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ABSTRACT The conventional laser triangulation displacement sensor (LTDS) is difficult to achieve large
dynamic range and high precision measurement simultaneously, since LTDS is affected by factors such as
limited detector size, nonlinear input and output variables, laser power fluctuation, speckle noise, electronic
noise, etc. Given the above background, we proposed a modified LTDS using a diffraction grating to improve
the dynamic range and precision simultaneously. Different from the conventional LTDS, the modified LTDS
generates more than one spots on the image sensor, thereby the displacements with different ranges can
be obtained from the multiple order diffraction spots. Ultimately, the dynamic range and measurement
accuracy will be improved simultaneously by integrating these displacements. In this paper, the principle
of the modified LTDS for large dynamic range and high precision measurement is described in detail, and
we verified the validity and effectiveness of this idea through the experiment. Compared with the traditional
LTDS, the experimental results show that the linearity of the modified LTDS is improved by a factor of
1.5685 and the dynamic range is improved 1.2986 times as well as maintaining the same linearity.

INDEX TERMS Laser triangulation displacement sensor, diffraction grating, large dynamic range, high
precision.

I. INTRODUCTION

Laser triangulation displacement sensor (LTDS) is one of the
most commonly displacement sensors as it is non-contact,
presents high precision, good robustness and cost effective-
ness [1], [2], [3]. According to the geometry relationship
between the source, the object and the position-sensitive
detector, the object displacement can be determined from the
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spot image at the sensor. In recent years, LTDS has been
widely used in many branches, such as precision engineer-
ing [4], [5], [6], aerospace manufacturing [7], equipment
condition monitoring [8], materials science [9], traditional
Chinese medicine science [10], [11] and agricultural science
[12], [13]. Researchers have done a lot of work on improving
the performance of LTDS, such as increasing the freedom
degree, enhancing the range, and expanding the measurable
material types. Zeng et al. [14] demonstrated a two-beam
LTDS for measuring the displacement of a moving object

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 27395


https://orcid.org/0000-0002-2642-2207
https://orcid.org/0000-0003-2380-9091
https://orcid.org/0000-0003-0030-2802
https://orcid.org/0000-0002-4459-3421

IEEE Access

Y. Yang et al.: High Precision and Large Dynamic Range Measurement of LTDS Using Diffraction Grating

in both longitudinal and transverse directions. Liu et al. [15]
proposed a diffraction-type LTDS by mounting a reflective
diffraction grating on the moving object. This configura-
tion enables to measure the longitudinal displacement and
additional three-rotation angular displacement of the moving
object simultaneously. In [16], a LTDS with six image sensors
was developed to simultaneously measure the distance and
inclination angle of a work piece surface. In [17], a LTDS
with enhanced range and resolution was developed through
adaptive electronic control of the beam propagation param-
eters. In [18], a LTDS that utilizes a high-quality ultraviolet
laser beam was developed for precise displacement measure-
ment of object surface with diffuse, transparent, translucent,
and others material types.

Despite various improvements that have been achieved, the
measurement accuracy and range of longitudinal displace-
ment are the core indicators for evaluating LTDS perfor-
mance. The measurement precision can be affected by the
factors such as the non-linearity between the input and output
variables, laser power fluctuations, speckle noise, electronic
noises and the surface orientation [19]. The measurement
errors caused by the influential factors mentioned above have
been widely investigated [20], [21], [22], [23], and some
optimization methods have been proposed. In Refs. [24],
[25], [26], several calibration methods have been proposed
for effectively compensating the non-linearity of the trian-
gulation measurement model. From the viewpoint of the
improvement of signal processing, image segmentation [27]
and digital speckle correlation methods [28] were proposed
for improving the measurement precision. In 2021, Ye.et.
al. [29] developed a LTDS with a grating placed after the
imaging lens to improve the measurement accuracy. The
result shown that the measurement nonlinearity and repeata-
bility of the developed LTDS are 0.113% of full-scale (F.S.
= 20 mm) and 0.89 um respectively. Such the small full-
scale is attributed to the small field of the imaging lens.
In addition, the most important limiting factor is that the
zero-order spot should be always on the sensor during the
measuring. So far, there is no effective method to achieve
the high precision and large dynamic range simultaneously.
Generally, the dynamic range is mainly limited by the size of
the sensor. From the viewpoint of the improvement of sensor
configuration, a LTDS that consists of three CCD distributed
uniformly along the optical axis was designed in Ref. [30].
At present, only this configuration enables higher precision
by measuring the large-size displacement in sections.

