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ABSTRACT 1t is extremely important to build a reasonable traffic network structure for traffic flow
prediction. Owing to the complexity and dynamic of traffic networks, the graph neural network model
has become one of the most effective methods for mining the spatial-temporal relationship between traffic
flow data. However, most current methods use two components to extract the spatial dependence and
time dependence separately and do not consider the auxiliary effect of additional traffic factors on the
prediction target. Based on the above problems, this paper proposes a neural network prediction model
for a comprehensive spatial-temporal synchronous graph based on information aggregation. The model is
composed of a fusion feature attention module, an information aggregation module, and a comprehensive
information integration framework. The fusion feature attention module considers the impact of each traffic
factor on the traffic flow and strengthens the internal relationship of various traffic features; the information
aggregation module synchronously extracts the temporal-spatial dependence of traffic flow; The multi-
information combination module combines the traffic flow with the secondary information to mine the
hidden relationship between the primary and secondary information. The experimental results on two real-
world datasets show that the prediction effect of the model set out in the present paper is significantly better
than that of the baseline.

INDEX TERMS Information aggregation, fusion feature attention, synchronous space-time map, multi-
information, traffic flow prediction.

I. INTRODUCTION

In recent years, with the vigorous development of massive
data analysis technology, the data of all walks of life have
shown explosive growth [1]. The traffic data such as vehicle
trajectory, vehicle flow, road sensor and so on increase geo-
metrically compared with the previous. How to measure and
process various traffic data has become one of the most con-
cerned tasks in making planning decisions, designing traffic
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infrastructure, and building intelligent transportation systems
[31]. An increasing number of researchers have introduced
deep learning into intelligent transportation systems [2]. Sig-
nificant success has been achieved in applications such as
traffic signal control using reinforcement learning [3], traffic
data collection based on computer vision [4], and mobile
data analysis based on mobile modeling [5]. In recent years,
under the COVID-19 epidemic, artificial intelligence com-
bined with remote sensing and other technologies have also
demonstrated outstanding ability in extracting traffic volume
[32].In addition to the above applications, the prediction of
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traffic data is also a very important part of building an intelli-
gent transportation system. Traffic flow prediction is a widely
studied problem. Accurate and timely traffic flow prediction
can not only alleviate traffic congestion and other problems
but also save various resources [6]. Traffic flow data includes
both temporal and spatial correlation, so how to effectively
mine the spatial-temporal relationship between data is full of
challenges. Early researchers focused on the development of
time series, using statistical methods such as Autoregressive
Integrated Moving Average model (ARIMA) [7] and Vec-
tor autoregressive model (VAR) [8]. Most of these methods
consider only short-term information and accept linear input.
When the data show a strong linear relationship, good pre-
diction results can be achieved. However, most real-life data
are long-term and nonlinear, and thus the prediction ability of
statistical methods is greatly limited. The emergence of the
Recurrent Neural Network (RNN) [18] and its variable:
Long Short-Term Memory (LSTM) and Gate Recurrent
Unit (GRU) [19] has greatly improved the prediction accu-
racy of time series. By adding a hidden state and gate mech-
anism, the model has a memory function that effectively dis-
cards and retains information, thus realizing the processing of
non-linear long-series data. Literature [9], [10] respectively
built models based on LSTM and GRU to forecast traffic
data, and the prediction accuracy was significantly improved
compared with statistics and simple machine learning meth-
ods. However, traffic flow data is a set of spatial-temporal
data, and it is far from enough to only consider the temporal
correlation. How to mine its effective spatial relationship
is the most critical problem in the research of traffic flow
prediction methods in recent years. Some researchers model
the traffic network as a grid and use a convolution neural
network (CNN) [11] to learn the spatial interaction between
different grids to capture spatial correlation. Before long, the
shortcomings of mesh modeling began to emerge. There are
local or global connections between roads, and grid modeling
ignores the irregularity of real roads, thus losing topology
information in the traffic network. As shown in Figure 1
(a), there is a direct or indirect spatial dependency between
road monitoring points. For example, when the traffic flow
of nodes M1 and M4 in a certain period is very large and
will flow into M2, the traffic flow of the road where M2 is
located will be directly affected; Although M3 is not directly
connected with M1 and M4, it is also indirectly affected by
M2. Therefore, modeling a traffic network as a grid cannot
accurately reflect the spatial relationships between roads.
The traffic network has a strong spatial attribute, and
real roads will interact with each other. Points, lines, and
grids cannot accurately reflect the real situation in the traf-
fic network. Therefore, it is more appropriate to model
the traffic network problem as a graph [17], [22]. Each
road segment was coded as a different node in the same
graph. The space between the road segments affects the
edges between the corresponding nodes, and the weight of
edges reflects the strength of the interaction between nodes.
Based on this idea, many new methods have been pro-
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FIGURE 1. (a) Is a road simulation diagram, and M1-M4 is a road sensor.
(b) is the space-time diagram in (a). The blue line represents the impact
of spatial dimensions between nodes, and the yellow line represents the
impact of nodes on themselves in the next time step.t1 and t2 denote two
continuous time steps.

