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ABSTRACT Sudoku is a complicated multidimensional mathematical structure with several applications in
various computer science domains. 3D Sudoku, compared to 2D, has onemore dimension that can potentially
provide an extra edge in the field of different application areas. Several researchers have developed various
types of 2D Sudoku solvers using different methodologies. However, there is very limited research in the
area of developing 3D Sudoku solvers. Thus, two different solvers for solving 3D Sudoku puzzles of size
9 × 9×9 are proposed in this work. Both solvers provide all possible solutions for solving a 3D Sudoku
puzzle. 2D Sudoku puzzles are applied in different research domains with different purposes. Recently, 3D
structure of Sudoku has been applied in several areas to achieve more effectiveness compared to 2D Sudoku.
Additionally, it can also be used to solve problems in 3D space. Again, solving an NP-complete puzzle by
considering its 3D structure is a challenging job. Thus, we endeavoured to achieve all probable solutions
for a 3D Sudoku instance in this work. In the first version of our proposed algorithm, all possible values for
each blank cell are computed and stored. Subsequently, a few elimination-based methods are used to reduce
the number of probable values (if possible) for each blank cell. Finally, the solutions are computed using the
backtracking method. In the second version of our proposed algorithm, the nine 2D Sudoku puzzles, lying
in the xz-plane one above the other, which form the 3D puzzle are fed as the input. All possible solutions
are obtained for each of the nine puzzles. Then, the obtained solutions are mapped to achieve one or more
solutions for the 3D Sudoku instance. Thus, our proposed techniques provide a new approach for solving
3D Sudoku. In addition, applying the obtained solutions provides us with an advantage over 2D Sudoku,
in solving problems in the 3D space and where more data is required.

INDEX TERMS Backtracking, cell, grid, minigrid, mini-cube, puzzle, sudoku.

I. INTRODUCTION
Sudoku puzzle is represented by a n × n grid in 2D, where
n is a perfect square integer so that we can get n number of
minigrids, each of size

√
n ×
√
n. The logic behind solving

this puzzle is that each row, column, and minigrid contains an
integer between 1 to n without repetition. Based on different
grid sizes some of the possible Sudoku instances [1] are:
• 4× 4

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

• 9× 9 also called standard Sudoku
• 16× 16 also called Super Sudoku
• 25× 25, also known as Giant Sudoku
Apart from these, there are also several other types

of Sudoku [2], which are not so familiar, namely three-
dimensional Sudoku, which was invented by Dion Church
and first published in The Daily Telegraph in May 2005,
and Wordoku, also known as Godoku, where alphabetical
placement is required instead of numerical placement.

Nowadays, Sudoku is not only treated as a puzzle game,
but it has also become popular because of its application in
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FIGURE 1. (a) A 2D Sudoku of size 9 × 9. (b) Solution of the instance.

various fields. Again, in some application areas, 3D can per-
form more efficiently compared to 2D, especially for solving
3D related problems. For example, in aircraft scheduling,
the challenge is to maximise the number of aeroplanes in
a limited 3D space. We can divide the 64 planes into four
groups based on speed and place them in four elevations so
that their positions do not come into conflict, using a 4×4×4
Sudoku structure.

Until recently, no extensive research work was done on
3D Sudoku, even though its application can potentially rev-
olutionise different application areas. Various 3D puzzles
are being applied in ongoing research, including structural
control in metal additive manufacturing [3], historical arte-
facts [4], image steganography [5], and security. Hence,
an increase in the dimension of a Sudoku puzzle may also
enhance many research areas.

A disadvantage of the 2D Sudoku problem is its limited
number of elements. The grid size has to be increased for
some application domains, like encryption of massive data.
Hence, in such cases, implementing the compact structure
of a 3D Sudoku would prove to be very useful for handling
enormous data. Especially in data security, 3D Sudoku solu-
tions are much more effective than 2D Sudoku. Nevertheless,
solving a 3D Sudoku is challenging. We have proposed two
versions of an algorithm that can solve 3D Sudoku in a simple
and effective way. Our proposed solver can solve easy, mod-
erate, and hard instances of 3D Sudoku in a comparatively
lesser time and with a lower complexity.

The rest of the paper is structured in the following way.
In Section II, we briefly describe preliminaries, which reflect
the 2D and 3D structures, and a literature survey on the
recent works related to Sudoku puzzle. The physical stor-
age structure of the 3D Sudoku instance is described in
Section III. Sections IV and V elaborate on our proposed
algorithms, i.e., versions 1 and 2, with their respective pseu-
docodes. In Section VI, we present the experimental results
and statistical analysis of the proposed algorithms. The paper
concludes with Section VII, where we discuss the findings of
our methods and future work possible in this area.

II. PRELIMINARIES
In this section, we elaborate the basic structure of 2D as well
as 3D Sudoku.

A. TWO-DIMENSIONAL SUDOKU
The most used Sudoku puzzle is a two-dimensional or 2D
structure. Each Sudoku constraint is applied for an individual
row, column, and minigrid. Fig. 1 represents an example
of such a Sudoku puzzle along with its solution. The 2D
Sudoku structure can be extended to 16 × 16, 25 × 25,
etc. Additionally, a 2D Sudoku can be extended by another
dimension, resulting in a 3D Sudoku [2]. Adding an extra
dimension will lead to a solid cubic structure of n × n × n
elements, where n itself is a perfect square integer.

