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ABSTRACT Chromosomal karyotype is important to determine whether a newborn has a genetic disorder.
There are two main categories of chromosomal abnormalities: structural abnormalities, in which the
chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex
and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation,
we propose a new method of chromosome defect detection based on deep learning with 20,299 chromosome
images from Dongguan Kanghua Hospital as data that integrates the diversity of chromosome features and
trains a classifier model based on feature fusion for chromosome abnormality detection. We put forward
a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after
data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models
are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms
these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves
a precision of 0.8902 and an F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892,
respectively). In addition, the algorithm can automatically assign weights based on the results of a single
model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed
feature fusion classifier.

INDEX TERMS Chromosome karyotype analysis, deep learning, machine vision, dynamic weighting,
feature fusion classifier, model fusion.

I. INTRODUCTION
Chromosomes are the carriers of human genetic material
(DNA), and there are 23 pairs (46 chromosomes) in human
somatic cells, 22 pairs of which are autosomes unrelated to
sex, and the remaining two (1 pair) are sex chromosomes,
of which the female sex chromosomes appear in pairs as
XX and the male as XY [1]. Chromosomal abnormalities
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include numerical and structural abnormalities; numerical
abnormalities are an increase or decrease in the number
of chromosomes, which is the main form of chromosomal
abnormalities [2], and structural abnormalities are due to
the breakage and reunion of chromosome fragments. Kary-
otyping is an important screening and diagnostic proce-
dure for detecting several genetic disorders or chromosomal
abnormalities (e.g., Edwards syndrome, Turner syndrome,
and Down syndrome) [3], [4] and other genetic disorders
as an important clinical procedure [5]. It is obtained from
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FIGURE 1. Chromosome slide diagram and images of well-sorted
chromosomes.

stained intermediate chromosomes by using staining tech-
niques [6]. The karyotype analysis method analyzes micro-
scopic images of chromosomes in intermediate divisions by
banding techniques and then diagnoses diseases based on
changes in the structure and number of chromosomes [7].
Typical micrographs of chromosomes are shown in Fig. 1a.
Correspondingly, Fig. 1b shows the karyotype map obtained
by extraction and classification, which can be used as a basis
for disease diagnosis.

A spectral karyotyping method is a new approach for
the easy identification of different chromosomes, but it also
has the disadvantages of high costs and complex experi-
ments. Most automated karyotyping systems currently in
use provide a graphical environment with basic segmenta-
tion operations and manual chromosome classification [8],
[9]. Interactive systems are time-consuming, laborious, and
dependent on specialized technicians. In the case of hema-
tological tumors, for example, to ensure diagnostic accuracy
and comprehensiveness, technicians need to select at least
30 mid-term images suitable for analysis and then seg-
ment the chromosomes in each image. Training professionals
who can independently and effectively perform karyotyping
analysis takes more than two years. This leads to the fact
that in smaller hospitals, karyotyping cannot be performed

effectively due to a lack of professionals, while in spe-
cialty hospitals, the pressure to analyze is increasing as more
patients go there for an accurate diagnosis.

To alleviate the burden of karyotype analysis, many auto-
mated classification methods have been developed for the
analysis of intermediate chromosomes [10], [11], [12]. With
the development of research in recent years, deep learning has
shown great research potential in medical image processing
because of its ability to extract and process complex features
in these images [11], [13]. Recent studies have replaced the
traditional feature extraction approach with hand-crafted fea-
tures and classification, with encouraging results. A convolu-
tional neural network (CNN) is one of the network structures
for deep learning. It is an important tool for image classi-
fication [14] and object detection tasks [15]. It is just like
the human brain perceives the world visually. It consists of
neurons that are basic computational units and are activated
by specific signals. Layers are stacked into neurons, and a
series of these layers form the CNN [16], [17], [18]. The CNN
is mainly composed of the following types of layers: convolu-
tional layers are responsible for feature extraction; activation
layers are functions that determine whether a neuron will out-
put; the fully connected layer integrates the features extracted
from the convolutional layer, which connects each neuron in
the current layer to each neuron in the next layer. Finally, the
classification layer selects the most likely classes [19], [20].