posed to incorporate the graph structure into the model. Bai
et al. [12] proposed an adaptive graph convolution recursive
network (AGCRN) to capture the spatial-temporal correlation
in traffic flow through an adaptive graph generation module
and a GRU cyclic network. Diffusion Convolutional Recur-
rent Neural Network (DCRNN) [20], Sequence-to-Sequence
Spatial-Temporal Attention Learning Model (STATF) [21],
and other methods are used to combine graph convolution
with a recurrent neural network. Yu et al. [13] proposed a
spatial-temporal graph convolution network (STGCN) that
uses graph convolution and gated time convolution to extract
the spatial and temporal relationships of traffic flow. Atten-
tion Based Spatial-Temporal Graph Convolutional Networks
(ASTGCN) [14], Spatiotemporal Adaptive Gated Graph
Convolution Network (STAG-GCN) [15], and information
enhanced propagation spatial-temporal graph neural network
(STEGN) [16] use different attention mechanisms to extract
temporal relationships, and then obtain spatial dependencies
through corresponding graph convolution modules.

Because of the specific dynamics of the traffic network,
some researchers have modeled the problem as a dynamic
graph. Liu et al. [29] use the dynamic association between
the historical traffic passenger flow and the transportation
hub as the graph structure, and then convert the spatial struc-
ture information of the graph to construct the traffic net-
work matrix and design a recursive depth convolution neural
network to capture the space-time characteristics. In view
of the possible data defects in practical applications, Peng
et al. [30] propose to apply dynamic graph generation to the
long-term prediction task of traffic flow and use the relevant
algorithms in the graph strategy convolution network to gen-
erate dynamic graphs by strengthening learning, matching
the Markov decision-making process with the traffic flow
transfer graph.

Although traffic flow prediction has been extensively and
deeply studied extensively and deeply, two important prob-
lems have been ignored. Currently, most methods [12], [13],
[14], [15] use two independent components to capture tempo-
ral and spatial dependencies. As shown in Figure 1 (b), in the
traffic network, different nodes at the same time will have a
direct or indirect impact, and the same node will also have
an impact on itself or other nodes at different times, so the
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spatial-temporal dependency in traffic flow exists at the same
time. If the model can capture the space-time relationship
of traffic flow synchronously, the prediction will be more
reasonable. The second problem is to ignoring the comple-
mentary role of secondary information in prediction results.
In addition to traffic flow, traffic data also includes traffic
speed, traffic occupancy, etc. There are many problems asso-
ciated with simply using historical information to predict the
future. The lack, error, and abnormality of historical informa-
tion are inevitable. Currently, the auxiliary role of secondary
information is crucial. Based on the above two problems, this
paper proposes a comprehensive spatiotemporal synchronous
graph neural network based on the information aggrega-
tion (AC-STSGCN) model for traffic flow prediction. First,
in Chapter II, traffic flow data is defined as primary informa-
tion, and traffic speed and traffic occupancy are defined as
secondary information; The first section of chapter III intro-
duces the detailed process of feature attention module min-
ing the hidden relationship between primary and secondary
information; The second section of chapter III introduces how
the information aggregation module synchronously extracts
the spatiotemporal dependence between traffic flow data;
The third section of chapter III introduces the combination
process and principle of the multi-information combination
module; The last section of Chapter III introduces the out-
put layer; Chapter IV introduces relevant experiments and
analysis; Chapter V is summary and prospect. The main
contributions of this paper are as follows:

1) A special fusion feature attention mechanism is
designed. This mechanism calculates the attention of
each feature separately, and then combines the attention
of secondary information with the main information to
deeply mine the hidden relationships between different
features.