B. THREE-DIMENSIONAL SUDOKU
Our proposed 3D Sudoku is represented as a solid cubic
structure that consists of n × n × n elements, where n is
a perfect square integer. Let us consider as an example a
9×9×9 Sudoku. In this case, we need to view nine 2DSudoku
maps, each of grid size 9× 9. Each Sudoku puzzle lies in the
xz-plane, one above another along the y-direction, as shown
in Fig. 2.

If all elements in the ith (1 ≤ i ≤ 9) row of a 3D Sudoku
map lying along the xy-plane are combined, a new 2D Sudoku
will be obtained along the xy-plane. This new Sudoku is
the ith 2D Sudoku along the xy-plane, as shown in Fig. 5.
Similarly, if the elements in the ith (1 ≤ i ≤ 9) column of a
3D Sudoku map lying in the xz-plane are combined, the ith
2D Sudoku map along the yz-plane will be achieved. Thus,
the 3D Sudoku of dimension 9 × 9×9 contains 33 = 27
2D Sudoku grids. An example solution of a 3D Sudoku of
dimension 9× 9×9 is presented in Fig. 2.

Nine grids represent the 2D Sudoku grids lying in the xz-
plane, one above another as shown in Fig. 2. Grid 1 is the
topmost among all other layers. Below grid 1, lies grid 2;
below grid 2, lies grid 3; and so on. Grid 9 is the bottom-
most layer. Every cell [i, j] of each grid has a different value.
Here, a column of another 2D Sudoku is obtained in another
dimension by combining each [i, j] cell of the individual grid,
which is represented as the third dimension, e.g., cell [2], [3]
of grids 1 through 9 contains the values 5, 7, 6, 4, 2, 8, 3, 1,
9, respectively (see Fig. 2).

It is clear that all nine elements are present and they form
a row in the 3rd dimension. Here 27 (3 × 3×3) mini-cubes
are present in the 3D Sudoku of dimension 9 × 9×9, and
each mini cube is of dimension 3× 3×3. Consequently, each
mini-cube contains 9 (i.e., 32) 2D minigrids of size 3 × 3.
Each mini-cube has a total of six neighbouring mini-cubes,
two each in the x-, y-, and z-directions. The values already
placed in the neighbouring mini-cubes (in their appropriate
positions) are considered for computing the value for a blank
cell in a mini-cube. The connectivity graph of 27 mini-cubes
is presented in Fig. 3. Each mini-cube is connected with its
six neighbouring mini-cubes by edges. The mini-cube, S1,
with its six neighbours, is shown in Fig. 4 to elaborate this
connectivity further.

Moreover, grids 1, 2, and 3 form the three topmost layers
lying in the xz-plane (according to Fig. 5), and the first

VOLUME 11, 2023 27353



S. Jana et al.: Design and Analysis of a Modified 3D Sudoku Solver

FIGURE 2. 2D layers of a 3D Sudoku solution, each lying in the xz-plane one above another. Grid 1 is the topmost layer and Grid 9 is the layer at the
bottom [2].

mini-cube, S1, can be obtained from the first minigrid (the
topmost and leftmost) of these three layers (for the 3D
Sudoku solution shown in Fig. 2), as shown in Fig. 6.

C. LITERATURE SURVEY
Nowadays, extensive research work is going on regarding
Sudoku. However, many current 2D Sudoku solvers solve
Sudoku using the guess-based method and hence are highly
time consuming. Therefore, a guess-free Sudoku solver algo-
rithm was proposed by Maji and Pal [6], which guaranteed
all possible solutions for a valid 2D Sudoku instance. Thus,
it is advantageous in different fields, like cryptography, where
2D Sudoku puzzles with more than one solution instances are
highly appreciated.

There is no well-known existing algorithm for solving 3D
Sudoku. Initially, a brute force algorithm using the backtrack-
ing method for 3D Sudoku was developed by Jana et al. [1].
Here, in this work, we propose an improved version compared
to that developed by the authors [1], by applying specific
methods and implementing a modified and updated interpre-
tation. In addition, we also propose a second algorithm for
hard Sudoku puzzles that guarantees all possible solutions for
a given valid Sudoku instance.

For a valid Sudoku instance, it is possible to generate more
than one solution, and because of this, it is very popular in
the field of security. Again, in the case of 3D Sudoku, it is
observed that a more significant number of possible solutions
are usually obtained compared to 2D Sudoku. For this reason,
the application of 3D Sudoku in the field of security has the
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FIGURE 3. Alignment of the x-, y-, and z-planes [2].

potential of adding extra weight. There are no such rules that
a Sudoku instance has to have only one solution [7].

The ASP-completeness (another solution possible com-
pleteness) of the Sudoku problem has been proved by some
researchers [8]. According to the authors [9], a minimum of
17 clues is needed to obtain at least one solution for a partic-
ular 2D Sudoku instance. However, it is possible to obtain
more than one solution when 17 or more clues are given.
Different metaheuristic [10] techniques are there to solve
Sudoku. In 2009, a new approach towards solving Sudoku
puzzles was presented by exploring the idea of using an
improved artificial bee colony (ABC) algorithm [11] which
produced efficient results.

