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ABSTRACT Dimensionality reduction is widely used to visualize complex high-dimensional data. This
study presents a novel method for effective data visualization. Previous methods depend on local distance
measurements for data manifold approximation. This leads to unreliable results when a data manifold
locally oscillates because of some undesirable effects, such as noise effects. In this study, we overcome
this limitation by introducing a dual approximation of a data manifold. We roughly approximate a data
manifold with a neighborhood graph and prune it with a global filter. This dual scheme results in local
oscillation robustness and yields effective visualization with explicit global preservation. We consider a
global filter based on principal component analysis frameworks and derive it with the spectral information
of the original high-dimensional data. Finally, we experiment with multiple datasets to verify our method,
compare its performance to that of state-of-the-art methods, and confirm the effectiveness of our novelty and

results.

INDEX TERMS Data visualization, dimensionality reduction, spectral-based filtering.

I. INTRODUCTION

Real-world data are typically found in a complex
high-dimensional data space [1]. One approach for analyzing
these data is to visualize their intrinsic low-dimensional
manifolds, which can be a guidepost for understanding them
[2]. In recent research, data visualization techniques have
been applied to the analysis of biological data [3] and neural
networks that contain complex structures such as hierar-
chical structures [4], [5], time-series changes [6], [7], and
non-convexity of loss functions [8] yielding many successful
results.

Dimensionality reduction [9] is one of the basic approaches
for reducing the dimensionality of high-dimensional data
with some assumptions that motivate effective reduction. One
of the principal approaches for the reduction is to minimize
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the reconstruction error from a low-dimensional representa-
tion to high-dimensional data. Principal component analysis
(PCA) is a classical and well-known method used to find a
subspace that minimizes the reconstruction discrepancy. PCA
specifically searches for dominant axes based on spectral
decomposition and regards them as the new axes of a low-
dimensional subspace. Through this procedure, PCA finds
the most explainable linear transformation in the spectral
domain and provides a big picture of data. Gaussian process
latent variable model (GP-LVM) [10], [11] is a nonlinear
extension of the PCA framework that explicitly assumes a
low-dimensional representation as latent variables. This mod-
ification prompts an optimal representation for its dimen-
sionality with a nonlinear expression. Autoencoder (AE)
[12], [13], [14] is another nonlinear approach parameterized
by deep neural networks [15], which yields a transferable
representation to downstream tasks [16]. However, these
approaches use original high-dimensional data to measure
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reconstruction accuracy and lack locality preservation use-
ful for visualization. t-Distributed stochastic neighborhood
embedding (t-SNE) is a long-standing dimensionality reduc-
tion technique for visualization purposes. t-SNE first esti-
mates the local structure by constructing a neighborhood
graph and embedding it in a low-dimensional space. The
graph construction corresponds to data manifold approxima-
tion as a weighted graph and induces an understandable rep-
resentation that effectively visualizes local structures. From
the above, graph embedding approaches (e.g., t-SNE) pro-
vide a more interpretable representation than data embedding
approaches (e.g., PCA and AEs for their locality preservation
property and are typically used to visualize high-dimensional
data.

However, the benefit of the locality preservation of graph
embedding approaches is coincident with some of the prob-
lematic aspects caused by the lack of global preservation.
One major problem is the absence of inter-cluster simi-
larities, which degrades the interpretability of embedding
and induces a misleading visualization. Many state-of-the-
art studies have recently attempted to address this issue by
introducing better initialization [3], [17], diffusion operation
[18], and triplet interaction [19], [20] into graph embedding
approaches. The other important problem is the sensitivity
to local oscillation [21]. Conventional and recent methods
only use the local distance measurement and not other global
information, to approximate the data manifold. Under this
condition, when the data manifold locally oscillates through
some undesirable effects (e.g., noises), these methods do
not effectively measure the local distance, thereby signifi-
cantly degrading the manifold approximation and resulting
visualization.

