includes the process of two phases,
namely the chunks initial layout phase and the failed chunks
recovery phase. In the first phase, BPR distributes all chunks
of stripes into various racks when the data is initial stored in
the storage system. In the second phase, in order to perform
efficient batch recovery, BPR classifies the large-scale stripes
to each small batch called Batchsingle, in which stripes can be
restored at the same time, and then BPR implements different
recovery schemes based on the characteristics of different
Batchessingle, with the goal of scattering and balancing cross-
rack upload and download traffic.

A. DISTRIBUTING CHUNKS OF STRIPES
BPR is applied to the RS(n,m).When placing chunks, in order
to obtain m-node fault tolerance, we should place at most
m chunks of the same stripe to the same rack and any two
chunks of the same stripe are not distributed to the same node.
Then to maximize the advantage of partial decoding, BPR
places as many chunks of the same stripe to the same rack as
possible. For the uniform distribution of chunks, the numbers
of chunks of a same stripe in any two racks differ by at most 1.
N(n,m) = ⌈

n+m
m ⌉ is the number of host racks which store

chunks of the same stripe.

N (n,m) = ⌈
n+ m
m

⌉ = k (1)

For example illustrated in Figure 2(a), in the process of
RS(12,4) placement, BPR places all 16 chunks of the same
stripe on four racks and each rack hosts four of the 16 chunks.

In addition, in the actual production, the probability of the
single failure for each stripe is more than 90% [6], [17], [19].
Therefore, BPR mainly focuses on the single failure repair.
BPR is applicable for the single-chunk failure and the single-
node failure.

B. CLASSIFYING STRIPES
In order to standardize recovery according to different stripes’
distributions, we divide the stripes to be recovered into the
smallest unit of batch recovery, Batchsingle, and then execute
recovery scheme for each Batchsingle.
Algorithm 1 describes how to select destination racks for

stripes which has non-full host racks and divide all the stripes
into each Batchsingle based on source racks and the Rf. Firstly,
if there is a non-full host rack selected as the destination rack

for a stripe, BPR doesn’t need to transfer chunks of this non-
full host rack through cross-rack so as to reduce cross-rack
traffic. Therefore, if a stripe has non-full host racks, BPR
selects a random non-full host rack as the destination rack to
save the new repaired chunk for this stripe. Meanwhile, BPR
selects other non-full host racks and full host racks as source
racks to transfer chunks for recovery this stripe.

We observe the situation that for the full-duplex trans-
mission, the process of that R4 transfers chunks to R3 in
S1 and R3 transfers chunks to R4 in S2 is a symmetry and
parallel cross-rack transfer process when we recovery two
stripes in Figure 6(a) at the same time. That transfer process
rarely causes upload and download traffic congestion. These
two stripes {S1, S2} have the same source racks and Rf.
In order to implement this process for a large-scale stripe to be
recovered, BPR firstly divide the stripes with the same source
racks and Rf into Batchessingle.

Algorithm 1 Classifying Stripes.
Input: Failed stripes
Output: Batchessingle
1:Initialize a set of non-full stripes as nfStripeSets {SI , S 2 . . . Sn};Rdi is the destination rack for Si

a set as Batchodd; a set as Batchevon; a set of all stripes as aStripeSets {S1, S 2 . . . Sx};
1://Selecting destination racks for non-full stripes
2 :For each stripe Si in nfStripeSets do
3: Rdi=random(non-full source racks in Si ) 4://Start to sort stripes
5:For stripes in aStripeSets do
6: Select stripes which have same source racks and the Rf to form into Batchessingle
7: For each Batchsingle Bi do
8: if size(source racks in Bi ) %2 = 1 then
9: Add Bi to the Batchodd
10: else
11: Add Bi to the Batchown

Next, we observe the R5 has to transfer chunks to other
racks individually in Figure 6(b) than all source racks in
Figure 6(a) when we recovery S1 and S2 in Figure 6(b). The
number of source racks is even for two stripes in Figure 6(a)
and the number of source racks is odd in Figure 6(b).
Therefore, we need to implement different recovery solutions
to recovery these two types of stripes in Figure 6(a) and
Figure 6(b). BPR secondly divide these Batchessingle to the
Batcheven or the Batchodd.
Stripes are divided into the same Batchsingle respectively,

depending on whether the source racks and Rf are the same.
For example, Figure 4 shows that S1 has three racks {R3, R4,
R5} whose chunks are to be involved in cross-rack transfer,
so these three racks are the source racks for S1. For the R2 of
S5 is a non-full host rack which is selected as the destination
rack to save a new repaired chunk for this stripe so that S5 has
two source racks {R3, R4}. The source racks of stripes {S1,
S2} are the same racks {R3, R4, R5} and Rf is the same rack
R2, so {S1, S2} form a Batchsingle. And the number of source
racks is three, an odd number, so this Batchsingle belongs to
the Batchodd.