Detecting chromosomal abnormalities is an important part
of determining whether this study can be used for practical
detection. Various methods have been tried for structural
and numerical abnormalities of chromosomes. Wang et al.
[21] combined chromosome size and other information to
identify 22 pairs of chromosomes, and then applied the tem-
plate matching method for normal/abnormal classification.
However, the data just include 30 positive and 30 nega-
tive cases of bone cancer, which has poor generalization
ability, and the template matching method has poor robust-
ness; Legeand et al. [22] combined different karyotypes to
specify reference chromosome density profiles and then
used dynamic time warping (DTW) to identify chromosome
density profiles for translocation and recombination sites.
He et al. [23] used a machine learning-based random for-
est algorithm to predict trisomy 21 syndrome and achieved
an accuracy of 85.2%; Mona et al. [24] used YOLOv2
to detect individual chromosomes on mid-term karyotype
images and adapted the VGG19 network using two different
methods. The final detection of common chromosome num-
ber abnormalities (13, 18, 21, X) obtained an accuracy of
96.67%, but it cannot detect chromosomal structural abnor-
malities. Yang et al. [25] utilized the deep convolutional
neural network (DCNN) model to classify 2,424 normal
chromosomes and 544 abnormal chromosome, including
24 normal chromosomes (autosomal 1-22 and sex X or Y)
and 8 abnormal chromosomes, with a classification accuracy
of 87.76%. Nimitha et al. [26] used VGG16 for transfer learn-
ing, and the classification accuracy of chromosome number
abnormalities was 95.5%. Ezhumalai et al. [27] used the
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DCNNmodel to distinguish five chromosome number abnor-
malities: trisomy 13 syndrome, trisomy 18 syndrome, trisomy
21 syndrome, trisomy XXY syndrome, and X chromosome.
The precision and F1-score of the model are 98.65% and
98.86%, respectively.

However, there are still many problems with the cur-
rent method of chromosome abnormality detection. Firstly,
most of the current studies on chromosome image pro-
cessing focus on the chromosome segmentation part, and
there are fewer studies on chromosome abnormalities, and
the existing research mainly focuses on the identification
of chromosome number abnormalities, while the research
on chromosome structure abnormalities is less, especially
the detection research based on deep learning. On the
other hand, abnormal chromosome discrimination needs
to identify chromosomal multi-morphological information.
However, the learning ability of a single model is lim-
ited, and the actual effect is poor. Based on this, this
paper tries to put forward a feature fusion classifier with
dynamic weights based on the multi-model fusion method
(FFCDW) to obtain better results through multi-level feature
learning.

In this study, the main structure of the paper is the fol-
lowing: In Section I, we briefly introduce the significance
and status of research on chromosomal defect detection.
In Section II, the experimental data are presented in detail,
and the principle of methods for defect detection of chro-
mosomes is given. The equipment for defect detection at
the chromosomal level and the evaluation criteria for this
problem are described in Section III. As shown in Section IV,
single model training optimization and performance com-
parisons of combinatorial classifiers are given. The dis-
cussion and conclusions are given in Sections IV and V,
respectively.

II. METHOD AND DATASET
A. DATASET
The data in this investigation came from Dongguan Kanghua
Hospital, and the images are all accurately classified auto-
somal 1-22, X, and Y sex chromosomes. All data are from
samples taken by a microscope, and chromosome types were
confirmed by professional doctors. Due to the confidential-
ity agreement related to the data used in this paper, the
detailed information cannot be made public for the time
being.

Figs. 2a-2d depict images of abnormal chromosomes in
structure and abnormal chromosomes in number, respec-
tively. The dataset is the chromosome images completed by
professional doctors, including 18,088 normal chromosome
samples, 1,740 abnormal chromosomes in structure samples,
and 471 abnormal chromosomes in number samples, totaling
20,299, with details in Table 1. The dataset shows serious
imbalance, so we used horizontal flipping, rotation, adding
noise, etc. to augment the data for structural abnormality and
numerical abnormality chromosomes, and the composition of
the dataset is shown in Fig. 3.

FIGURE 2. Chromosome defect detection data set; (a) Abnormal structure
of chromosome X; (b) Abnormal structure of chromosome; (c) Abnormal
number of chromosome 22; (d) Abnormal number of chromosome 21.

TABLE 1. Raw data statistics of chromosome database.

FIGURE 3. Composition of the augmented dataset of chromosome
database.