Methods based on soft computing have been developed to
solve computational problems, leading to design solutions for
Sudoku puzzles. Weyland [12] presented a critical analysis
of the harmony search algorithm for Sudoku. Although the
Sudoku solving capability was enhanced with the help of
the harmony search algorithm, it had the tendency of getting
trapped in local minima. Singh and Deep [13] presented a
membrane algorithm using particle swarm optimisation rules
for solving Sudoku puzzles. The algorithm was attached with
mutation operators in cell-like P-systems. The search space
was identified and used for solving the Sudoku problem.

Assad and Deep [14] proposed a hybrid method that com-
bined the harmony search and hill climbing algorithms. The
authors further modified their harmony search hill climber
(HSHC) to create three different versions of the HSHC.
The main aim of the authors was to improve HSHC. The
authors [14] claimed that one of the modified HSHCs per-
formed better than the other two modified versions, the stan-
dard HSHC and genetic algorithm (GA). The performance
was comparable to a hybrid AC3-tabu search algorithm [15].

GA tends to converge prematurely at local optima [16].
Thus, Jana et al. [17] developed a new hybrid techniquewhere
the firefly mating algorithm was embedded with GA. The
hybridisation was done primarily to control the premature
convergence at local optima. The proposed method required
a lesser population and a lower number of generations. The
application of 2D Sudoku instances with single or multiple

solutions can be observed in many fields, such as artificial
intelligence, encrypting biometric template [18], OTP (one
time password) generation [19], image-video encryption [20],
SMS encryption [21], steganography [5], [22], [23], digital
watermarking [24], DNA computing [25], visual cryptogra-
phy [26], image authentication [23], and in many other areas.
Extending the 2D Sudoku structure with one more dimension
can lead it to a superior application level.

Consequently, researchers are trying to explore Sudoku
by considering its extra dimension. However, no such
exploration has yet been observed as the third dimension
makes Sudoku more complex and trickier. Motivated by this
research gap, we attempt to develop a 3D Sudoku solver in
this work. We are sure that applying it in different fields,
where more data is required, can give outstanding perfor-
mance compared to 2D Sudoku.

D. MATHEMATICAL CHARACTERISATION OF 3D SUDOKU
SOLVING PROBLEM
A Sudoku puzzle is solved based on logical constraints,
and mathematical operations or functions are not directly
involved in the solution. Still, it poses a variety of interest-
ing mathematical problems. To represent this puzzle using
a mathematical concept, researchers have reinterpreted it
as the well-known vertex colouring problem [27] of graph
theory [28], [29]. The vertex colouring or graph colouring
problem has been revisited with a new perspective from the
point-of-view of solving a Sudoku puzzle [30]. However, all
of these reinterpretations using mathematical concepts have
been carried out for 2D Sudoku puzzles. In a similar way,
we reinterpret the problem of 3D Sudoku in the mathematical
context of graph colouring in this work.

A 9 × 9 × 9.3D Sudoku puzzle can be represented as a
graph colouring problem. The goal is to build a 9-colouring
of a specific graph, with 9 specific given colours. The graph
corresponding to a 9 × 9 × 9.3D Sudoku has 729 vertices,
each representing one unique cell. All the vertices are labelled
using an ordered triplet (x, y, z), where x, y, and z are integers
within [1, 9]. Here, x, y, and z represent the index numbers
of a 3D puzzle in the x-, y-, and z-dimensions, respectively.
In the graph, two distinct vertices having labels (x1, y1, z1)
and (x2, y2, z2) are connected with an edge, if and only if:

• x1 = x2, i.e., same row in the x-dimension, or
• y1 = y2, i.e., same row in the y-dimension, or
• z1 = z2, i.e., same row in the z-dimension, or
• ⌈

x1
3 ⌉ = ⌈

x2
3 ⌉ and ⌈

y1
3 ⌉ = ⌈

y2
3 ⌉, i.e., same 3×3 minigrid

in dimension 1, or
• ⌈

x1
3 ⌉ = ⌈

x2
3 ⌉ and ⌈

z1
3 ⌉ = ⌈

z2
3 ⌉, i.e., same 3× 3 minigrid

in dimension 2, or
• ⌈

y1
3 ⌉ = ⌈

y2
3 ⌉ and ⌈

z1
3 ⌉ = ⌈

z2
3 ⌉, i.e., same 3× 3 minigrid

in dimension 3.

A 3D Sudoku puzzle can be solved by assigning an integer
within [1, 9] in each vertex, maintaining the rule that the
connected vertices do not have the same integer assigned to
them.
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FIGURE 4. Connectivity graph of a 3D Sudoku of dimension 9 × 9×9 that represents
relationships among the 27 mini-cubes, S1 through S27 [2].

FIGURE 5. Mini-cube of position S1 (according to Fig. 3) of the Sudoku
represented in Fig. 2 [2].