C. RECOVERING STRIPES
In the above, we have classified the stripes to be repaired
and divided them into Batchessingle, and then we will restore
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FIGURE 4. Examples of classifying stripes with BPR.

FIGURE 5. Examples of recovering stripes with BPR.

these Batchessingle, Algorithm 2 elaborates the recovery detail
procedures.

Algorithm 2 Recovering stripes.
Input: a Batchsingle
Output: a valid transfer solution for the Batchsingk
1:Initialize a set of destination racks of non-full stripes RackSets { IDs of racks : num;. . . };

a set of full stripes as StripeSets {S1, S 2 . . . Sn};Rdi is the destination rack for Si;
a set of non-host racks as NsRackSets {RI ,R 2 . . .Rx};NsNum = size (NsRackSets);
a set of source racks as SRackSets {RI ,R 2 . . .Rt}; Function Transfer(RI ,R 2,R di);

2://Selecting destination racks for full stripes
3:Int num = 0; // the index of the rack
4:For each stripe Si in StripeSets do
5: While (NsRackSets[num]e RackSets && RackSets.NsRackSets[num]>0){
6: RackSets.[NsRackSets[num]] - = 1; num = ( num +1)%NsNum;

}
7: Rdi=NsRackSets[num];num = ( num +1)%NsN Num
8://Execute Batchevenodd recovery method
9://Transfer (Rl,R t,R di) means:Transfer chunks from RI − − > Rt , then to destination rack Rdi
10:// Transfer (RI , null,Rdi) means: Transfer chunks directly from RI to destination rack Rdi
11://Transfer chunks in Batcheven
12: For each stripe Si in Batchsingk do
13: if (i%2 = 1&& Batchsingke Batcheven )
14: Transfer(Ri,R l,R di)
15: else if (i%2 = 0&& Batchsingke Batchewen )
16: Transfer (RI ,R t,R di);
17://Transfer chunks in Batchodd
18: if (i%2—l&& Batchyiee Batchodd)
19: Transfer (Ri− 1,R I ,R di);
20: Transfer ( Ri,null,Rdi )
21: else if (i%2 = 0&& Batch singk ∈ Batchodd )

Transfer (Rl,R t − 1,R di);
Transfer(Rt,null,Rdi);

Algorithm 2 describes how to select destination rack and
recover the stripes of the Batchsingle. We call the stripes
which have non-full host racks non-full stripes and the
stripes whose source racks is all full host racks full stripes.

Non-full stripes have already selected non-full host racks as
the destination racks and full stripes will select non-host racks
as the destination racks. To scatter and balance the global
download traffic, BPR starts to select the destination racks
for stripes of every Batchsingle in a specific way. BPR first
gathers the number and IDs of all destination racks selected
by non-full stripes in a Batchsingle. Then BPR numbers the
full stripes and non-host racks in an ascending order of IDs.
This non-host racks are the same for the all full stripes in
a Batchsingle. At last, the full stripes select racks from non-
host racks numbered as the destination racks in an ascending
order. If there are non-full stripes which have already selected
this rack once, BPR skips selecting this rack once and selects
next rack orderly to save this new repaired chunk.

For example, as shown in Figure 4 and Figure 5, stripes
{S5, S6, S7} form into a Batchsingle. S5 is a non-full stripe and
{S6, S7} are two full stripes. S5 has already selected a non-full
rack as a destination rack. BPR gathers the information of the
number and IDs of the destination rack for this non-full stripe,
i.e., {ID: number} like{R2:1}, which means that R2 has been
selected as the destination rack and suffered download traffic
once. To reduce the download traffic of R2, we will reduce
one chance to act as the destination rack in this Batchsingle.
Meanwhile, stripes {S6, S7} need to select non-host racks
as destination racks. BPR numbers the S6 and S7 from 1st

to 2nd and numbers the {R1, R2, R6} from 1st to 3rd. Then,
we start to select non-host racks {R1, R2, R6} to {S6, S7}.
In an ascending order, we first select 1st of non-host racks
to 1st of full stripes and select 2nd of non-host racks to 2nd
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FIGURE 6. Examples of recovering stripes with Batcheven repair method and Batchodd repair method.

of full stripes, which means we first select R1 to S6 and R2
to S7. However, in terms of {R2:1}, the non-full stripe S5
has already select R2 as the destination rack once. We skip
selecting R2 and select the next non-host rack R6 to S7.