In this study, we propose spectral-based manifold approx-
imation and projection (SpectralMAP) to overcome the lim-
itations of graph embedding approaches. We then integrate
UMAP [17], which solves the inter-cluster similarity prob-
lem by better initialization, and introduce filtering-based
global preservation and a distance-independent approxima-
tion scheme. Our main idea is to roughly estimate data
topology with a neighborhood graph and performs a novel
global filter. This dual approximation allows explicit global
preservation and effective visualization when the mani-
fold locally oscillates, which is the main difference from
previous methods. For efficient global filter computation,
we explore a learning rule of a data embedding approach,
GP-LVM. Consequently, we derive singular value decom-
position (SVD)-based filter computation independent of the
distance calculation and contains global data in the spectral
domain. Our contributions are as follows:

« We introduce a novel approximation scheme of data
manifolds into UMAP to roughly approximate the data
manifold and prune it with a global filter. Through this
dual procedure, we can explicitly consider the global
structure and avoid misleading visualization under local
oscillation.
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« We explore the data embedding approach and derive a
global representation of data based on its learning rule.
Consequently, we calculate a global filter based on the
SVD, which allows us to refer to a global structure in
the data spectral domain independent of sensitive local
distance measurements.

In Section II, we review previous dimensionality reduction
techniques for data visualization. Furthermore, Section III
presents SpectralMAP. In Section IV, we demonstrate the
performance of SpectralMAP by comparing with baselines
and state-of-the-art methods.

Il. RELATED WORK
Dimensionality reduction techniques are broadly used for
various purposes [22]. We categorized them into data and
graph embedding approaches, which may be useful in pre-
senting an overview of visualization-aided dimensionality
reduction techniques.

A. DATA EMBEDDING APPROACHES

Data embedding approaches directly embed high-dimensional
data in a low-dimensional space. PCA [23], [24] and its vari-
ants [25], [26], [27], [28] are well-known methods that search
for dominant axes in a high-dimensional data space. The
projection derived by PCA maximizes the variance in a low-
dimensional subspace; thus, it provides a large representation
of the given high-dimensional data. GP-LVM [10] is a nonlin-
ear extension of the PCA framework, and Bayesian GP-LVM
[11] performs a fully Bayesian dimensionality reduction that
provides uncertainty to a low-dimensional representation.
Those PCA-based approaches are often applied to multi-view
data analysis [22], [29]. AEs [12] are a nonlinear data
embedding approach parameterized by deep neural networks.
SCVIS [14] is a current visualization method based on vari-
ational AEs [13]. It can effectively derive a low-dimensional
representation of new input data by parametric mapping,
which is difficult for non-parametric approaches, such as
t-SNE and UMAP. Data embedding approaches estimate
a low-dimensional representation by directly embedding
high-dimensional data and typically succeed in obtaining a
global representation. However, these methods do not con-
sider the locality within high-dimensional data; thus, they
tend to overlook potential clusters and do not derive a suitable
representation for visualization.

B. GRAPH EMBEDDING APPROACHES

Graph embedding approaches focus on the locality preser-
vation of high-dimensional data. They first approximate a
data manifold by constructing a neighborhood graph and then
embed it in a low-dimensional space. Laplacian eigenmaps
(LE) [30], [31] are an early method based on a neighborhood
graph. They derive the low-dimensional representation as the
eigenvectors of the graph Laplacian. The graph Laplacian is
the Laplace-Beltrami operator on a discrete manifold; thus,
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LE can provide an optimal low-dimensional representation
of data based on convex optimization. Stochastic neigh-
bor embedding (SNE) [32] is a non-convex approach that
calculates a neighborhood graph as conditional probabili-
ties in both high- and low-dimensional spaces. SNE mini-
mizes the differences in these graphs and derives a visible
two-dimensional or three-dimensional representation. How-
ever, in several cases, representations derived by SNE tend
to mix independent clusters. This is known as the crowd-
ing problem. t-SNE [33] addresses this issue by introducing
a heavy-tailed distribution to calculate a graph in a low-
dimensional space. The remarkable success of t-SNE has led
to its many variants, such as the triplet loss function [34],
parametrization by neural networks [35], and a scalable com-
putation based on the Barnes-Hut algorithm [36]. Although
graph embedding approaches can effectively reduce dimen-
sions for visualization, they cannot consider the global struc-
ture of high-dimensional data.

