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ABSTRACT In-hospital clinical deterioration is a major worldwide healthcare burden in the intensive
care units (ICUs), as it requires rapid intervention. Rapid response systems (RRSs) are widely used in
many hospitals for the early detection of clinical deterioration to prevent cardiac arrest. Recently, with the
increasing use of deep learning (DL) and electronic health records (EHR), many DL models have been
developed for the intensive care domain, such as prediction of cardiac arrest, sepsis, or transferring to ICU.
However, most existing methods do not explicitly learn the structure of multivariate time-series data, and this
leads to high false-alarm rates and low sensitivity. In this research, we propose a novel DL-based framework
that interpolates high-dimensional sequential data. Our approach combines two graph neural networks with
an attention mechanism to learn the complex dependencies among multivariate time series. The experiments
were conducted on two datasets: a private clinical dataset collected from Chonnam National University
Hospital (CNUH) and a public dataset from the University of Virginia (UV). The experimental results show
the potential performance of our model compared to some other related research.

INDEX TERMS Attention mechanism, cardiac arrest, clinical deterioration, deep learning, graph neural
network, rapid response system.

I. INTRODUCTION
There has recently been an increase in the number of patients
and in the overcrowding of emergency departments, which
are causing adverse treatment outcomes. In-hospital events
that represent clinical deterioration, such as cardiac arrest, are
considered to be major burdens for most intensive care units
(ICUs) and affect patient mortality [1], [2], [3]. Previous stud-
ies indicate that 80% of cardiac arrests show abnormalities
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of vital signs 8–24 hours before the event [4], [5], [6]. How-
ever, early detection of cardiac arrests faces many difficulties
because a single vital sign usually does not accurately predict
patient prognosis [7]. In fact, the survival discharge rate of
cardiac arrest patients is less than 20% [8], [9].

The rapid respond system (RRS) has been introduced
in many hospitals as a clinical supporting tool to prevent
in-hospital emergencies such as cardiac arrest by proactively
intervening in patients who are clinically deteriorating [10],
[11]. Some traditional RRSs use the Modified Early Warning
Score (MEWS), which calculates a weighted score for each
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vital sign and then finds patients with events based on the
sum of the scores [12]. However, this method has limitations
of low sensitivity and high false-alarm rates [12], [13]. The
National Early Warning Score was recently introduced and
shows outstanding predictive performance over previous sys-
tems in terms of cardiac arrest and death [14].

In recent years, the increased access to electronic health
records (EHR) has motivated the development of artificial
intelligence models to predict clinical events in the ICU [15],
[16], [17]. There have been several attempts to use artificial
neural networks (ANN) to detect in-hospital events, and these
methods have attracted considerable attention [18], [19], [20].
ANNs have shown better performance than traditional scor-
ing systems, which predict cardiac arrest earlier and with
better accuracy [20]. However, these deep learning (DL)-
based models usually lack interpretability, as they are viewed
as a black box that does not provide any insight about the
features learned from the data [21]. There are also several
approaches that utilize recurrent neural networks (RNNs)
to capture sequence features in health records data [21],
[22]. These approaches require regularly spaced data points.
However, the EHR is usually sparse, noisy, and incomplete.
In addition, most of these methods do not present multivari-
ate correlations explicitly, which may lead to missing some
inter-relationships in multivariate time-series data.

Recently, graph neural networks (GNNs) have shown
success in modeling complex patterns in graph-structured
data. Some recent studies have applied graph-based attention
mechanisms to incorporate medical knowledge from EHR
into DL models [23], [24]. In fact, these graph-based atten-
tion models are compatible with discrete data but not with
sequential data [25]. In this paper, we propose an end-to-
end DL-based RSS that tackles the limitations of previous
methods for detecting the clinical deterioration of in-hospital
cardiac arrest patients. Our proposed architecture is based
on double graph attention networks (DGATs) and includes
two GNNs that learn the graphs of the dependencies between
features and the temporal relations between time points at the
same time. In DGATs, two graph attention networks [26] are
trained in parallel, namely the feature-based graph attention
network that captures the correlations among multiple input
features and the time-based graph attention network that
discovers the dependencies between different time points.