2) An information aggregation module is designed. Start-
ing from the time dimension, the nodes at adjacent
times are aggregated and then the graph is convolved
by segments to achieve synchronous extraction of the
spatial-temporal relationship of traffic flow.

3) A multi-information combination module is designed
to combine the secondary information with the primary
information in time and space and mine the space-time
dependency between the primary and secondary infor-
mation. This module is applicable to all multi-feature
spatial-temporal data.

4) The model in this paper has been repeated on two
real-world datasets many times, and the experimental
results are always better than the baseline.

Il. PRELIMINARIES
A. NOTATIONS AND DEFINITIONS

Definition I (Primary Information): Traffic flow is the
goal of this paper and is an important feature for describing
traffic conditions. In this paper, the historical traffic flow

is defined as X% = { i+m } hereinafter

i i+1
oS X |
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referred to as X7, x}’t e RVXT refers to the traffic flow of
node at ¢ time.

Definition 2 (Secondary Information): Traffic speed and
occupancy are two important characteristics that reflect
traffic conditions. There is a potential correlation between
them and traffic flow, which is helpful for traffic flow
prediction in some cases. This paper takes these two
features as secondary information inputs. Respectively
defined as Xspeed — [/xi i+1 i+m , X occupancy

X

00 Fst10 0 s t+m

i i+1 i+m : s
{xoy,,xo,t 410 -+~ Xo1+m [» hereinafter referred to as X* and
X0, xt . x5, € RV*T respectively represents the traffic speed

and traffic occupancy of node A at ¢ time.

Definition 3 (Spatial Graph): This paper uses G =
(V, E, A) to represent the traffic network diagram, |V| = N
represents a collection of nodes, N is the number of nodes,
E is the set of edges, A € R¥*V represents the adjacency
matrix of nodes in the traffic network diagram and reflects
the dependency between nodes. In this paper, G can be either
a directed graph or an undirected graph.

B. PROBLEM FORMALIZATION

The purpose of traffic flow prediction is to predict the traffic
flow of all sections in the future. The goal of this paper is to
use a period of historical traffic flow data X; ., ., to predict
the future traffic flow of T time slices. Therefore, the problem
is defined as:

f
Xz+1:t+

f
r=F X _pir) (M
To accurately describe the spatial correlation between differ-
ent traffic flow sequences, spatial graph G is introduced in

this paper, and the problem is further defined as:
X{+1:Z+T = f(xf_p_i_l:t;g) 2)

This paper also considers the impact of secondary informa-
tion on traffic flow, so the problem is finally defined as:

f f .y ) .
Xivrayr = F&X_pii X pie 9 ()

Ill. PROPOSED MODEL

In this section, the proposed model in this paper will be intro-
duced in detail. The detailed structure of this AC-STSGCN
model is shown in Figure 2, which is composed of a fusion
feature attention module, an information aggregation module,
amulti-information combination module, and an output layer.

A. FUSION FEATURE ATTENTION

Communication information includes traffic flow, traffic
speed and traffic occupancy. It is most common idea to use
historical traffic flow data to predict future traffic flow data.
However, real traffic networks are complex and changeable,
and there are hidden relationships between different traffic
information. For example, a low traffic speed and high traffic
occupancy can reflect a large traffic flow. Therefore, in this
paper, a fusion feature attention module is designed to mine
the hidden time relationship between three types of traffic
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FIGURE 2. Architecture of AC-STSGCN. The model is a hierarchical structure: the fusion feature attention module
receives primary and secondary information inputs at the same time. After that, different graph convolution
strategies are adopted for primary and secondary information: the main information is convolved by the
aggregation graph through the information aggregation module to synchronously extract the space-time
dependency; The secondary information is extracted by common graph convolution. The multi-information
combination module combines the primary and secondary information on the dynamic space-time map, and
finally inputs it to the output layer to obtain the final prediction results.