UMAP [17] is a recent graph embedding approach that
introduces better initialization based on LE, which partially
solves the absence of the global structure. It derives a
neighborhood graph as a fuzzy topological representation,
which reduces computational costs by contrastive optimiza-
tion based on negative sampling [37]. PHATE [18], [38] takes
another approach to address the abovementioned issue and
introduces the diffusion operation [39], which enforces the
graph to propagate similarities between similar samples and
recover the global structure of data. Anchor t-SNE (At-SNE)
[40] introduces hierarchical optimization into t-SNE. At-
SNE regards the centers of the K-means clustering as anchor
points and projects them into the low-dimensional space.
It then arranges the remaining data points around the anchor
points, thereby enabling high-level global structure preserva-
tion. Pairwise controlled manifold approximation projection
(PaCMAP) [20] extends the loss function of UMAP and
explicitly defines mid-near points for global structure preser-
vation. Although the abovementioned approaches achieve
good results in several experimental settings, they fail to
approximate the data manifold when the neighborhood struc-
ture oscillates highly (e.g., noise effects). Under this condi-
tion, even though the separation of each independent cluster
is clear from the global perspective, they cannot be sepa-
rated because their global information fully depends on the
distance measurement in a noisy high-dimensional space.
As a solution, herein, we introduce a spectral-based global
reference independent of the local distance measurement,
which approximates the manifold based on ideas of other data
embedding approaches.

llIl. PROPOSED METHOD

In this section, we present SpectralMAP, a novel dimension-
ality reduction technique for visualization purposes. In III-A
and III-B, we briefly review the UMAP algorithm, describe
GP-LVM, and consider its learning rule, which is beneficial
for obtaining a distance-independent global representation.
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In HI-C, we derive a global data representation. Finally,
in III-D, we derive the SpectralMAP algorithm by applying
it to the UMAP algorithm enabling the explicit preserva-
tion of the global structure and motivating an effective low-
dimensional representation.

A. UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION
Let X = [x1,X0,... ,XN]T € RV*D pe the D-dimensional
observed variables with N data points. We assume that
X is centralized. We aim herein to extract an intrinsic
low-dimensional representation Y = [y;,¥5,...,¥y] €
RV*CQ (Q being the number of the dimensions of Y).
To achieve this, UMAP first approximates a data manifold
by assuming that the data points are uniformly distributed on
the manifold. This approximation is simplified to a k-nearest
neighborhood graph computation. UMAP then calculates the
weight matrix Wy, € RV*N petween each data point as
follows:

d(x;, Xj) — p; . .
[Wn‘m],'j _ exp[ o ] (] S {11,12, ...,lk})

0 (otherwise),
()

where [W,,,,];; represents the ij-th entry of Wy, i; (I =
1,2, ..., k) represents an index of the /-nearest neighbor of
x; measured by a distance function d(-, -), p; = d(x;, X;,)
represents the distance from the nearest neighbor, and o;
represents a parameter indicating local connectivity around
x;. The hyperparameter in Eq. (1) is the number of neighbors
k typically set between 20 and 100. UMAP then estimates
the data distribution called fuzzy topological representation,
as follows:

W= Wn|m + Wm|n - Wn|m o Wmlnv )

where o represents the Hadamard product. Practically, Eq. (2)
corresponds to the symmetrization of the first constructed
graph. From Egs. (1) and (2), we approximate the manifold
in which the data point exists, and derive a locality-aware
representation of X.