The primary contributions of this paper are as follows:

• We propose a DL-based framework to perform clini-
cal deterioration prediction tasks. The proposed DGAT
takes advantage of the complex inter-relationships in
multivariate time series by learning their correlations in
both the time and feature domains. To the best of our
knowledge, this is the first study that applies the graph
attention models to the problem of clinical deterioration
prediction.

• In the medical context, interpretability is considered to
be one of the key components of clinical utility [27].
Our model presents good interpretability by utilizing

an attention mechanism that emphasizes those parts of
a multivariate time series that are most relevant to the
output target.

• Our proposed system shows better performance on two
clinical datasets than the baseline approaches. We also
conduct experiments using a cross-validation strategy to
present the generalization of the model.

The rest of the paper is organized as follows: Section II
begins with some description about related works on RRS
models for clinical deterioration. Section III presents a
detailed architecture of our proposed system. Dataset infor-
mation and the experiment results are reported in Section IV.
Finally, Section V presents the conclusion and some future
work for our study.

II. RELATED WORKS
In this section, we review some recent DL-based applications
for predicting in-hospital clinical deterioration. RNN-based
models have recently shown great potential for the medical
and healthcare domain because of their capability to capture
sequential patterns in time series [28]. The study in [22]
developed prediction models for three events: sepsis, acute
kidney injury (AKI), and death. Each model utilized bidi-
rectional long short-term memory (Bi-LSTM) architecture to
design binary classification models. The experimental results
showed superior performances by the Bi-LSTMmodels rela-
tive to some other machine learning methods. A deep early
warning system (DEWS) was proposed in [18] to predict
in-hospital cardiac arrest between 0.5 and 24 hours before
the event. The DEWS consisted of three RNNs with an
LSTM unit to solve the long-term dependency problem. The
model was tested on two clinical datasets, and it outperformed
MEWS, logistic regression, and random forest on all metrics.
Another study [20] used the architecture with three ANNs
for the early detection of patients at risk for cardiac arrest.
The first network was a multilayer perceptron (MLP) that
used baseline variables (age, sex, initial vital signs, . . . ). The
second network consisted of LSTM layers stacked with MLP
layers that used 12 recent updates of vital signs within the pre-
vious 6 hours as input. The third model was a hybrid LSTM
andMLPmodel, where the sequence data and static data were
processed separately first, and then fused to generate the out-
put. All of the above methods usually outperform traditional
scoring systems. However, these approaches do not have good
interpretability and may not be capable of capturing multi-
variate correlations explicitly. These traditional DL methods
with RNN-basedmodels only consider the sequential patterns
in time-series. Some other information such as correlations
among features and dependencies among time points are also
necessary.

Some recent studies have applied an attention mechanism
to their models, which improves the interpretability as it
highlights those parts of the input data that contribute the
most to the model’s decision. The study in [21] proposed a
deep interpretable early warning system based on an encoder
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FIGURE 1. Overall architecture of the proposed method for clinical deterioration prediction. The input time series data are fed to a 1-D convolutional
layer to extract the high-level features. These features then go through two graph attention networks which are trained parallelly. The output of the graph
networks is concatenated with the features extracted from the convolution layer and go through a gated recurrent unit (GRU) layer followed by the MLP
layers for final prediction.

with a Bi-LSTM architecture and an attention block. This
model achieved state-of-the-art performance evenwhen using
a limited set of features. A DL-based framework that utilizes
an MLP along with an attention mechanism was proposed
in [29]. This approach shows competitive performance rel-
ative to MLP, linear regression, and stacked denoising auto-
encoder (SDAE) on the task of clinical prediction for heart
failure patients. The two attention-based methods above suc-
cessfully captured the trends of input vital signs that most
contribute to the model behaviors, but they did not explicitly
learn which features were related to one another, which could
lead to missing some inter-relationships among multivariate
time series.