E. PHYSICAL STORAGE STRUCTURE OF THE THREE
DIMENSIONAL SUDOKU
Table 1 represents the 3D array storage structure of the 3D
Sudoku [2], shown in Fig. 2. This is a 2D visualisation of
the 3D array. Each row of the table contains elements of a
particular 2D Sudoku. For example, all the elements of grid 1
are represented by row 1, and for grid 2, all the elements are

FIGURE 6. Connectivity graph of mini-cube S1 [2] (Fig. 4).

represented by row 2, and so on. Again, each row of each 2D
Sudoku is stored in a single cell. Thus, each cell contains nine
elements. For example, row 1 of grid 1 is stored in the first
cell of row 1 of Table 1. Similarly, row 9 of grid 4 is stored in
the ninth cell of row 4 in Table 1. In this way, all the nine 2D
Sudoku maps lying in the xz-plane are stored in the individual
rows of this table.

The nine elements in each cell represent the nine elements
in the third dimension, (following the structure shown in
Fig. 6). In this way, the elements of all 27 mini-cubes can
be distributed in a 3D array. For example, the mini-cubes,
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S1 through S27, are according to positions shown in Fig. 3.
Six mini-cubes can be identified in Table 1 with the colour
reference of Fig. 7.

III. PROPOSED ALGORITHM VERSION 1
We have improved the version of the algorithm developed
by Jana et al. [2], using some functional constraints, and
designed the improved version. In the proposed version of the
algorithm, a 3D instance [2] is considered as the input stored
in a 3D array. After storing the input, each blank cell is visited
one by one, and all probable values for that particular cell are
computed. Finally, the possible values of all empty cells are
stored in the matrix, P , which has been further explained in
detail in the next section with the help of Algorithm 1.

A. PHYSICAL STORAGE STRUCTURE OF THE PROBABLE
VALUES OF BLANK CELLS
In P , each row contains the probable values for an individual
blank cell. The first three columns indicate the x-, y-, and z-
index values (in italics). The following nine columns store
the nine possible values. Finally, the last column holds the
number of probable values (in bold). Here, one thing that
needs to be noted is that a blank cell may have less than
nine possible values. In that case, the probable values are
stored starting from the fourth column, and after all potential
values have been stored, the remaining columns are filled
with zeroes.

Let us consider the input puzzle in Table 2 and the matrix
shown in Fig. 8(a). There are 16 blank cells in the input
puzzle. Thus, there are 16 rows in the matrix. Each row refers
to one individual blank cell. The first blank cell is indexed
[0,3,2], i.e., row 0, column 3, position 2 in the cell [0,3]. For
this particular blank cell, there are three probable values, 4, 8,
and 9. The count, i.e., 3 (three), is stored in the last column.

In this way, all probable values are stored for every blank
cell. Subsequently, the matrix data is sorted according to the
count of probable values. This is done because when the
algorithm begins implementing the ultimate tree structure
using backtracking, it considers the blank cells stored in the
proposed matrix, P , row-by-row. According to the rule of
minimum remaining value, the blank cells with the minimum
number of probable values must be considered every time,
as it helps in reducing the extent of backtracking. The tree
structure usually contains a small number of branches at the
upper level while a higher number at the lower level. Hence,
in this way, backtracking is reduced.

Figure 8b represents the matrix, P , after sorting it accord-
ing to the count of probable values. After this, the five
functional constraints, namely, naked single, hidden single,
lone ranger, twin, and triplet, are applied, i.e., every blank
cell is considered row-by-row from the generated matrix, P ,
and the constraints applied. After using the five methods, the
number of probable values is reduced for some blank cells.
The updated matrix, P , is shown in Fig. 9.

A backtracking tree is generated based on the reduced
number of values, as shown in Fig. 12. Two solutions are

highlighted in yellow in Fig. 12. Comparing the linked list
structure given in Fig. 12 with the one shown in Fig. 11
(highlighted in blue), the reduction in the number of branches
can be observed. This reduction has been achieved by imple-
menting the five functional constraints, i.e., naked single,
hidden single, lone ranger, twin, and triplet. The result is the
same in both the cases.

We can observe that each node containing each possi-
ble value for each of the blank cell is connected by a
right-directed arrow to the first possible value of the next
blank cell. Now, this first possible value may or may not
contribute to a solution path. For example, the first possible
value, 3, of the blank cell, 051, does not contribute to a
solution path. Now, the question may arise that if the second
possible value, 8, of cell 050 is not directly connected by a
link to the next contributing possible value, 4, of the node,
051, how can we traverse the solution path every time needed,
after identifying the path? This is the reason why we store the
different solution paths in the path-matrix, at the time they are
being identified one by one.

However, as the blank cells are visited in a different order
in the work done by Jana et al. [2] compared to the proposed
versions of the algorithm, the solutions in the figures may
look different. Both solutions are presented in Table 3 with
the index values mentioned to clear this confusion. Table 3
provides a comparative view of the proposed algorithm (Ver-
sion 1) and the one developed by Jana et al. [2].

B. APPLIED FUNCTIONAL CONSTRAINTS
In the first version of our proposed algorithm (i.e., Version
1), some functional constraints [31] are applied: naked single,
hidden single, lone ranger, twin, and triplet. These constraints
are explained below.