With the fuzzy topological representation W, UMAP
arranges the low-dimensional representation Y with the basic
concept of matching the local similarity of Y to the fuzzy
topological representation W. UMAP defines the local simi-
larity v;; between y; and y; similar to t-SNE as

-1
vi=(1+aly,—yiB) 3)

where a and b represent the hyperparameters and are set as

a ~ 1.6 and b ~ 0.9 [17], respectively. UMAP matches

them by minimizing the cross-entropy between v;; and w;; (wj;

being the ij-th entry of W). Omitting the constant terms, the

UMAP loss function is written as follows:

N

L=->"> {wylogvy+ (1 —wplog(l —vj)}. (4)
i=1 j=1
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Equation (4) is regarded as a physical system [41]. That is,
the first term of Eq. (4) is regarded as an attraction force, and
the second one is a repulsion force between samples i and j.
This motivates a stochastic optimization based on negative
sampling [37] and enables UMAP to deal with large-scale
datasets. However, UMAP does not explicitly consider the
global structure in its algorithm and fully depends on the
distance calculation in high- and low-dimensional spaces.
This results in accuracy degradation during local oscillation,
inducing a misleading visualization, where inter-cluster sim-
ilarities are dismissed. Our aim is to overcome the limitations
caused by the lack of explicit global preservation. In the
following section, we explore a learning rule behind the
data embedding approach, GP-LVM, and consider a global
representation of the given data.

B. LEARNING RULE BEHIND GP-LVM

We first briefly describe GP-LVM here. GP-LVM assumes
that the observed variables X are generated by Gaussian
processes [42] with a low-dimensional representation Y as
an input. GP-LVM estimates Y by maximizing the following
marginal log-likelihood:

ND D o
log p(X[|Y) = 5 log(2m) — 3 log K| — E(K XX),
(%)

where K € RN*V s a similarity matrix of Y on a feature map
¢(-) or known as a gram matrix whose #j-th entry is calculated
using a kernel function k(y;, y;) = ¢(y,-)T¢(yj). The kernel
function corresponds to the UMAP similarity measurement
in Eq. (3). Equation (5) contains all observed variables X in
contrast to the UMAP loss function in Eq. (4) that contains
a locally encoded representation W motivating the global
preservation property of GP-LVM. The maximization prob-
lem of Eq. (5) is typically non-convex due to the nonlinearity
of the kernel function and is solved using the quasi-Newton
algorithm. However, although Eq. (5) is a non-convex func-
tion w.r.t. the low-dimensional representation Y, it is a convex
function w.r.t. the gram matrix K. We can easily see this by
differentiating Eq. (5) w.r.t. K as
d Dot L gy TR

K log p(X|Y) = > K 2K XX'K. 6)
At the saddle point, the differentiation in Eq. (6) is equal to
0 in every K entry It obtains the following optimal solution
ignoring a trivial solution K = O:

K =D"!XX". (7

From Eq. (7), the gram matrix gets closer to XX ' in each
optimization step. Therefore, GP-LVM imitates the sample
similarity matrix XX in its low-dimensional representation
in contrast to UMAP, which imitates a fuzzy topological
representation W. The similarity matrix is computed from
the original data matrix X without any distance calculation.
Thus, XX " is regarded as a central component for obtaining a
distance-independent global representation of the given data.
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C. GLOBAL REPRESENTATION OF THE GIVEN DATA

In this subsection, we define a global representation of the
given data. Note that we aim to visualize the given high-
dimensional data; thus, we require a scalable algorithm to
obtain such a representation. Accordingly, we consider the
global representation X a linear combination of the original
data with the equation X = XW, where W e RP*P
represents a linear operator. We then constrain W to obtain
a reasonable global representation. In the previous section,
we observed the similarity matrix containing original global
data and constrained the similarity matrix of X into a specific
form. We assume here that the similarity matrix XX is
invariant to its power operation as follows:

XXHXX) =Xxx". 8)
Therefore, we obtain
X'X = WX'XW
=1L )]

We have two aims for this constraint. First, under this con-
straint, the similarity matrix XX is stationary to the matrix
power operation; thus, we can obtain a representation that is
more stable than the original similarity matrix XX ', which is
not stationary to the power operation. This idea is motivated
by the diffusion maps [39] or the limiting distribution of the
Markov chain [43]. Second, the rank of iXT does not further
drop by the power operation; thus, we expect a more sparse
representation compared with the original form XX . Under
the constraint in Eq. (9), we maximize the cross-covariance
[44] between the original data and the global representation
as ||XTX||12; = ||XTXW||12:. We obtain the following opti-
mization problem by replacing the Frobenius norm with the
trace expression:

max i [(XTXW)T(XTXW)] st WIXTXW =L (10)