III. PROPOSED METHOD
This section presents our proposed DL-based method for
in-hospital clinical deterioration prediction. In this paper,
we define the task of detecting clinical deterioration as a
binary classification problem, as was done in recent stud-
ies [18], [20], [21]. Thus, we define our input time series
as xt ∈ Rn×m, where n is the length of the input sequence
time points before time t, and m is the number of clinical
features. In this work, we generate input of a fixed length
n ∈ {8, 12, 24} by sliding a time window with a sliding
step k = 1. The output of the model is a vector y ∈ Rn,
where yt ∈ {0, 1} denotes the normal or abnormal status
at time point t . The abnormal status is defined as the time
at which clinicians recognize abnormal changes in patients’
measurements that would likely lead to an event. In other
words, the event would occur after a series of abnormal time
points. Because this work is defined as an anomaly detection
problem, our system can detect clinical events earlier, which
helpsmedical staff tomake the necessary interventions before
the occurrence of the events.

A. METHOD OVERVIEW
The overall architecture of our proposed method is shown in
Fig. 1. After data preprocessing step, the input time series

go through a 1-D convolution layer to extract the high-level
features. A recent study [30] indicates that the convolutional
process can capture the local features of time series. The
outputs of the 1-D convolution layer are fed to the DGAT,
which includes the feature-based graph attention network and
the time-based attention network. These networks are trained
in parallel; we concatenate their outputs with the extracted
features from a 1-D convolution layer, and then feed them into
a gated recurrent unit (GRU) layer to capture the sequential
information from input time series. Finally, the latent features
from the GRU layer are fed to the MLP to obtain the final
prediction result.

B. DATA PREPROCESSING
For the task of clinical deterioration prediction, we use two
types of input features: vital signs, which are measured every
hour, and laboratory tests, which are recorded discontinu-
ously. In the medical context, most healthcare datasets face
the problem of missing values. In this work, for the vital
signs, we apply the carry-forward method for missing data
imputation if data existed before the missing time points.
If not, we fill the missing data with the mean value of the
non-missing values for each patient. The mean is a measure
of central tendency and can provide a good estimate of the
typical value in the dataset. For the lab tests, because each
patient has only a few records, we duplicate these values for
every time point between the two records.

Class imbalance is one of the main problems in medi-
cal anomaly detection because most of the data are labeled
with normal status [18], [31]. On such imbalanced datasets,
DL models usually perform poorly for the minority class
(positive class). Several time series augmentation techniques
were mentioned in [32] that generate more samples of minor-
ity class to control the imbalance problem. In this work,
we apply two data augmentation methods as in [32], which
are cropping and label expansion. In addition to augmenta-
tion, we also apply data normalization to enhance the robust-
ness of the model. In this work, we normalize the input time
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FIGURE 2. Description of the two graph networks: (a) Feature-based graph network; (b) Time-based graph
network. In the feature-based graph network, each node vector v represents a certain feature meanwhile in
time-based graph network, each node represents a feature vector of a certain time point in the input
sequence. In both graph networks, the edges denote the correlations between two nodes.

series using standard normalization as in (1):

x̄ =
x − µ

σ
(1)

where x is the input time series, and µ and σ are the mean
and standard deviation of the input data.

C. GRAPH ATTENTION NETWORK
In this research, we implement two complete graph networks,
namely the feature-based graph attention network and the
time-based graph attention network.

1) TIME-BASED GRAPH ATTENTION NETWORK
This network captures temporal relationships in time series.
Each node represents one time point, and all time points in
a sliding window create a complete graph. The time-based
graph includes m nodes {v1, v2, . . . , vm}, where m is the
number of time points in the current sliding window; vi is the
vector representation of each node with vi = {vi,t |t ∈ [0, n)},
where n is the number of multivariate features. The output of
the graph is a matrix of size m× n.

2) FEATURE-BASED GRAPH ATTENTION NETWORK
This network learns the correlations between multivariate
time series. We consider the whole input time series as a
complete graph where each node represents a certain fea-
ture, and each edge denotes the dependencies between a
pair of nodes. Therefore, the model can explicitly learn the
inter-relationships between the multivariate time series fea-
tures. The output of the feature-based graph attention network
is a matrix having the shape of n×m. Finally, we concatenate
the output of both graph attention networks with the output
from the 1-D convolutional layer to keep the original sequen-
tial information.