Then, in order to scatter the upload and download traf-
fics from the source racks and destination racks during data
transfer, we execute either an Batchodd repair method or an
Batcheven repair method for the stripes in a Batchsingle.
Staggering the upload and download traffic of two stripes

rarely causes the upload and download traffic congestion.
To implement this effect, whether it is an Batcheven repair
method or an Batchodd repair method, the idea of full duplex
transmission is used to reduce the data transfer time. The
cross-rack data transfer is divided into two parallel data trans-
fer methods: forward data transfer and reverse data transfer.
BPR lets Odd-numbered stripes implement forward parallel
data transfer and even-numbered stripes implement reverse
parallel data transfer.

The so-called forward parallel data transfer is to transfer
data in parallel from the source racks with a larger number
to the rack with a smaller number, i.e. R4 transfers data
to R3 in Figure 6(a), and finally transfer the data to the
destination rack R1. While the reverse parallel data transfer is
the opposite, i.e., to transfer data in parallel from the source
rack with a smaller number to the rack with a larger number,
i.e. R3 transfers data to R4 in Figure 6(a), and finally transfer
the data to the destination rack R6.

There is a slight difference between Batcheven repair
method and Batchodd repair method. Firstly, the process of
forward parallel data transfer in Batcheven repair method is
introduced in detail. Forward parallel data transfer starts by
grouping the source racks of the stripe in two-by-two order
from the smallest number to the largest one. Then, the chunks
in the rack with the larger number in the two racks of the

same group are aggregated and transferred to the rack with
the smaller number, and then aggregated with the chunks
in the rack with the smaller number. The racks continue to
repeat the above process of grouping and aggregation in
pairs, until the aggregated chunks of all source racks are
transmitted to the source rack with the smallest number, and
then aggregated and transmitted to the destination rack of the
stripe. Decoding operation is performed to get the chunks that
need to be recovered.

There are a little difference between the Batchodd repair
method and the Batcheven repair method. During data trans-
mission, there has a single source rack cannot participate in
the parallel transmission in the Batchodd. And the chunks of
the single source rack are directly aggregated at the begin-
ning of the recovery and transferred to the destination rack.
As shown in Figure 6(b), R5 is a single source rack that is
picked out. When the forward/reverse data transfer starts,
the chunks are directly aggregated and transferred to the
destination racks of R1 and R6.

VI. EFFECT ANALYSIS OF BPR
In this section, we will analyze the effect of BPR in two
aspects: cross-rack data transfer time and recovery through-
put during data recovery. The data transfer time mainly ana-
lyzes the time of cross-rack transfer chunks to the destination
rack waiting to participate in data recovery in different cases,
and the recovery throughput mainly analyzes the network
load occupied by the BPR.

Because RS(6,3) and RS(12,4) are exemplified in some
latest research [14] [16] [18] as classical examples. Next,
we take the above RS(6,3) and RS(12,4) multi-stripes repair
in Figure 6(a) and Figure 6(b) to analyze the differences
in cross-rack data transfer time and recovery throughput
between BPR in recovering data in many different scenarios.
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The process of data recovery consists of network data
transfer and decoding, but in actual recovery, the decoding
time is much smaller than the data transfer time, so we do not
consider the decoding time in this approximate calculation.
Data transfer requires intra-rack aggregation and then cross-
rack transfer, and the time is Tinner and Tcross respectively,
often Tcross ≈ Tinner∗10. In summary, cross-rack transfer is
the key to data recovery, so we focus on the time to cross-rack
data transfer.

Because the full-duplex transmission can be sent
(uploaded) and received (downloaded) independently at the
same transmission rate due to the widespread support of
network interface cards (NICs) and network cables, the time
of cross-rack data transfer can be represented by the time to
upload chunks Tupload and download chunks Tdownload , which
means that

Tcross = Tupload = Tdownload (2)

Thanks to the partial decoding technology, we can aggregate
chunks in the rack into a chunkwhose size is same as a normal
chunk for transmission, we can set the time of one cross-rack
transmission as Toncecross.(n is the number of the cross-rack
data transfer)

Tcross = n ∗ T oncecross) (3)

Toncecross = Tonceupload = Toncedownload = T (4)

The time T for uploading/downloading a chunk is thus set as
the unit time for cross-rack data transfer. Discuss cross-rack
data transfer time when recovering data by scenario.

Case 1: RS(6,3) in Figure 6(a).
When we adopt BPR, the recovery time graph is Figure 7.

FIGURE 7. Time analyses of recovering two stripes in RS(6, 3) with BPR
repair method.

From the graph in Figure 7, we can see that the time
Tcross = 2T for cross-rack data transfer in BPR. There is no
upload and download traffic jam.