We can now solve Eq. (10) in a closed form. We first apply
the SVD to X as X = UXV', where U € RN*N and
V e RP*P denote orthogonal matrices, and ¥ e RN*P
represents a rectangular diagonal matrix with a singular value
of X. Under the constraint function in Eq. (9), we restrict W
to the following form:

W=X"X)"20Q, (11)

where Q € RP*P is an arbitrary orthogonal matrix, and
1 1

(X'X)"2 = V(ETX)"2V'. we obtain the following mod-

ified optimization problem by substituting Eq. (11) into Eq.

(10):

max (QTXTXQ) stQ Q=L (12)

We obtain the following eigenvalue problem by introducing
the Lagrange multiplier method into Eq. (12):

X'XQ = AQ, (13)
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Algorithm 1 SpectralMAP Algorithm
Require: High-dimensional data X, number of neighbors &,
dimension Q, threshold 6
Ensure: Low-dimensional representation Y
1: Calculate a fuzzy topological representation W.
2: Calculate C largest left singular vectors U by compact
SVD of X. s
3: Derive a normalized global representation XX and a
global filter My by thresholding XX ' by 6.
Filter W by My by Eq. (15).
Normalize each row of Wy by Eq. (16).
Minimize the cross entropy of Eq. (4) w.r.t. Y.
return Y

Nk

where A is a diagonal matrix with Lagrange multipliers. The
SVD result of X shows that the eigenvalues and eigenvectors
of XX are equal to £ "X and V, respectively. Therefore,
the optimal solution of W is W = (XTX)_%V, and the
corresponding X is

X = XW
T—4
— XXTX)" 2V
—usvVvE D) vy
— U)o, (14)

The result in Eq. (14) is equal to the left singular vectors of
the compact SVD of X. We then obtain an optimal global
representation of X by spectral decomposition. Note that this
global representation is independent of the distance measure-
ment between the samples and is robust to the local oscillation
of the data manifold. In practice, we calculate the first C
largest singular vectors as U = [u. |, w2,...,uc] =
[u1,~u2, .ouy]T € R¥*C and the global representation
as X = U e RV*N, We automatically select C by the
elbow point detection [45] of the cumulative Von-Neumann
entropy [46] and further explain it in Section IV. Note that this
transformation is the same as PCA whitening [44]. We can
obtain different X expressions (e.g., Mahanolabis whitening)
by modifying the objective function. Using this spectral data
information, we compute the global structure of the given data
and introduce it into the UMAP algorithm in the following
section.

D. SPECTRAL-BASED MANIFOLD APPROXIMATION AND
PROJECTION

In this subsection, we derive the SpectralMAP algorithm,
which introduces spectral-based global preservation into the
UMAP algorithm. We construct the neighborhood graph with
a spectral filtering scheme to effectively use the global repre-
sentation X. We first roughly approximate the data manifold
by constructing a neighborhood graph and then prune it by
filtering. Subsequently, we compute the filter by threshold-
ing the similarity matrix XX as My and prune the fuzzy
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topological representation in Eq. (2) as follows:
We = W (o] Mg N (15)

where 6 represents a threshold value. We normalize xx'
before thresholding. For a rough approximation of the data
manifold before thresholding, we first set the number of
neighbors k to a large value (e.g., k = 100 ~). Although
the obtained Wy is a symmetry matrix, each row has a dif-
ferent maximum value that should be normalized. Therefore,
we evenly set the maximum value as 1 and calculate the
following spectral fuzzy topological representation Ws:

Ws =D 'W, + WyD! —D"'W, o WyD~!,  (16)

where D represents a diagonal matrix with entries
of the maximum values of each row of Wy. We com-
pute the low-dimensional representation by substituting Wg
into the objective function in Eq. (4). Algorithm 1 describes
the SpectralMAP. Our algorithm needs the hyperparameters
of UMAP, but we ignore them for simple notation. The main
difference between our method and UMAP is the filtering
process of Egs. (15) and (16). This enables us to consider the
global structure of the given data explicitly revealed in the
spectral domain of X and allows the distance-independent
approximation of the data manifold. If we obtain a similar
manifold topology from My and W, the obtained algo-
rithm becomes closer to the UMAP algorithm. Conversely,
when we obtain different manifold structures from them,
the topological representation is pruned by the mask matrix
and modified by the spectral structure. The compact SVD
computation linearly scales to the number of samples N.
Accordingly, we can compute the global representation in a
computationally acceptable manner. We overcome the previ-
ous limitations with the SpectralMAP algorithm and verify
this in the subsequent section.