For both the time-based graph network and the feature-
based graph network, we utilize the graph attention mech-
anism [26] to fuse the node information. The input of the

attention layer is a set of vectors representing every node
in the graph network V = {v⃗1, v⃗2, . . . , v⃗N }, where N is the
number of nodes. We first compute the attention coefficients
between each pair of nodes as in (2):

eij = LeakyReLU (wT (Wv⃗i ⊕Wv⃗j)) (2)

where j is one of the adjacent nodes of node i, w and W are
weight parameters, ⊕ denotes the concatenation of two node
representations, and LeakyReLU is a nonlinear activation
function [33]. Then, we normalize the coefficients across all
choices of node j by using the SoftMax function:

αij =
exp(eij)∑K
k=1 exp(eik )

(3)

where K is the number of adjacent nodes for node i. We com-
pute the final representation for each node by combining the
attention weight with the corresponding feature vector:

hi = σ (
K∑
j=1

αijvj) (4)

Here, σ denotes the sigmoid activation function, and hi is
the output of node i, which has the same shape as input
vector vi. The two graph networks in DGAT are illustrated
in Fig. 2. By utilizing two graph attention networks, our
proposed DGAT can explicitly learn the correlations between
different features and time points.

IV. EXPERIMENTS
In the experimental section, we evaluate our proposed
DGAT for clinical deterioration prediction on two healthcare
datasets.

A. DATASET
This research was approved by the Independent Institutional
Review Board (IRB) of Chonnam National University Hos-
pital (CNUH). The primary database used for the experiment
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TABLE 1. CNUH data characteristics. 5 vital signs and 18 laboratory tests
are input features for proposed architecture. The data is highly imbalance
with only 1.5% of the patients with events.

TABLE 2. UV data characteristics. The data is imbalance with only 4.5% of
the patients with events. 1000 non-event samples are selected.

contains licensed patient data provided by ChonnamNational
University Hwasun Hospital’s doctors. In addition, we vali-
dated our model on a public dataset from the University of
Virginia to ensure the generalization of the model.

The CNUH dataset contains information from 2,615
patients from two hospitals. The main types of features
include demographic, vital signs, and laboratory tests. There
are five vital signs: body temperature (BT), systolic blood
pressure (SBP), heart rate (HR), respiration rate (RR), and
oxygen saturation (SaO2), which are measured every hour.
The laboratory tests contain information collected from
patients’ blood, including alanine transaminase (ALT), blood
urea nitrogen (BUN), aspartate aminotransferase (AST),
white blood cell count (WBC count), C-reactive protein
(CPR), albumin, lactate, total protein, platelet, hemoglobin
(Hgb), alkaline phosphatase, total calcium, total bilirubin,
creatinine, glucose, sodium, chloride, potassium. Some char-
acteristics of the dataset are shown in Table 1.
The dataset from the University of Virginia was collected

within 63 years from 8,150 patients who were admitted to a
tertiary care academic medical center. It also contains vital
signs and lab test features, similar to the CNUH dataset.
In addition, it contains 15 features related to cardiorespiratory
dynamics that were measured from continuous ECG heart
monitoring, which tracks the heart rate and electrical activi-
ties of patients. Table 2 represents some characteristics of the
UV dataset. Both datasets contain the clinical status normal

TABLE 3. Number of samples in each fold for two datasets. 5-fold cross
validation is applied for both datasets. In each fold, 20% of the patients
are used for validation.

or abnormal, which is determined by medical staff every
hour. The abnormal status is specified when medical doctors
recognize abnormal changes in patients’ measurements that
are likely to lead to an event. The first time point with an
abnormal label is considered to be the detection time, and
the event is the last abnormal time point for each patient.
The patients with events have both normal and abnormal time
points, whereas the non-event patients have only normal time
points.