In this paper, a modified LTDS configuration with the
diffraction grating placed in front of the imaging lens is pro-
posed, which is different from the structure in 29. We intro-
duce a new principle of the modified LTDS. Based on the
principle, a high precision and large dynamic range will be
achieved as the zero-order diffraction spot can be absent
on the sensor when measuring. Each spot can be used to
measure the displacements with different ranges. Thus, the
dynamic range will be increased when combining the differ-
ent order spots, and measurement accuracy will be improved
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FIGURE 1. Measurement principle of a typical vertical-incidence
conventional LTDS.

h calibration
Laser S 3 far
‘ C X1 B X2 E
—1 ,
D | K
sensor § \
M’ ,
BM 5

FIGURE 2. Schematic diagram of conventional LTDS measurement range.
h, working distance. D, baseline.

by averaging. The validity and effectiveness of the modified
LTDS have been confirmed from experimental results.

II. PRINCIPLE AND METHOD

A. MEASUREMENT PRINCIPLE OF A CONVENTIONAL LTDS
The measurement principle of a conventional LTDS is shown
in Fig.1. The laser light incidents on the object surface, and
the diffuse reflection is projected on the sensor of a high-
resolution CMOS (Complementary Metal Oxide Semicon-
ductor) by the imaging lens. As the optical structure does not
meet the Scheimpflug condition, the random displacement x
can be derived as follows.

Taken B as the calibration point, and B’ is the image point
on the sensor. When the object moving to C, the correspond-
ing image is M. The displacement x can be derived from the
similarity between AOCG and AOMB’.

spsina §p) —xcosa
- = . )
B'M S1
Thus,
B'M
x = = @

sy sina + B’M cosa

s> and s are the object distance and image distance in the
imaging of B, respectively. « is the working angle between
the incident light and BB’. The measurement range of the con-
ventional LTDS can be determined by the system parameters,
as shown in Fig. 2. The point M and M’ are the edge of the
sensor. Thus, the measurement distance will be ranging from
the near point C to the far point E.

x1 is the length of BC, x; is the length of BE. M and M’ are
the images of C and E. § is the angle between the sensor and
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BB’. As we know that the 8 is set to 90° in Eq. (1). But in the
actual applications, it is difficult to make 8 to meet the right
angle. Thus, different from the Eq. (1), x1 can be re-derived
from the Law of Sines in the AOCB, as
s sin /BOC
X|=—————————. (3)
sin (¢ + ZBOC)
In AOERB, the following formula is obtained based on the
Law of Sines,
sp sin /BOE
Xy = . 4)
sin (¢ — ZBOE)

The angle ZBOE and ZBOC can be presented as,
[ OM' = 57 + BM"* — 251 x BM’ x cos(f)

OM =57+ B'M? — 251 x BM x cos(180 — B)
st +OM"? —BM"?

/BOE = /B'OM’ =
arccos 351 X OM' {5)
, 57+ OM? — B'M?
/BOC = /B'OM = arccos
251 X OM

where the distances of B'M and B'M’ can be calculated from
the sensor images. The measurement range of conventional
LTDS can be presented as,
sp sin ZBOC
sin (¢ + ZBOC)

sp sin /BOE
sin (¢ — LBOE)"

L=x14+x= (6)
B. MEASUREMENT PRINCIPLE OF THE MODIFIED LTDS
The measurement principle of the modified LTDS with a
diffraction grating is shown in Fig.3. Different from the con-
ventional configuration presented in Fig. 1, the diffraction
grating is located in front of the imaging lens. Thus, multiple
diffraction spots such as Oth, —1th, and +1th orders etc.
will be imaged on the sensor during a single capture and the
displacement can be measured by any of the distinguishable
spots on the sensor. Then, the displacements with different
ranges can be obtained from different order diffraction spots.
Fig. 3 shows the geometric relationship between the position
of multiple order spots and the displacements of the object.
It can be seen that the propagation path of the Oth spot is
consistent with that of the conventional LTDS.