information. Figure 2 (a) is the detailed diagram of the fusion
feature attention module. First calculate the attention of the
traffic flow, traffic speed, and traffic occupancy respectively,
and then add attention to the traffic speed, traffic occupancy
and traffic flow attention to obtain the fusion feature attention.
The calculation formula for the fusion feature attention is

of =Wl oW _ +b) )
fi
gl = o) )
' er'l:l €X[)(O{{i)
o =Wy - o(Wihi_, + b)) 6)
. N
;/ — :XL“I)W. 7
2 imp expley’)
oaf =Wg -o(Wh!_, +b7) )
o EXP(?)
=1’ )
XL EXPE)
= B+ B+ BY (10)

where Wy, € R" ", W), € R", by€ R" are all learnable
parameters in the model; o represents the activation function
targh; h represents the number of hidden layer cells; ﬁfj s ﬂ? ,
B/ are the attention weight values of the third node of traffic
flow, traffic speed and traffic occupancy respectively; ﬂfj is
the fusion feature attention weight, and the final output of the
fusion feature attention module is:

EF =x' g} (11)
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In this paper, self-circulation is added to each attention divi-
sion of the fusion feature attention module to consider the
impact of the node’s attention on itself in the process of
circulation.

B. INFORMATION AGGREGATION MODULE

The spatial-temporal relationship between nodes in a traffic
network is complex and variable. Simultaneously, different
nodes will have spatial dependence, and nodes at differ-
ent times will also be affected by themselves and other
nodes. For example, when a node has experienced traffic
jams in historical times, the traffic flow of the node may
increase in the future, while the traffic flow of adjacent nodes
will also change significantly, and vice versa, Nodes are
affected by their own time and space and other nodes at the
same time. Therefore, it is important to capture the spatial-
temporal dependence of the nodes for traffic flow prediction.
Inspired by Spatial-temporal synchronous graph convolu-
tional networks (STSGCN) [25], this paper designs an infor-
mation aggregation module, that can synchronously mine the
spatial-temporal relationship between nodes. The input of
the information aggregation module is the main information
(traffic flow), which is mainly divided into two operations:
feature aggregation and aggregation extraction. As shown
in Figure 4, the feature aggregation mechanism aggregates
the current time features and adjacent time features of each
main information node to form a new information node. The
specific aggregation operation is as follows:

C3' =Agg(C1,C2,C3) (12)
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FIGURE 3. Information aggregation graph convolution. Each node in the
aggregation contains the characteristic information of three adjacent time
steps.

where Agg(-) represents the feature aggregation opera-
tion. The aggregation function selected in this paper is
SUM (-),which directly adds the node features together. The
original master information node feature C € R', the aggre-
gated feature C’ € R3, and the length of the sequence with
the time length of 7 becomes 7-2 after aggregation. Then, a
connection layer is set to convert the node to anew dimension,
and the converted outputis Ef = [Vf , V4 e VTC,],where
Vl.C € RV*3 represents the ith time series after aggregation.

Dynamic graph: Next, the hidden state of features of
graph convolution aggregation nodes in adjacent time periods
is introduced to extract their spatial dependencies. In this
paper, the graph convolution is defined in the vertex domain.
Compared with [29] and [30], the dynamic graph defined
in this paper has a simpler structure and only contains two
variable parameters, namely, the number of vertices and the
embedded dimension of vertices. In the first iteration of
the model, the initial graph does not reflect the relationship
between each station in the actual traffic network. As the
number of iterations increases, each vertex in the adjacency
matrix gets different weights, The strength of the connection
with other vertices also changes with different weights. The
graph structure consists of a set of learnable random param-
eters Eg € R3Nxd Generated, 3N represents the number
of master information nodes after aggregation, d represents
the initial embedded dimension, and the generated dynamic
adjacency matrix is defined as:

AP = EPEPT ¢ R33N (13)