B. CLASSIFIER
Fig. 4 depicts the architecture of the proposed feature fusion
classifier for chromosome abnormality detection. First, due to
the unbalanced dataset, data augmentation is used to make the
number of images in each category roughly equal to narrow
the gap. Then, the data-augmented dataset is imported into
three different deep learning models to train three different
classifiers, ResNet50, SENet, and VGG19, respectively. The
trained three different deep learning classifiers are then com-
bined into the FFCDW using a dynamic weights algorithm,
which is fully described in Section II-B2, and finally the
FFCDW is obtained and tested for the desired accuracy.

1) DEEP LEARNING CLASSIFIER
Unlike traditional image processing methods, the neural net-
work method does not require manual feature extraction
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FIGURE 4. Architecture of FFCDW for chromosome abnormality detection.

of images but can automatically perform feature extraction,
which is robust and applicable to more fields. In addition,
through the training of many images of the same type, deep
learning classifiers can better identify minute features that
cannot be handled by traditional image processing methods,
so deep learning methods are more suitable for medical
image processing. Since the successful application of neural
networks to handwriting recognition [28], they, especially
CNN, have been widely used in the field of image recog-
nition [15]. The three different CNN models chosen in this
paper (ResNet, SENet, and VGG) are all widely used classi-
fication networks with their advantages and disadvantages.

The ResNet network model [29], which borrows the idea
of highway networks controlling information flow through
gating, changes the flow of feature information, and the out-
put of the L layer no longer affects the output of the L+1
layer singularly but also affects the output of the L+2 layer.
Thereafter, every two layers can form a residual learning
block, and the block changes the learning goal in disguise.
The entire ResNet network consists of multiple stacks of
residual blocks interspersed with pooling layers. The training
process only needs to learn the difference between input and
output, which protects information integrity and simplifies
the learning goal and difficulty. The ResNet network solves
the gradient vanishing problem encountered by previous deep
learning networks that simply deepened the network struc-
ture. However, most of its network structures prevent model
degradation, which leads to errors. The mathematical expres-
sion of ResNet is as follows: where F(x) is the network
mapping before summation andH (x) is the network mapping
from input to summation.

H (x) = F (x) + x (1)

The core idea of SENet [30] is to train the model to
achieve better results using a network that learns feature
weights according to the loss so that effective featuremaps are
weighted heavily and ineffective feature maps are weighted
less. SENet is very simple to construct and can be eas-
ily deployed without introducing new functions or layers.
It mainly consists of two operations: squeeze and excitation.
Squeeze is a global average pooling, and excitation is shown
as follow: This operation is designed to fully capture chan-
nel dependencies, z is the result of squeeze, W1z is a fully
connected operation, same as W2. Finally, s is obtained by
signature.

s = Fex (z,W ) = σ (W2δ (W1z)) (2)

The VGG network [31] is a deeper and wider evolution of
the AlexNet network, which locally replaces a large convo-
lutional kernel with a tandem stack of more small convolu-
tional kernels. The VGG network demonstrates that a deeper
network can extract richer feature information to obtain better
results. Its advantage is that the deeper layersmake the feature
map wider and more suitable for large datasets. Its deeper
network structure and smaller convolutional kernel can both
ensure the perceptual field of view and reduce the parameters
of convolutional layers, which are more capable of feature
learning. As a classical network, the VGG network still main-
tains excellent accuracy and is widely used today.
The three classifiers are selected in this investigation not

only because they have the most stable performance among
the current classification models, but also because they can
learn features from different perspectives. The VGG network
can learn tiny features by increasing the learning depth, while
the ResNet network can constantly correct the learning errors
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of the deep network by adding the residual mechanism so that
it can learn more global features. Compared with ResNet,
SENet adds an attention mechanism that can pay attention
to local features of important parts while learning the global
features. These three models can learn different levels of
features, which can increase the diversity of the combinatorial
classifier and improve its performance.

2) FEATURE FUSION CLASSIFIER
Deep learning methods are trained using a single model for
tuning, which often leads to a single extraction capability and
does not extract features at different levels of the image at
multiple scales. The weight of each classifier is dynamically
modifiable thanks to the dynamic weight technique used
in this work. On the adjustment foundation, the weight is
specifically distributed equally by the accuracy of various
classifiers. Previous studies by Shipp et al. [32] and Zhou [33]
have also shown that the same sample has different classifica-
tion results for different classifiers, especially those that are
prone to problems because the performance of each classifier
is different. This phenomenon suggests that different classi-
fiers have complementary information about each other, and
combining them often gives better results [34], [35].