In Fig.3, B is the calibrated point, C is a random point
of the object. The lens is parallel to the sensor. Ag and Ap,
are 0" and negative m™ order images of B on the sensor,
respectively. Similarly, Ay and A}, are the 0™ and negative
m™ order images of C. ¢,, and ,, are the negative m™ order
diffraction angle of the point B and C. d,, is the distance of
AoAfn, which can be calculated from the diffraction images.
In AAgQA},, LAoQA!, can be presented as,

QA2 + QA2 — d2
20A0 x QAl,

where, QAg = 51 + 53, 53 is the distance between the grating
and lens. QA/ can be calculated as,

LApQA,, = arccos

(N

QA! = d2 + QA — 2 x dyy x QAg x cos(180 — B). (8)
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FIGURE 3. Measurement principle of the modified LTDS.

From the negative m-th order spot A, we can calculate
the incident angle ZBQC base on the diffraction equation of
grating,

/BQC = & = arcsin (—@ + sin(ZAOQA;n)) )
p

Then, the distance of x can be obtained by Eq. (3), as

s5 sin ZBQC

= sin(a + ZBQC)’ (10)

where s, is the vertical distance from B to the grating. Thus,
as long as d,, is measured, the distance of x will be calcu-
lated. It means that each order spot can be used to calculate
the displacement no matter the zero-order diffraction spot is
appeared or absent on the sensor. Similarly, the x’ in Fig.3 can
be calculated as

' sh sin LBQE
sin (o — /BQOE)’

Thus, using the distance of d,,, the modified LTDS can
measure the displacements x and x’. Through averaging the
displacements calculated from the spots, a higher measure-
ment precision can be achieved.

The measurement range of the modified LTDS is shown in
Fig. 4. Again, B is the calibration point, M and M’ are the edge
of the sensor. The measuring distance of the conventional
LTDS is ranging from the point C to B. Different from the
conventional LTDS, when the modified LTDS measures the
object at the near point T, the Oth order diffraction spot N
is falling outside the sensor, but the positive m-th order spot
M just within the sensor. So, the modified LTDS can measure
the displacement of BT through the m-th order spot. Similarly,
when the object at the far point F, the Oth order diffraction spot
N’ is falling outside the sensor, but the negative m-th order
spot M’ is just can be used to measure the displacement of
BF.

Thus, the distances of L; and L, are the increasing parts.
L1 and L, can be calculated through Eqgs. (10) and (11). The

(11)
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FIGURE 4. Schematic diagram of LTDS with diffraction grating. h, working
distance. D, baseline.

dynamic range of the modified LTDS can be presented as,
L=L+ L+ x1 +x3. (12)

In order to evaluate the improvement, the corresponding
evaluation indicators are given here, as the dynamic range
magnification factor p and the linearity §. p and § defined
as,

CLi+Lh+x+x

X1+ x2
N AXmax

8=

13)

)

x 100%, (14)

where AXx,,y is the maximum measurement error.

IIl. EXPERIMENT AND RESULTS

In the experiment, the diffraction grating is placed close to the
front of the imaging lens, as shown in Fig. 5. The commercial
large-field imaging lens is used to achieve a larger dynamic
range and the threaded connector can ensure that the lens par-
allel to the sensor. The wavelength of the semiconductor laser
(DD532-50-5, Xi’an Huake Optoelectronics Co., Ltd, China)
is 532 nm. The CMOS size is 7.4 mm (Basler, acA4042-
29um), and the grating constant p is 33 lines / mm. The
working distance A is 419 mm, the baseline D is 373 mm,
the focal length f of the lens is 12 mm. The object, which is a
cardboard box, is moved by the computer-controlled transla-
tion platform (CL-01A, Haijie Technology, China) in 2.5 mm
every step, the image of each step will be used to calculate
the displacement. Simultaneously, the actual displacements
were measured by a grating ruler (ranging from 50 mm to
1000 mm with the precision 1 pum), as the actual position.
In order to remove the background noise from surrounding
objects diffused reflections, a narrowband filter at 532 nm
was used in the experiment.