IV. EXPERIMENT

In this section, we validate our method with qualitative and
quantitative experiments. We implement our method with
umap-learn [17] and run it and all comparative methods
on an Intel Core i7-10700 CPU.

A. DATASET
We use multiple datasets from several domains (e.g., images,
text, and biological datasets).

1) SwissRoll. SwissRoll is a well-known synthetic
dataset used to verify visualization-aided dimensional-
ity reduction techniques [47], [48], [49]. We use this
dataset and regard its synthesis vectors as features.

2) MNIST and Noisy MNIST.! MNIST contains 60 K
real images of handwritten digits and labels corre-
sponding to each digit. We create a noisy version of
MNIST (Noisy MNIST) by randomly losing the pixels
of MNIST with 35%. We use their high-dimensional
vectorized pixels as feature vectors.

1 http://yann.lecun.com/exdb/mnist/

VOLUME 11, 2023



K. Watanabe et al.: SpectralVIAP: Approximating Data Manifold With Spectral Decomposition

IEEE Access

TABLE 1. Statistical details of the employed datasets.

Dataset #Samples #Dimensions #Categories Type Features

SwissRoll 30,000 3 Continuous Synthesis Vectors
MNIST 60,000 784 10 Image Pixels
Noisy MNIST 60,000 784 10 Image Pixels
COIL-20 1,440 16,384 20 Image Pixels
Noisy COIL-20 1,440 16,384 20 Image Pixels
Fashon MNIST 60,000 784 10 Image Pixels

DBPedia 100,000 100 14 Text FastText
Tasic et al. 23,822 3,000 133 scRNA-seq Genes

TABLE 2. Default hyperparameters of SpectralMIAP. 2) t-SNE [33]. t-SNE is a baseline method for

Number of neighbors k 150
Dimension @) 2
Threshold 6 0.6
Number of singular vectors C' || Automatically selected

3) COIL-20 and Noisy COIL-20 [50]. COIL-20 contains
1,440 grayscale images with 20 object variations and
rotation structures and labels corresponding to each
object. Each object of COIL-20 is evenly captured in
a single rotation across 72 images. We also create a
noisy version of COIL-20 (Noisy COIL-20) by ran-
domly losing the pixels with 35%. We employ their
high-dimensional vectorized pixels as feature vectors.

4) Fashion MNIST [51]. Fashion MNIST contains 60 K
real images of fashion items and labels corresponding
to each item. It has more complex patterns and clus-
ters than MNIST. We also use their high-dimensional
vectorized pixels as feature vectors.

5) DBPedia.> DBPedia contains 560 K Wikipedia articles
with 14 categories and labels corresponding to each
category. We extract 100-dimensional feature vectors
with FastText following [40] and use 100 K samples
for embedding.

6) Tasic et al. [52] The dataset of Tasic et al. contains
single-cell RNA sequence (scRNA-seq) data consisting
of adult mouse cortex cells and labels corresponding
to each cell. It has strong hierarchical clusters along
with the function of each cell [3]. We use this dataset
to verify the applicability of our method to a complex
dataset.

Table 1 summarizes statistical information about the datasets
used here (e.g., the number of samples and dimensions).

B. EXPERIMENTAL SETTINGS
Here, we compare our method with three popular and three
state-of-the-art methods.

1) PCA [23]. PCA is a well-known dimensionality reduc-
tion method used for various purposes, including visu-
alization and preprocessing. We use it in this study as a
conventional method for visualization.