The three models, ResNet, SENet, and VGG, were mainly
selected in this study for two reasons. First, the three mod-
els show the best accuracy performance, and the accuracy
of other classifiers, such as DenseNet and EfficientNet, is
0.6–0.7 in the single model training, which fails to meet
the requirements. The second point is the consideration of
practical application. The purpose of this study is to explore
the effectiveness of the feature fusion method, and to reduce
the calculation time and training cost, these three models are
finally selected as the basic models of feature fusion.

Dynamicweight refers to weighting themodel based on the
actual impact of the prediction result of each model on the
final output result during the training process to improve
the robustness of the model. It must be pointed out that the
dynamic weight proposed in this study is not the weight trans-
mitted in each layer connection of CNN, but the weight of the
whole model in the classifier. Assuming that the ensemble-
based classifier contains T basic h1, h2, . . . hT , the hi(x)
represents the output of base classifier hi. The strategy of
FFCDW used in this study is dynamic weights, as shown in
the following equation:

H (x) =

∑T

i=1
Wihi(x) (3)

In the above equation 3,Wi is the weight of hi(x), andH (x)
is the output of the FFCDW. Usually,Wi is greater than zero,
and it meets the below equation.∑T

i=1
Wi = 1 (4)

III. EXPERIMENTS
A. TOOLS
Our implementation code is built with the Google Open Deep
Learning Cloud Server colab, developed using Python and

PyTorch framework. The selection of initial parameters is
crucial to obtaining the best classifier performance. Table 2
below lists the initial learning parameters of three deep learn-
ing models, and the main parameters in deep learning are
learning rate and number of epochs. Dynamic weights are
directly implemented by a soft voting algorithm, in which
three separate deep learning models are trained, and the three
models are directly weighted according to the comparison
of their training accuracy to generate weights to achieve
dynamic weights.

B. EVALUATION STANDARDS
Accuracy, recall, and F1-Score are usually used as evalua-
tion metrics for machine learning algorithms. The higher the
prediction rate and F1-score, the better the classifier. There
are four metrics, namely true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). In this
study, TP (FP) denotes the number of sub-images classified as
abnormal and matching truth labels (and not matching truth
labels); TN (FN) denotes the number of sub-images classi-
fied as normal and matching truth labels (and not matching
truth labels). Thus, the performance evaluation criteria of the
classifier are listed as follows:

precision =
TP

TP+ FP
(5)

recall =
TP

TP+ FN
(6)

F1 − score = 2 ×
precision× recall
precision+ recall

=
2TP

2TP+ FP+ FN
(7)

IV. RESULTS AND ANALYSIS
A. SINGLE MODEL TRAINING
To achieve the best performance of the feature fusion clas-
sifier, it is important to train a single model. It is necessary
to set the model parameters. Set input image size, batch
size, momentum, and weight decay to 224 × 224 pixels,
64, 0.9, and 0.0001, respectively. To improve the accuracy
and training speed of a single classifier for chromosomal
abnormality detection, a combination of migration learning,
and distribution training is used to train the single classifier.

Firstly, we load the initial weights set by eachmodel, which
are the initial weights retained by the model when training
the ImageNet image set. Secondly, use the transfer learning
method to quickly obtain the basic recognition ability of the
model. Finally, use the distributed training method to conduct
multiple training sessions based on the pre-training. It can be
drawn from Fig. 5a that all three models can achieve a rela-
tively good accuracy after 10 epochs of learning bymigration,
and the models converge to a relatively stable result between
30 and 40 epochs. This confirms that 50 epochs of learning
are enough for these three models. The final single model
accuracy of these three models is shown in Fig. 5b. After
eight iterations of stepwise learning, the accuracy of the three
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TABLE 2. Main parameters for single model training.

FIGURE 5. Single model training results; (a) Single training result of the model; (b) Results after step-by-step learning iterations.

models has stabilized, and we finally selected the result of
the tenth iteration as the final model accuracy, with the final
mean model accuracy of 0.8370 for ResNet, 0.8086 for VGG,
and 0.818 for SENet. The parameter weights trained from
the final accuracy were retained as the model weights for the
feature fusion classifier.