1) NAKED SINGLE AND HIDDEN SINGLE
Sometimes, when the probable values for each blank cell are
computed, only one value is obtained for a specific empty
cell. After placing that value in that blank cell permanently,
other blank cells may remain in the same row in any three
dimensions. Any such cell may hold the same value as its
probable values. Thus, the particular value can be eliminated
from the list of possible values for that blank cell. This con-
dition is known as naked single. After this elimination, there
may be only one probable value left in an empty cell. That
value is known as a hidden single. For example, in Fig. 13,
in the top row, cell 3 has two probable values, among which
4 is a hidden single because it is not present in any one of the
x-, y-, or z-directions in the 3D Sudoku.

2) LONE RANGER
Sometimes, a particular value is present as the probable value
for only one blank cell in an entire row in any of the three
dimensions. This situation is known as a lone ranger. The
other potential values can be eliminated from that particular
cell. For example, in Fig. 14, 4 is present only in cell 3 as
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Algorithm 1 Pseudocode of Algorithm Version 1

Input: M: input 3D Sudoku matrix of dimension 9× 9×9
Output: S: Set of solutions
1: Initialise l = 1
2: Initialise a matrix P =

[
pq,r

]
l×13 to ∅ for storing all

probable values pertaining to each blank cell mi,j,k
3: for i = 1 to 9 do ▷ loop for the x-dimension
4: for j = 1 to 9 do ▷ loop for the y-dimension
5: for k = 1 to 9 do ▷ loop for the z-dimension
6: if mi,j,k = 0 then
7: Assign

[
pl,1, pl,2, pl,3

]
← [i, j, k]

8: Compute all probable values for mi,j,k
and store them in

[
pl,4, pl,5, pl,6, . . . , pl,12

]
9: Store the count of probable values for
mi,j,k in pl,13

10: Increment l by 1
11: end if
12: end for
13: end for
14: end for
15: Sort P in ascending order of

[
pi,13

]
∀i, where

i = 1, 2, . . . , l
16: Implement Naked Single, Hidden Single, Lone Ranger,

Twin, and Triplet on P
17: Sort P in ascending order of

[
pi,13

]
∀i, where

i = 1, 2, . . . , l
18: Create a new node that will act as the head of the

search tree according to the structure defined in Fig. 10.
19: Initialise all values and pointers of the head to ∅
20: Create a new node with all empty fields and assign a

pointer temp to point to that node
21: for i = 1 to l do
22: for j = 3 to 11 do
23: if pi,j ̸= 0 then
24: a← pi,1, b← pi,2, and c← pi,3
25: id ← (a× 100)+ (b× 10)+ c
26: Create a new node
27: Store pi,j to the VAL field of the node
28: Store id to the INDEX field of the node
29: Initialise all pointers of the node to ∅
30: if DOWN pointer of head points to ∅ then
31: Link node to DOWN pointer of head
32: else

33: Initialise a temporary 3D array T _M to
M

34: end if
35: for each branch in the search tree do ▷

traversal by backtracking
36: if leaf node of the branch points to ∅ by

NEXT pointer then ▷ i.e., open path
37: for each node N in the branch do
38: x ← 1st digit of INDEX of N
39: y← 2nd digit of INDEX of N
40: z← 3rd digit of INDEX of N
41: Place VAL of N to t_mx,y,z
42: end for
43: t_ma,b,c← pi,j
44: if 3D Sudoku constraints are satisfied

on T _M then
45: if INDEX of the leaf node is id

then
46: Traverse by DOWN pointer

of the leaf node that points to ∅
47: Link node to that DOWN

pointer pointing to ∅
48: else
49: Link node to the NEXT

pointer of the leaf node
50: end if
51: else
52: if INDEX of the leaf node ̸= id

then ▷ i.e., this probable value leads to an END
53: Create a new node N_end
54: Store END to INDEX of

N_end and assign all other fields to ∅
55: link N_end to the NEXT

pointer of the leaf node
56: end if
57: end if
58: end if
59: end for
60: end if
61: end for
62: end for

FIGURE 7. Identification of mini-cubes of Table 1.

one of its probable values. Thus, 4 can be placed in cell 3,
and 5 can be eliminated from its list of possible values. This
concept also holds in any of the x-, y-, and z-directions in a
3D Sudoku.

3) TWIN
In a row, in any of the three dimensions, two blank cells may
hold a pair of probable values, say, v1 and v2 only. Hence,
it is evident that v1 and v2 can only be placed in these two
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TABLE 1. Storage structure representation of 3D Sudoku instance stored in 3D array.

TABLE 2. Input 3D Sudoku stored in a three-dimensional array. The x-, y-, and z-dimensions are represented by each row, column, and cell of this table.
Each cell contains values 1 to 9, and 0 (zero) represents a missing value or blank cell [2]. The i th element of each column and row of the table contains
nine elements i.e., 1 to 9 without any repetition. Hence, it is a 2D visualization of the 3D storage structure.

FIGURE 8. (a) Initial P for the puzzle shown in Table 1. (b) P for the puzzle shown in Table 2 after sorting.

cells and eliminated from all other cells in the related row.
This occurrence is known as a twin. For example, in Fig. 15,
cells 2 and 6 contain the pair of values (2,3) as their only
probable values. Thus, it is evident that one of these cells
will have 2 while the other will contain 3. Hence, 2 and
3 can be eliminated from the probable values of cells 5 and 8.