The imbalance problem exists in both datasets. For the
CNUH dataset, there are only 41 patients with events (1.5%).
In the UV dataset, the number of event patients is 367 (4.5%),
and there are 7,738 non-event patients (95.4%). Because
of the large amount of non-event data, we randomly select
1000 normal samples from the UV dataset for our exper-
iments to control the imbalance problem and mitigate the
computational burden.

B. TRAINING AND IMPLEMENTATION SETTING
In this work, we apply a 1-D convolution with a kernel size of
7 to the input time series to extract the high-level features. The
extracted features then are processed by two graph attention
networks to learn the multivariate time series correlations.
The output of the graph networks is concatenated with the
high-level features from the 1-D CNN and then goes through
a GRU layer with 128 hidden dimensions. The output of the
GRU is fed to two 128-neuron fully connected (FC) layers,
each followed by ReLU activation and a dropout rate of 0.2,
before the last output layer to predict the binary output value
of normal or abnormal. The experiments are carried out in
PyTorch using the Adam optimizer and a learning rate of
0.0001. We also apply five-fold cross validation for training
to present the generalization of the model. Table 3 shows the
details for the number of time points over the five folds on
both datasets. We use the original CNUH dataset with a total
of 317,006 time points but only 1,042 abnormal time points.
We exclude 6,738 non-event patients from the UV dataset,
and the data used for this study contains 493,333 time points
with 23,881 abnormal samples.
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TABLE 4. Experimental results for CNUH dataset. The experiments are performed with different input sequence lengths of 8 hours, 12 hours, and
24 hours. The results shown in the table are the mean of 5 folds with a standard deviation.

TABLE 5. Experimental results for UV dataset. The experiments are performed with different input sequence lengths of 8 hours, 12 hours, and 24 hours.
The results shown in the table are the mean of 5 folds with a standard deviation.

To solve the imbalance problem, we utilize focal loss as
the final objective function for the prediction task. It is an
extension of the common cross-entropy loss with a scaling
factor that can down-weight the effect of samples in the
majority class and focus themodel on hard samples. The focal
loss can be expressed as follows:

FL (ρt) = −αt (1 − ρt)
γ log(ρt ) (5)

where ρt is a predicted probability, and (1 − ρt)
γ is the

scaling factor. With γ = 0, the focal loss is equivalent to
the cross-entropy loss. αt is the weighting parameter that
represents the inverse class frequency.

C. EXPERIMENTAL RESULTS
In this paper, we present an evaluation of our proposed DGAT
and compare the performance with some recent research

29096 VOLUME 11, 2023



T.-C. Do et al.: Rapid Response System Based on Graph Attention Network

TABLE 6. Experimental results for CNUH dataset. We evaluate the performance of each graph network by comparing the results when using only each
graph network with using both of them. The experiments are performed with different input sequence lengths of 8 hours, 12 hours, and 24 hours. The
results shown in the table are the mean of 5 folds with a standard deviation.

TABLE 7. Experimental results for UV dataset. We evaluate the performance of each graph network by comparing the results when using only each graph
network with using both of them. The experiments are performed with different input sequence lengths of 8 hours, 12 hours, and 24 hours. The results
shown in the table are the mean of 5 folds with a standard deviation.

about clinical deterioration prediction. The first one is an
LSTM-based DEWS in [18] that consists of three RNN net-
works with LSTM cells. The second model is based on a
Bi-LSTMarchitecture that is proposed in [22]. The last model
that we mention in our experiment is a Bi-LSTM model
with an attention mechanism (ABiLSTM) in [21]. As we
describe in previous sections, we perform the experiment with
input window sizes n ∈ {8, 12, 24} and sliding step k =

1. The two-evaluation metrics that we use to estimate the
performance of the models are the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC), which represent well the
minority class in an imbalance dataset [34].