B. IMPACT OF SINGLE MODEL PRECISION
IMPROVEMENT
When the model continues to learn, using the deep learning
model to learn will provide its model recognition ability. The
current widely used learning method is to have deep learning
load the pre-training weights of the model first and then
improve the classification accuracy of the target data set after
the pre-trainingmodel learns for the target data set.Moreover,
because the deep learning algorithm uses dynamic weight
decay to ensure the stability of the model and prevent over-
fitting, the learning accuracy of a single model will continue
to improve with relearning.

To verify the effect of single model accuracy on the accu-
racy of the proposed feature fusion classifier, three different
training weights were selected in the process of optimizing

the single model, and they were arbitrarily combined to
form the classifier. From Table 3, the single model accu-
racy affects the performance of the feature fusion classifier,
and when the ResNet model accuracy is improved from
0.8012 to 0.8591, the accuracy of feature fusion classifier is
also improved to varying degrees. And it can be found that
the improvement of the feature fusion classifier is influenced
to the greatest extent by the single model with the highest
accuracy. When the ResNet model improves the accuracy, the
combined most obvious change in the accuracy of the classi-
fier is found in the ResNet model, while the improvement of
the feature fusion classifier is not obvious in the SENet and
VGGmodels when the accuracy is improved. This result may
be because more accurate models have higher weights.

C. THE PERFORMANCE OF THE FFCDW
The discriminant model is tested on the test sets of ResNet50,
SENet, and VGG19, and the fusion model based on the soft
voting method, respectively. To evaluate the performance of
FFCDW, comparative experiments using different datasets
are required. In this study, the entire dataset is divided into a
training set, a validation set, and a test set in the ratio of 8:1:1,
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TABLE 3. Effect of different accuracy of a single model on the accuracy of the feature fusion classifier.

TABLE 4. Comparison prediction accuracy of classifier performances for detection of chromosomal abnormality detection.

TABLE 5. Comparison F1-score of classifier performances for detection of chromosomal abnormality detection.

and it is divided into different datasets using a random divi-
sion method, with the number of different datasets being 3.
To obtain the statistical performance of these classifiers,
the experiments are repeated three times on each different
dataset. To verify the performance advantage of FFCDW,
a feature fusion classifier with fixed weights (FFCFW) was
set up, and the weights of the three single models were fixed
uniformly at 1/3.

As can be seen in Tables 4 and 5, the test means of clas-
sifiers with fixed weights and those with dynamic weights
significantly outperformed the prediction results of the single
model. The mean prediction accuracy of the three single
models ranged from 0.80-0.84, with the worst, mean value
being the VGG classifier with a score of 0.8086 and the best
mean value being the ResNet classifier with a score of 0.8370.
The mean F1-score of the three deep learning models ranged
from 0.80-0.83, with the worst being the VGG classifier
with a score of 0.8037. Therefore, the overall effect of the

VGG model is unsatisfactory, and it has the lowest weight
in the feature fusion classifier. In addition, the performance
comparison of the classifiers on three different datasets is
shown in Fig. 6. As can be seen in Figs. 6a-6c, similar trends
can be derived from these three different datasets. In addition,
the standard deviations of the fusion model test results are
all around 0.01, which proves the robustness of the proposed
method.

To balance the performance of classifiers in terms of mean
and standard deviation, two feature fusion classifiers (fixed
weights and dynamic weights) are proposed in this paper.
As shown in Fig. 6d, the mean prediction accuracy rate of the
feature fusion classifier is significantly better than the single
deep learning model effect. Although the standard deviation
of the feature fusion classifier is slightly higher than that
of the single classifier, the standard deviations are small,
both being around 0.01. Evaluating the performance of the
F1-score, a similar trend is derived from Fig. 6d. In addition,
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FIGURE 6. Comparison of classifier performances for detection of chromosomal abnormality detection; (a) Comparison prediction accuracy and F1-score
of experiment No.1; (b) Comparison prediction accuracy and F1-score of experiment No.2; (c) Comparison prediction accuracy and F1-score of experiment
No.3; (d) Comparison prediction accuracy and F1-score of mean results.

the performance of the FFCFW was slightly lower than that
of the FFCDW. In all nine tests, the mean values of the predic-
tion rate and F1-score of FFCDW are no less than 0.8703 and
0.8612, respectively. This indicates that our proposed method
has good resistance to performance fluctuations for defect
classification.