This example row can be represented in any of the x-, y-, or
z-directions in a 3D Sudoku.

4) TRIPLET
Similar to the occurrence of a twin, in a row in any of the three
dimensions, three blank cells can hold a triplet of values, say,
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FIGURE 9. Final P for the puzzle shown in Table 2 after applying
functional constraints.

TABLE 3. The same two solutions obtained using algorithm [2] and our
proposed algorithm (Algorithm 1) for the puzzle shown in Table 2.

FIGURE 10. Representing node fields of Algorithm 1.

v1, v2, and v3 as their probable values only. Therefore, v1,
v2, and v3 can be placed in these three cells only and can
be eliminated from all other cells in the related row. This
occurrence is known as a triplet. For example, in Fig. 16,

the three cells 2, 5, and 6 contain the triplet (2,3,6) as their
only probable values. Therefore, 6 can be eliminated from
the list of possible values in cell 8. This example row can be
implemented in any of the x-, y-, and z-directions in a 3D
Sudoku.

IV. PROPOSED ALGORITHM VERSION 2
A naive algorithm was proposed by Jana et al. [2] for solving
3D Sudoku using backtracking. We propose an improved
version of the same (Version 1 explained in the previous
sections). A second version (Version 2) is introduced in
this section to solve 3D Sudoku puzzles, essentially using
a bottom-up approach. In this case, the inputs are the nine
individual 2D Sudoku puzzles lying in the xz-plane (as shown
in Fig. 5), one above the other to form a 3D Sudoku puzzle.
Each of these 2D Sudoku puzzles is stored separately in nine
matrices. The term bottom-up refers to the fact that, at first, all
possible solutions are obtained for an individual 2D Sudoku
problem. Then, all possible combinations of these solutions
are analysed by considering one solution at a time for each 2D
Sudoku. This is done to checkwhich combination of solutions
works for the complete 3D Sudoku problem, maintaining all
the necessary constraints. Finally, backtracking is used to
obtain the solutions to the individual 2D Sudoku puzzles.

A. PHYSICAL STORAGE STRUCTURE OF INPUT AND
INTERMEDIATE STRUCTURES
Simple 9 × 9 matrices have been utilised in this work to
store 2D Sudoku puzzles as input (Fig. 16). To solve one
2D Sudoku, all probable values for each blank cell are com-
puted. These computed values are stored in the corresponding
matrix, P (Fig. 8a). Thus, nine P structures are generated,
which hold all probable values of all blank cells for a 2D
Sudoku problem. Next, empty cells in these matrices are
sorted (in non-descending order) according to the number of
possible values (Fig. 8b).
Finally, solutions are obtained by applying the backtrack-

ingmethod. After backtracking, nine linked lists (one for each
2D Sudoku) are obtained, similar to Fig. 11, and the corre-
sponding linked list is considered. All solutions are fetched
from the linked list and stored in a matrix, where each row
stores a new solution. The number of columns is the same as
the number of blank cells. The first row stores the indices of
empty cells. From the second row onwards, accepted values
of the blank cells are stored for each new solution. Nine
matrices hold the solutions to the nine 2D Sudoku puzzles
(Fig. 18). The structure of the solution matrix for each 2D
Sudoku is shown in Fig. 17. Finally, each possible combina-
tion of solutions from these nine matrices is considered (as
shown in Fig. 19) and checked for necessary 3D constraints.

In other words, all the accepted values are placed in their
respective blank cells. Then, for each established value, it is
checked whether distinct values from 1 through 9 are present
in the corresponding rows, columns, andminigrids in all three
dimensions. Since no 3D structure is used, a question may
arise about how the rules for the third dimension can be
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FIGURE 11. The linked list representation to store solution path for the given puzzle in Table 2.

FIGURE 12. The linked list representation to store the solutions for the Sudoku instance is shown in Table 2.

FIGURE 13. Example of Naked single and Hidden Single.

checked. This is possible as the relation among all the 2D
Sudoku puzzles, i.e., how the 2D Sudoku puzzles lie on one
another, is known.

FIGURE 14. Example of Long Ranger.

For example, if 7 is placed in the blank cell [2], [3] in
Sudoku 4, all the values in the cell [2], [3] in all the other
eight Sudoku instances are checked, and it is made sure that
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Algorithm 2 Pseudocode of Algorithm Version 2

Input: M: input 3D Sudoku matrix of dimension 9× 9×9
Output: S: Set of solutions
1: Extract nine 2D Sudoku puzzles along any one dimension from
M and store each of them in SP i = [spij,k ]9×9 where i =
1, 2, . . . , 9

2: Initialise l = 1
3: Initialise a matrix P i =

[
piq,r

]
l×12

to ∅ for storing all probable

values pertaining to each SP i
4: Initialise individual SMi for each puzzle SP i, as represented

in Table. 4
5: for i =1 to 9 do ▷ each 2D matrix / Sudoku puzzle
6: for j =1 to 9 do
7: for k =1 to 9 do
8: if spij,k = 0 then

9: Assign
[
pil,1, p

i
l,2

]
← [j, k]