Table 4 shows the performance of our model on the CNUH
dataset compared with other approaches having different
lengths of input sequences. It is obvious that the proposed
method outperforms the others on both metrics with an
AUROC of 0.955 and an AUPRC of 0.871. The table also
indicates that the input sequence length of 12 hours achieves
the best results, whereas the input sequence of 24 hours gen-
erally shows a poor performance. The same trend is observed
in Table 5, which shows the experimental results on the UV
dataset. A window time of 12 hours also achieves the best
outcome, with an AUROC of 0.978 and an AUPRC of 0.873.
It can be inferred from the experiment results that the input
window time length of 24 hours is too long for the model
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FIGURE 3. Two prediction result samples in CNUH dataset. The y-axis represents the probability of being abnormal, the x-axis represents the time
points. The proposed method (green line) usually returns high probabilities for abnormal cases with lower false alarm rates.

FIGURE 4. Two prediction result samples in UV dataset. The y-axis represents the probability of being abnormal, the x-axis represents the time points.
The proposed method (green line) usually returns high probabilities for abnormal cases with lower false alarm rates.

to learn the time series correlations effectively, whereas the
window size of 8 hours is too short to capture all the necessary
information.

We also evaluate the contribution of the two graph net-
works in DGAT. Table 6 and 7 show the results of a
comparison for only the time-based graph network or the
feature-based graph network with the DGAT on both datasets.
The results show that DGAT achieves better performance
than using only one of the graph networks. It is obvious that
using only the time-based GAT shows the worst performance
with an AUROC of 0.865 and an AUPRC of 0.792. The
feature-based GAT performs much better with the AUROC
of 0.933 and the AUPRC of 0.844. However, combining
both feature-based and time-based GATs achieve the highest
results with the AUROC of 0.955 and the AUPRC of 0.879.

Therefore, it can be concluded that exploring the multivariate
time series feature correlations and the time domain depen-
dencies are both necessary and significant for the prediction
of clinical deterioration.

We also visualize some prediction results for samples on
both datasets in Fig 3 and 4. With a classification threshold
of 0.5, it is shown that the proposed DGAT performs better
than the other models, and it generally returns high probabil-
ities for abnormal time points. The figures also indicate the
stability of our approach at low late alarm rates meanwhile
other methods usually capture the positive status later.

It is obvious that the reason for the outstanding per-
formance of DGAT is the contribution of two graph net-
works. The feature-based graph attention network explores
the inter-relationships between features properly. Whenever
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there is an abnormal change among features, the attention
mechanism captures the abnormal correlations to speculate
that an incident has occurred with the patient. Therefore,
it can deal with many complex circumstances in multivariate
time series. Although a GRU layer is applied to capture
sequential patterns, the time-based graph attention network
is also necessary for the final prediction. The main difference
between the time-based graph network and the GRU is that
it models the dependencies between a pair of time points
directly even if they are not adjacent. Thus, some long-term
correlations between time points can be learned explicitly.

V. CONCLUSION
In this paper, we propose a DL-based framework for clini-
cal deterioration prediction using graph attention networks.
Our proposed architecture includes a 1-D CNN layer to
extract the high-level features, a feature-based graph attention
network that explores the inter-relationships between time
series features, a time-based graph attention network that
can model the long-term dependencies among time points,
and a GRU layer to capture the sequential patterns of time
series. By combining information from different sources,
our approach models the multivariate correlations explicitly
and avoids missing some inter-relationship information. The
attention mechanism in the graph networks also enhances
the interpretability of our model by emphasizing the parts of
multivariate time series that are most relevant to the final pre-
diction. Our proposed framework was tested on two datasets:
a public dataset from CNUH and a private dataset from
UV. DGAT achieved the best performance on both datasets
compared with the other state-of-the-art models for clinical
deterioration prediction.

In conclusion, we successfully applied the proposedDGAT
model to the task of clinical deterioration forecasting by
defining it as an abnormal detection problem. In that way,
our approach detects early the abnormal changes in patients’
measurements to prevent the occurrence of events. Our pro-
posed framework showed superior performance compared to
other methods because of the contribution of two graph atten-
tion networks that explore the complex dependencies among
multivariate time series. However, forecasting the time of
the event is also one of the tasks that requires considerable
attention from medical doctors. For future work, we plan to
continue developing the current framework for application to
an event detection problem to meet the requirements of the
clinicians.
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