D. EFFECT OF SAMPLE SIZE ON FFCDW
To further test the stability of the proposed combinatorial
classifier, the performance of the classifier was tested under
different sample sizes using multiple experiments. Firstly,
a single model combination was retrained based on the three
different randomly divided datasets in Experiment 4.3 and
then randomly selected into four collections, for 1/4 of the
data volume, 1/2 of the data volume, 3/4 of the data volume,
and the entire data volume, respectively. Each set of data was
repeated three times and eventually averaged. Fig. 7 shows a
scatter plot of the experimental results, from which in some
cases the results are higher for the small sample than for the
full data set. However, this is because there is a small gap in
the characteristics of some data, so the training results of this
part will be better.

From Table 6, it can be seen that the proposed FFCDW still
has stability in the combination experiments with different
data sizes. Nomatter what data size, the accuracy of themodel
can always remain around 0.89, fluctuating from 0.8868 to
0.8902 with insignificant fluctuation, which can prove that
the proposed FFCDW could maintain relatively stable results
under the change of data sample. This can prove that the
proposed FFCDWcanmaintain relatively stable results under
the change of data samples and has robustness.

V. DISCUSSION
A. THE EFFECT OF FEATURE FUSION CLASSIFIER WITH
DYNAMIC WEIGHTS
In this study, we propose a feature fusion classifier for chro-
mosomal abnormality detection. To verify the effectiveness
of the model fusion method, two methods, FFCFW and
FFCDW, are used to detect and classify chromosomal abnor-
malities to verify the effectiveness of the dynamic weight
rule. As described in the previous section, FFCFW is a feature
fusion classifier with fixed weights, and FFCDW is a feature
fusion classifier with dynamic weights, and we can find that
themodel performance of the approachwith dynamicweights
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TABLE 6. Precision of FFCDW with different data volume.

FIGURE 7. Effect of different data volumes on the performance of FFCDW.

is significantly better than that with fixed weights. When
comparing our results to those of previous studies, it must
be pointed out that, compared with Wang et al. [21], who
used template matching to detect chromosome abnormalities,
although the accuracy rate reached 93.3%, this result only
compared 30 negative samples and was not robust. Compared
with He et al. [23], which detected trisomy 21 with an accu-
racy of only 85.2%, and Al-Kharraz et al. [24], which only
detected chromosome number abnormalities, the detection
scope of this study is wider, the results are stable, and it is not
limited to the detection of single chromosome abnormalities
or only the detection of chromosome number abnormalities.
Nimitha et al. [26] and Nimitha et al. [27] similarly, only
abnormal chromosome number was detected, but abnormal
chromosome deconstruction was not detected. Yang [25]
classified eight different abnormal structural chromosomes
and normal chromosomes, achieving a precision of 87.76%.

Both the detection type and the precision should be signifi-
cantly improved in this paper.

According to the results, it can be found that the accuracy
of FFCDW is significantly better than the performance of a
single model. This result ties well with previous studies by
Shipp and Kuncheva [32] and Zhou [33]. The main reason
is that the features learned by a deep learning model are
homogeneous under the same model, and although continu-
ous parameter optimization will improve the performance of
the model, such improvement cannot change the limitations
of the model architecture itself. Despite this, the integration
of different methods will increase the calculation cost and
processing time. The average reasoning time of a single
image is 0.21s when the dynamic weights strategy is adopted,
while the average reasoning time of a single image is 0.15s
when the fixed weights strategy is adopted. Although the
dynamic weights strategy has a disadvantage in terms of
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processing time and computing cost, the improvement effect
is still obvious. Its processing time is also within acceptable
limits. In addition, the performance of the overall model can
be improved by combining multiple models. This can prove
the stability of the model itself when the size of the data set
changes.