10: Compute all probable values for spij,k and store

them in
[
pil,3, p

i
l,4, p

i
l,5, . . . , p

i
l,11

]
11: Store the count of probable values for spij,k in

pil,12
12: Increment l by 1
13: end if
14: end for
15: end for
16: Sort P i in ascending order of

[
pij,12

]
∀j, where j =

1, 2, . . . , l
17: end for
18: for i =1 to 9 do
19: Compute all possible solutions of SP i using the

corresponding P i by backtracking
20: Store all solutions in SMi

21: end for
22: for each solution in SM1 do ▷ each row represents a solution,

except the 0th row
23: Initialise a new matrix T _M1

= SP1

24: Fill each blank cell of T _M1 with the current solution
25: for each solution in SM2 do
26: Initialise a new matrix T _M2

= SP2

27: Fill each blank cell of T _M2 with the current solution
28: for each solution in SM3 do
29: Initialise a new matrix T _M3

= SP3

30: Fill each blank cell of T _M3 with the current solu-
tion

31: for each solution in SM4 do
32: Initialise a new matrix T _M4

= SP4

33: Fill each blank cell of T _M4 with the current
solution

34: for each solution in SM5 do
35: Initialise a new matrix T _M5

= SP5

36: Fill each blank cell of T _M5 with the cur-
rent solution

37: for each solution in SM6 do
38: Initialise a new matrix T _M6

= SP6

39: Fill each blank cell of T _M6 with the
current solution

40: for each solution in SM7 do
41: Initialise a new matrix T _M7

=

SP7

42: Fill each blank cell of T _M7 with
the current solution

43: for each solution in SM8 do
44: Initialise a new matrix T _M8

=

SP8

45: Fill each blank cell of
T _M8 with the current solution

46: for each solution in SM9 do
47: Initialise a new matrix

T _M9
= SP9

48: Fill each blank cell of
T _M9 with the current solution

49: if T _M1 through
T _M9 validate 3D Sudoku rule then

50: Store T _M1 through
T _M1 to S as a new 3D solution

51: end if
52: end for
53: end for
54: end for
55: end for
56: end for
57: end for
58: end for
59: end for
60: end for

7 is not present in any other cell. Cell [2], [3] is present in
the first column and the last row of the second minigrid of
Sudoku 4. Therefore, the first columns and last rows of the
respective second minigrids of Sudokus 5 and 6 also need to
be checked as these groups of three sub-rows and three sub-
columns form minigrids in the other two dimensions. In this
way, at least one solution can be obtained for any valid 3D
puzzle using our proposed algorithm Version 2.

V. EXPERIMENTAL RESULTS
In this section, experimental results are presented. The per-
formance of the proposed algorithms is compared based
on Sudoku instances available at http://www.menneske.no/
Sudoku3d. The comparison is made with respect to the time

required and the number of blank cells in the input puzzle.
The results are presented in Tables 5 through 7. To the best
of our knowledge, no such work has yet been implemented
in 3D Sudoku. The current research works focus on 2D
Sudoku only. Consequently, the results obtained by our pro-
posed methodology could not be compared with other such
techniques.

Each row of the table indicates an experiment with a spe-
cific instance of 3D Sudoku and a certain number of blank
cells, which are fed as inputs to the three algorithms. For some
instances (easy), we obtain output (s) for all three algorithms,
and for some cases (moderate and hard), we do not. This fact
indicates the improvement in the algorithms, as represented
in Fig. 21.
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TABLE 4. Structure of the matrix that stores all the possible solutions of a 2D Sudoku having n blank cells and m solutions.

TABLE 5. Comparative experimental results analysis for 3D Sudoku instances between our proposed methods and Jana et al. [2] for easy puzzles.

FIGURE 15. Example of Twin.

FIGURE 16. Example of Triplet.

Another interesting fact is, the number of solutions for
a single puzzle increases with an increase in the hardness
of the puzzle. In Fig. 22, it can be observed that, for easy

puzzles, maximum number of solutions obtained is 8, and for
most (29) of the easy Sudoku puzzles, only one solution is
obtained. In the case of moderate Sudoku puzzles, the number
of solutions increases up to 64, although maximum number
(14) of puzzles again provide a single solution, as represented
in Fig. 23.

In Fig. 24, we can observe that number of solutions
increases by a huge amount for the hard puzzles. Despite our
best efforts, no 3D Sudoku solver algorithm could be found
except [2]. There exist different algorithms for solving 2D
Sudoku instances with varying difficulty levels. However, the
instances they have used are not publicly available in many
cases. Furthermore, even if they are available, we cannot feed
3D instances in infrastructure for solving 2D Sudoku puzzles.
Hence, our comparison is limited to the three algorithms only.
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TABLE 6. Comparative experimental results analysis for 3D Sudoku instances between our proposed methods and Jana et al. [2] for moderate puzzles.
NW indicates Not Working.

TABLE 7. Comparative experimental results analysis for 3D Sudoku instances between our proposed methods and Jana et al. [2] for hard puzzles.
NW indicates Not Working.