For RS(n, m), k= ⌈
n+m
m ⌉. If the destination rack is a non-

host rack, the cross-rack transfer time for 2 stripes recovery
in Batcheven repair method is

TBatcheven = ⌈(log2(k + 1))⌉ (5)

If the destination rack is the non-full rack, for the destina-
tion rack isn’t involved in transferring chunks through cross-
rack, the cross-rack transfer time for 2 stripes recovery in

Batcheven repair method is

TBatcheven = ⌈(log2(k))⌉ (6)

Case 2: RS(12,4) in Figure 6(b).
When we adopt BPR, the recovery time graph is Figure 8.

FIGURE 8. Time analyses of recovering two stripes in RS(12, 4) with BPR
repair method.

From the graph in Figure 8, we can see that the time
Tcross =3T for cross-rack data transfer in BPR. There is a
little upload traffic jams in the R5 when it transfers chunks to
different racks.

For RS(n, m), k= ⌈
n+m
m ⌉, the cross-rack transfer time for

2 stripes recovery in Batchodd repair method is

TBatchodd = ⌈(log2(k + 1)) + 1⌉ (7)

Also, if the destination rack is the non-host rack, the cross-
rack transfer time for 2 stripes recovery in Batcheven repair
method is

TBatchodd = ⌈(log2(k)) + 1⌉ (8)

We also evaluate the advantage of reducing upload and
download traffic jams on the recovery throughput. Recovery
throughput is defined as recovered data volume per second.

Tp =
Total data volume
Total transfer time

(9)

VII. PERFORMANCE EVALUATION
In this section, we present extensive experiment results to
evaluate the performance of recovery algorithm BPR.

System configuration: we conduct the experiments on a
cluster of seven virtual machines. In this part, each virtual
machine is created based on an Ubuntu 16.04.1 with 8 cores
CPU, 5GB RAM, and 40GB SCSI. We use one virtual
machine as a control terminal and use six virtual machines to
simulate six racks. Each virtual machine has four processes to
simulate four nodes. The bandwidth of the switch is 1Gbps.

We focus on the single failure scenario, in which a random
data chunk in the encoded stripe in the layout of PDL is
assumed to have failed. In our experiments, each chunk is
configured to be 128MB. In this part, we compare the repair
performance in two aspects, the cross-rack transfer time and
the recovery throughput.

Because RS(6,3) and RS(12,4) are involved in the layout
of PDL, and RS(6,3), RS(12,4) are applicable to Batcheven
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repair method and Batchodd repair method, we first conduct
three control trial for RS(6,3) and RS(12,4) separately to
analyze the cross-rack transfer time in the different numbers
of stripes. These stripes are all damaged stripes waiting for
repair.

Figure 9 and Figure 10 shows the result, we can derive the
following findings: First, the cross-rack transfer time with
BPR is similar to the time with rPDL in minority stripes
recovery (20/30 stripes), even the recovery time is a little
longer. Because in the process of chunks recovery in the
minority stripes, I/O and aggregation time account for a large
proportion with the partial decoding technique. And upload
and download traffic jams caused by the minority stripes
recovery is not many.

FIGURE 9. Total cross-rack transfer time for rPDL and BPR repair of
single-chunk failures with the different numbers of stripes for RS(6, 3).

FIGURE 10. Total cross-rack transfer time for rPDL and BPR repair of
single-chunk failures with the different numbers of stripes for RS(12, 4).

Then, we find that with the increase of the number of
stripes, the improvement effect is getting better and better
with BPR than rPDL. When recovery many stripes (100/
90 stripes) BPR can reduce the cross-rack transfer time
by 7%-10% when compared with rPDL, respectively. Next,
we measure recovery throughput with 90 and 100 stripes
in BPRodd and BPReven. And find that BPR increases the
recovery throughput compared with the rPDL by 7-8% in
Figure 11 which similar to the cross-rack transfer time for the
reason that when k is not much, the total data volume of BPR

FIGURE 11. Recovery throughput for rPDL and BPR with the different
numbers of stripes in BPRodd and BPReven.

is similar to rPDL and there is a negative correlation between
recovery throughput with total transfer time.

VIII. CONCLUSION
In this paper, we focus on the cross-rack data transmission
issue with respect to upload and download traffic jams when
recover data chunks in Batches. We propose BPR, an Erasure
Coding repair approach for the distributed storage system.
BPR provides a stripe classification scheme and then con-
structs multi-stripe repair solutions based on the classifica-
tion results. Through forward and reverse parallel transfer,
BPR scatters and balances the traffic of upload and down-
load. The experimental results show that BPR significantly
reduces cross-rack transmission time by up to 10% and
increases the recovery throughput by up to 8% compared
with rPDL.
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