Comparedwith FFCFW, FFCDWhas a better effect, which
is mainly due to the difference in model accuracy. To test the
impact of single model accuracy on the feature fusion clas-
sifier, it can be found that the model with good performance
in the single model has a significantly higher impact on the
final accuracy of the feature fusion classifier than the model
with poor performance. It can be seen from Table 4 that when
the accuracy of the ResNet model is increased by 3.89%,
the accuracy of the feature fusion classifier is increased by
nearly 3%,while when the accuracy of the SENet andVGG19
models is increased by 3.26% and 2.98%, the accuracy of the
feature fusion classifier is only increased by 0.96%. This indi-
cates that the accuracy of the feature fusion classifier model
will be most affected by the model with the highest accu-
racy in the single model, and the proportion of impact itself
has exceeded the difference in weight between the models.
From the above discussion, it can be concluded that different
precision models have different influences on the formation
of the final feature fusion classifier. If FFCFW is adopted,
the advantages of the high-precision model cannot be fully
transferred to the final feature fusion classifier. Therefore,
the dynamic weight method can better play the advantages of
the high-precision model in the feature fusion classifier and
finally get a better result.

B. LIMITATION
Although this study reveals important findings, there are
limitations. First, this study does not use public datasets for
experiments, and its results are not directly comparable with
those of other studies. Second, only deep learning models
were selected for experiments in this study, and no other
machine learning methods or traditional image processing
methods were selected for combinations. Finally, only three
models were selected for combinations in this paper. Even if
it is preliminary, this study can clearly demonstrate the effec-
tiveness of the feature fusion classifier. Although this study
did not use a public dataset, the dataset used in this study was
not only judged and labeled by professional doctors, but was
also large enough to ensure the credibility of the experimental
results. This is enough to prove that the method of this study
is credible.

C. APPLICATION
Based on the previous summary of the problem, an impor-
tant future direction for chromosomal abnormality detection
research is the feature fusion classifier, which can be further
investigated by adding other machine learning models. Such
as support vector machines (SVM) or template matching and
other traditional image processing methods for experiments,
or adding classification models such as Vision Transformer,

which may further improve the feature fusion classifier’s
effect. The accuracy of the feature fusion classifier may also
be improved when classifier models with better robustness
and higher accuracy are proposed. This study is expected
to provide useful feedback for chromosomal abnormality
detection efforts and contribute to alleviating the pressure on
medical resources.

This study is a research project in cooperation with the
hospital, and its main purpose is to assist doctors in the detec-
tion of chromosome abnormalities. At present, the accuracy
of this study is not enough to completely replace doctors
in the detection process, but it can effectively assist doctors
in the process. In a practical application, the chromosome
karyotype image can be judged by the algorithm first, and
then reviewed by professional doctors, which can save doc-
tors’ actual working time and improve efficiency. It is also
expected that in the future, it will completely replace doctors
for testing and diagnosis.

VI. CONCLUSION
In this paper, a novel computer vision system using a dynamic
weight feature fusion classifier is developed for chromosome
abnormality detection, and the experimental results show that
the method has good performance for chromosome abnor-
mality recognition. The main contributions and innovations
of this study are as follows:

(1) Three different deep learning models are used to
improve the diversity of the feature fusion classifier, with
SENet containing SE blocks and ResNet containing residual
blocks. In addition, this study integrates three deep models
into the proposed FFCDW to improve the generalization
ability of the feature fusion classifier.

(2) The proposed FFCDW outperforms the mainstream
deep learning classifiers and obtains an average prediction
accuracy of 89.02% and an F1-score of 0.8805 with a small
standard deviation, which demonstrates its good ability to
effectively identify chromosomal abnormalities.

(3) Among the proposed combinatorial classifiers, the
strategy of applying dynamic weights is better than that
of applying the fixed weight method, and the soft voting
algorithm can automatically assign dynamic weights directly
according to the accuracy of the deep learning model itself.
And the model performance is very stable regardless of the
sample size, which proves that the method is robust.

In general, this paper proves the feasibility of dynamic
weights strategy. Compared with the single model method,
the combined model has better results, and the dynamic
weights strategy has more advantages than the fixed weights
strategy. Despite this, this paper still has a lot of flaws. The
following are potential directions for further research.

(1) It is possible to research the dynamic weight adjustment
method. This work proposes a dynamic weight technique
that distributes weights according to precision. Future study
may focus on this area if the weight difference widens
and the weight ratio of the model with the favorable effect
increases.
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(2) This work only examines the combination impact of
three classifiers with strong performance due to computa-
tional time and cost constraints, and it validates the viability
of the dynamic weight feature fusion classifier approach.
To verify the effectiveness of multi-classifier models, future
research can include more diverse classifiers, such as SVM
and other machine learning or deep learning algorithms.
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