The intensity distribution of multiple order spots is shown
in Fig. 6. Fig. 6 (b) is sum of the intensities between the
two red lines in Fig. 6 (a) along the image height. The spot
orders can be determined according to the intensity. As the
grating is a transmission phase diffraction, the energy of the
0 order is less than =1th order, marked with the black
circle in Fig. 6(a). The positive and negative order spots are
separated on both sides of the O™ order spot. Starting from
the farthest point, the first spots appeared on the sensor is
the negative order. The negative order (<-2) diffraction spots
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FIGURE 6. The spots image of the sensor (a) and its intensity
distribution (b).
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conform to the rule that the intensity of negative m-th order
spot is larger than the previous order and lower than the last
order. On the contrary, the intensity of positive (>2) m-th
order spot is lower than the previous order and larger than
the last order. As the object moves closer, the diffraction spots
will gradually be appeared on the sensor, as —51, —4th 3t
—2th 1t ot 1% and other positive orders. According to
the experimental parameters, the sensor can obtain the spots
up to eleven, as shown in Fig. (6). The other spots or dots
intensities are too weak to be used in measurement.

Figure 6 is captured at the calibrating point. As the spot
orders can be determined in advance, we take the intensity
distribution in Fig. 6(b) as the reference. Then, calculate the
cross-correlation between the intensity distributions in other
images and the reference. Based on the cross-correlation,
the spot orders of each image, which should have at least
two actual incident spots, can be determined with real-time.
The coordinates of each spot can be calculated by the cen-
troid of the spots, as shown in Fig. (7). The sensor captured
263 frames of images. The first image corresponding to the
farthest distance, there only —4™ and —3™ order diffraction
spots can be identified. The —5" order spots were not identi-
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fied in the initial frames as the weakly intensities, which only
can be measured from 116 to 241 frames. Except the —5"
spot, the other order spots were gradually appeared on the
sensor when the object moved from a far to a near position.
Besides, all the spots would be gradually disappeared on the
Sensor.

The distance curves calculated through these order spots
are basically coincidence with the actual distance measured
by the grating ruler, as shown in Fig. 8.

Compared to the actual distance, the measurement
errors are shown in Fig. 9. Removing the abnormal val-
ues at endpoints, the mean error is 0.148040.2631 mm
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TABLE 1. Measurement range, maximum error and linearity of each order.

Order Measurement Maximum

spots range(mm)’ error(mm) Fs. 0%)
+5 1.2123~367.9908 0.5819 0.1587
+4 1.2123~385.4421 0.7135 0.1857
+3 1.2123~412.8676 0.6170 0.1499
+2 3.6493~445.3697 0.9701 0.2196
+1 8.6204~480.3070 1.0423 0.2210
-1 23.6029~560.3106 0.7903 0.1472
2 31.0588~605.3229 0.8102 0.1411
-3 38.5534~652.8010 0.9446 0.1538
-4 53.5359~652.8010 0.5369 0.0896
-5 56.0427~365.4553 0.5273 0.1704
0 16.1184~517.8689 0.8554 0.1705

“ The zero of the grating ruler is set as the measuring origin.

bF.S., full scale.

(mean= variance, ranging from —1.0943 to 1.0534 mm). The
detailed values of measurement ranges, maximum errors and
the linearity § of the modified LTDS under each order are
shown in Table 1.

Using the multiple order spots, a large dynamic measuring
range will be achieved, as shown in Fig.10. Also, the modified
LTDS can combine the multiple orders to reduce the random
errors of the system and improve the measurement precision.
While the range of the traditional LTDS is equal to the range
of 0™ order spot.

The measurement range of 0™ spot is 501.7505 mm which
ranged from 16.1184 to 517.8689 mm, the maximum error is
0.8554 mm and § is 0.1705%, as shown in Fig.10 (blue line).
While using the multiple order spots, the measurement range
of the modified LTDS is 651.5887 mm which ranged from
1.2123 to 652.8010 mm, the maximum error is 0.7085 mm
and 6 is 0.1087%. Thus, the modified LTDS improved the
measurement range by 1.2986 times and the linearity § by a
factor 1.5685.

IV. CONCLUSION

In summary, we have presented a modified LTDS configu-
ration, in which a diffraction grating was placed in front of
the imaging lens. Compared to the conventional LTDS, the
modified LTDS can measure the displacements with different
ranges from the multiple order spots. Then, combined these
displacements to improve the dynamic range and measure-
ment accuracy simultaneously. The validity and effectiveness
of the modified LTDS has been confirmed from the exper-
imental results. That may give us some inspiration for long-
distance and high-precision measurement and 3D reconstruc-
tion of super large objects.
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