2https://Wiki.dbpedia.org/
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visualization-aided dimensionality reduction. In this
study, we use Burnes-Hut t-SNE [36] of sklearn
implementation [53], an efficient version of the original
t-SNE algorithm.

3) UMAP [17]. UMAP is a recent baseline method used
for biological data visualization [54]. It is one of the
main components of SpectralMAP. We used it here for
the ablation study of our method. We use the original
implementation provided in umap—-learn [17].

4) PHATE [18]. PHATE is a recent state-of-the-art
method that introduces a diffusion operation into neigh-
borhood graph construction. It is an early method for
global preservation used in this study as a state-of-the-
art method. We use the publicly available implementa-
tion provided in the original paper.

5) TriMAP [19]. TriMAP also aims to preserve the global
structure and introduces the triplet loss function into the
UMAP algorithm. We use it as a state-of-the-art method
and employ the open implementation provided in the
original paper.

6) PaCMAP [20]. PACMAP is the most recent and com-
prehensive method of the UM AP frameworks. We use it
as another state-of-the-art method and employ the open
implementation provided in the original paper.

Data visualization is used in a wide range of fields without
any specific knowledge; thus, we use the default parameters
of these comparative methods. We also define the default
parameters of our method. The details are described in I'V-C.

We compared the visual effect of low-dimensional
embedding and the classification accuracy of the k-nearest
neighbor classifier in the experiment. We conducted quali-
tative experiments with several neighbor selections as k €
[1,3,5,10, 15, 20, 25, 30] and used the result of the best
k selection as the accuracy of each method. The quantita-
tive experiments were conducted on MNIST, Noisy MNIST,
COIL-20, Noisy COIL-20, Fashion MNIST, and DBPedia
which contain clear categorical information.

C. TRAINING PROCEDURE

A data visualization technique should not contain
hyperparameter tuning because it is used in various fields
without specific domain knowledge. Therefore, we set the
default parameters of our method and used them across
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TABLE 3. Quantitative results of k-nearest neighbor classifier on each dataset. The index of each result indicates the number of neighbors of each result
and is the best selection in [1, 3, 5, 10, 15, 20, 25, 30]. The best result in each dataset is bold-faced, and the second best is underlined.

Dataset PCA t-SNE UMAP PHATE TriMAP PaCMAP  SpectralMAP
MNIST 0.4514(30) 0.9724(5y  0.9675(10) 0.7930(30) 0.9539(39) 0.9696(39) 0.9571(25)
Noisy MNIST 0.3983(30) 0.7456(30) 0.8014(35) 0.5520(39) 0.7432(39) 0.7470(309) 0.8700(3)
COIL-20 0.7215(10y  0.9986(;)  0.9028(;)  0.8917(;)  0.8722(;)  0.8965;) 09111y
Noisy COIL-20 0.6896(15) 0.5563(10) 0.5951(15) 0.7549(10) 0.7007(10) 0.6694(20) 0.9047(1)
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FIGURE 1. Visualization results on SwissRoll with UMAP and Spectral MAP.
A
. : COIL-20 Noisy
all experiments. Table 2 presents the details of the default COIL-20
parameters. Our method requires the left singular vectors U UMAP
and their number C and is sensitive to C selection. Therefore, -
we determined it on the basis of the elbow detection of the .
cumulative Von Neumann entropy [46] given as follows: S
[ i 5
¢ o %0 -3 _&\
M=~ pilogpi, (17) e
i=1 % Qi
where p; = tr()?—JrX) and \; represents i-th eigenvalue of XX o
obtained by the singular decomposition of X. We calculated
singular values from the largest to the 200th and detected the .
elbow point from the cumulative entropy graph. Through this COIL-20 CI(\])(I)I:S}; 0
procedure, we can robustly correlate the visualization results SpectralMAP

to the hyperparameters.