Though the number of empty cells does not solely
determine the difficulty level (the difficulty also depends
on the positions of blank cells), we have divided the
inputs into three clusters according to three difficulty lev-
els based on the number of empty cells. The experi-
mental results show that the algorithm proposed by Jana
et al. [2] works only for easy instances. However, our pro-
posed algorithm (Version 1) works for easy and moder-
ate examples. The second version of our proposed algo-
rithm (i.e., Algorithm 2) works for easy, moderate, and hard
instances.

VI. COMPUTATIONAL COMPLEXITY
A full N -ary tree of height h contains

N h+1
− 1

N − 1

nodes. The number of branches is thus

N h+1
− 1

N − 1
− 1

In the case of Sudoku, the permutation tree contains h levels,
where h−1 is the number of blank cells. The root node at
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FIGURE 17. 2D Sudoku layers that form the 3D puzzle fed as the input to Algorithm 2.

level 0 is the head node. Nodes present at level 1 denote the
probable values of the first blank cell, nodes present at level
2 denote the possible values of the second empty cell, and so
on. Therefore, the maximum number of branches is

9h+1 − 1
9− 1

− 1,

simplifying which we get:

9h+1 − 9
8

Now, for a completely blank 3D Sudoku, h =729. Therefore,
in the worst-case scenario, the number of branches is

9730 − 9
8

,

which is enormous.

The brute force algorithm proposed in [2] faces this
situation, thus working for only very easy instances. The
number of probable values for each blank cell can be
reduced so that the number of branches is also lowered.
Whenever a new possible value is discovered for a par-
ticular empty cell, all the paths need to be traversed
one-by-one to insert the found value at the end of each
path.

Theoretically, each path may contain a valid solution for
a 2D Sudoku puzzle. All combinations of such solutions
are compared to achieve the final answer to a 3D Sudoku
problem. Practically, all cells are not blank in a 2D Sudoku,
and thus, a limited number of solutions exist for each such
2D Sudoku. As a result, checking all possible combinations
of solutions becomes much less time consuming than the pre-
vious methods. The second version of the algorithm follows
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FIGURE 18. Flow of the algorithm, where Si_j denotes the j th solution of
the i th 2D Sudoku.

FIGURE 19. All possible combinations of solutions of 2D Sudoku puzzles
of Fig. 18.

FIGURE 20. A 9-ary Tree Structure.

FIGURE 21. Performance of the three algorithms with respect to 3D
Sudoku instances. No. of Blank Cells>=25 indicates stagnant level, where
Jana et al. [2] and Algorithm 1 become stagnant.

a different way. For each permutation tree of a 2D Sudoku,
in the worst case, 81 cells are blank. In that case, the number

FIGURE 22. Number of solutions with respect to the number of easy
puzzles.

FIGURE 23. Number of solutions with respect to the number of moderate
puzzles.

FIGURE 24. Number of solutions with respect to the number of hard
puzzles.

of branches is

982 − 9
8

VII. CONCLUSION AND FUTURE WORK
It can be concluded that by developing 3D Sudoku solvers
using different methodologies not only enriches the research
field of solving NP-complete constraint satisfaction prob-
lems, but immense benefits can also be achieved by
applying this solution in different application areas. The
backtracking-based algorithm proposed by Jana et al. [2]

27366 VOLUME 11, 2023



S. Jana et al.: Design and Analysis of a Modified 3D Sudoku Solver

works well only for easy 3D Sudoku puzzles. However, the
algorithm does not perform well in the case of moderate or
hard puzzles due to the vast number of complicated compu-
tations and recursions.

To solve this issue, we propose an improved algorithm
(Algorithm 1) in this work, and the improvement is achieved
by including five functional constraints. This helped our
proposed algorithm work better for Sudoku puzzles with a
higher number of blank cells and a higher difficulty level.
However, Algorithm 1 does not perform well in the case of
hard Sudoku puzzles. Although backtracking is reduced, it is
still unable to make the algorithm suitable for more complex
instances.

Somemethodologies do exist that are specifically designed
for solving hard Sudoku puzzles in 2D [32]. However, we pro-
posed another algorithm capable of solving easy, medium,
and hard instances in 3D, in this work. The proposed second
version of the algorithm (Algorithm 2) follows a bottom-
up approach, and backtracking is applied to individual 2D
Sudoku puzzles rather than the whole 3D puzzle. For this
reason, the quantum of backtracking required is not huge.
Thus, many hard puzzles can be solved by Algorithm 2,
along with easy and moderate puzzles. However, Algorithm 2
may not work if any puzzle (among the nine input 2D
Sudoku puzzles) is blank, almost empty, or has very few
clues.

Finally, it can be stated that the proposed algorithms,
to the best of our knowledge, are the first ever to have
been designed for solving 3D Sudoku puzzles. Compared to
other algorithms, our proposed algorithms (bothAlgorithms 1
and 2) can solve many easy, medium, and hard 3D Sudoku
puzzles with a controlled computational complexity. Further-
more, for any valid Sudoku instance, our proposed algo-
rithms guarantee at least one solution, and if more than one
solution exists, our proposed algorithms succeed in finding
them.

In the future, we plan to generate a 3D Sudoku solver
by using evolutionary algorithms, like genetic algorithm,
ant colony optimization, etc., to check the effectiveness
of evolutionary algorithms in developing a 3D Sudoku
solver.
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