D. RESULTS AND DISCUSSION

1) ABLATION STUDIES

We first conducted an ablation study to verify our novelty.
Figure 1 depicts the visualization results on SwissRoll. The
results easily confirm that SpectralMAP produces a smoother
representation than UMAP. The smooth representation was
the global property of the data manifold; therefore, our nov-
elty contributed to the revelation of an effective representation
by considering the global structure of the given data. Figure 2
depicts the COIL-20 and Noisy COIL-20 results. In normal
COIL-20,SpectralMAP and UMAP preserved the object vari-
ation (i.e., each color) and rotation structures. However, in the
noisy setting, UMAP did not even preserve the object varia-
tion, and significant accuracy degradation was observed. This
degradation was caused by noise oscillation. UMAP did not
approximate the data manifold with the neighborhood graph
in Eq. (2). In contrast, SpectralMAP effectively preserved
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FIGURE 2. Visualization results on COIL-20 and Noisy COIL-20 with UMAP
and Spectral MAP.

both object variation and local rotation well by the dual
approximation of the data manifold. Therefore, these results
confirm the effectiveness of our novelty.

2) QUANTITATIVE RESULTS

Table 3 presents the quantitative results. Previous approaches
have shown a significant accuracy degradation on noisy
datasets because of the mismatching between the local dis-
tance measurement and the locally oscillated data manifold.
Although our method was also obliged to accuracy degrada-
tion, it robustly dealt with the oscillated data by considering
the global structure with spectral information independent of
the distance calculation. In the normal setting, SpectralMAP
exhibited slight accuracy degradation compared with UMAP
due to the global consideration of our method. However, the
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MNIST

COIL-20
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COIL-20
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MNIST

DBPedia

PCA t-SNE

UMAP

e \
PHATE TriMAP PaCMAP Spectral MAP

FIGURE 3. Visualization results on the synthesis, image, and text datasets. Each color indicates each category. SwissRoll dataset has continuous labels,
and the other datasets have separatable classes; thus, the embeddings on SwissRoll should connect each color, and the embeddings on the other

datasets should separate each color.

effectiveness of our novelty is verified by the noisy setting
results, where our method significantly outperforms all com-
parison and state-of-the-art methods. Therefore, these results
confirm the effectiveness of our method.

3) QUALITATIVE RESULTS

Figure 3 shows the experimental results on the synthesis,
image, and text datasets. The SwissRoll results show that
SpectralMAP embeds high-dimensional data in an unrolling
smooth representation, unlike other methods. On the MNIST

VOLUME 11, 2023

and COIL-20 datasets, SpectralMAP produces similar visu-
alization compared with the current state-of-the-art meth-
ods. In the noisy settings (i.e., Noisy MNIST and Noisy
COIL-20), the SpectralMAP embedding depicts more clear
boundaries for each category and produces visible results
compared with the other methods. On the fashion MNIST
dataset, SpectralMAP yields a competitive representation to
the other state-of-the-art methods. On DBPedia, the embed-
ding of our method reveals fewer noise-like outliers and a
more compact cluster representation than that of the other
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FIGURE 4. Visualization results on Tasic et al. dataset. Each color indicates each category.

methods. Figure 4 illustrates the results on the single-cell
dataset. Despite confirming that this representation had clus-
ters along the cell functions, the PCA visualization did not
show the sub-clusters of each cluster. In contrast, the t-SNE
result shows sub-clusters along the cell function. However,
the sub-clusters of the inhibitory cells were split, and no
inter-cluster similarity preservation was found between them.
UMAP, PHATE, TriMAP, and PaCMAP exhibited a hierar-
chical structure, and their representations were unsplit within
the same clusters. The embedding of SpectralMAP had the
same tendency, but the clusters corresponding to the excita-
tory cells were not to be divided into many sub-clusters like
UMAP and PaCMAP. Therefore, our embedding was more
useful when we want to infer sub-cluster relationships. These

31538

results verify the effectiveness of our method in the visual
effects of representations.

V. CONCLUSION

In this study, we proposed a novel visualization method with
global structure preservation. We approximated a data man-
ifold with a dual scheme, roughly approximating it with a
neighborhood graph and then pruning it with a global filter.
With this novelty, we can embed the given data with explicit
global preservation when the data manifold locally oscil-
lates. We verified our method on synthesis, image, text, and
complex biological datasets and confirmed its effectiveness
through qualitative and quantitative experiments.
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