A local graph convolution method is proposed in docu-
ment [33] to learn the information and distance of the graph
and describe the graph locally through the node and edge
information of the graph. In this paper, the graph convolution
is defined in the vertex domain, omitting the edge informa-
tion, so it is not necessary to calculate the Laplace determi-
nant of the graph, and each convolution is a global description
of the graph. The input of the graph convolution operation is
the graph signal matrix of the local spatial-temporal graph
after feature aggregation. As shown in Figure 4, the whole
graph convolution operation needs n-2 times, and then fea-
tures are extracted through a full connection layer to restore
the features of each node to N. The specific operation of a
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single time is described as follows:

VE = o(VEAPW + b) € RN (14)
vE = Extract(VE) e RY (15)

where Vgi represents the ith time series after convolution,
Eg = concat[Vg,3, Vg,4, el Vg,”] € RT-2xN represents
the output after feature extraction. The length of the time
dimension is 7-2. To keep consistent with the subsequent
operation dimensions, we select the first two-time node series
V that are not processed ve, VZC If added to the output, the

final output of the information aggregation module is:
EE = concatlVE,VE, Ve, .. VI e RTN (16)

C. MULTI-INFORMATION COMBINATION MODULE

The traffic network contains a variety of traffic information,
each of which affects the others. The secondary information
selected in this paper, traffic speed and traffic occupancy,
can not only affect the traffic flow at the same location,
but also help predict the traffic flow information of relevant
time segments. For example, if the upstream traffic speed
decreases or the traffic occupancy increases, traffic jams may
occur, and the downstream traffic speed and traffic occupancy
will also be affected; thus, the downstream traffic flow will
also show a downward trend. In addition, in an actual traffic
network, the main information that needs to be predicted may
be recorded incorrectly, and the auxiliary prediction func-
tion of the secondary information is more obvious. There-
fore, it is very important to model the spatial dependency
relationship between the primary and secondary information
nodes. This paper proposes a multi-information combination
module, which combines primary and secondary information
in space. Before combining the primary and secondary infor-
mation, the spatial dependency of the secondary information
nodes should also be considered. In this paper, two secondary
information traffic speeds and traffic occupancy are assigned
a space-time block respectively. The adjacency matrix is
defined as A* € RV*N A ¢ RVXN . after graph convolution,
the hidden state of two secondary information features is
obtained, and then the two hidden states are combined as
the total hidden state output of secondary information. The
specific calculation formula is:

E“™ = 0 (A"E*W, + by) e RTV (17)
E“™° = 6(A°E°W, + b,) € R"V (18)
E®*° = Combine (E°~*,E*"%) = E“* + E*° (19)

among o is the activation function ReLU, Wi, W,,, b, b, is
the model learning parameter, and the secondary informa-
tion combination function selected here is SUM(-). Then a
dynamic graph is built to combine the hiding state of the
main information and the secondary information in space.
In this dynamic graph, the hiding state of their quired sec-
ondary information can be directly propagated to the main
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Time

FIGURE 4. Feature aggregation mechanism.

information node. The specific operations are as follows:
Ef’ = 0(AS(E“™ + EG)Wy + b)) e RN (20)
Ef; = Combine(E" | Ef;) € RT>2N (21)

where E;p indicates the influence of secondary information
on primary information. Finally, CONCAT () is selected as
the multi-information combination function to obtain the
final output of the multi-information combination module.

The multi-information combination mechanism designed
in this paper does not limit the types and dimensions of
secondary information. Traffic speed, traffic occupancy and
traffic flow are three types of traffic data contained in the
same node, but there is still many information that affect
traffic flow in real life. For example, when an office building
is in the off-duty period, the traffic flow of nearby sections
increases, which may cause traffic congestion and thus affect
traffic flow. It is obviously unreasonable to directly connect
the traffic flow information node with the traffic flow infor-
mation node, The dynamic graph constructed in this paper
integrates different types of node information into space and
transfers the secondary information of the node to the primary
node, which is more reasonable to help predict.

D. OUTPUT LAYER

At the end of the model is an output layer, which converts the
output of the multi-information combination module into the
prediction results. The output layer is composed of a set of
convolution layers and a linear layer. At the same time, the
residual connection is added to combine the outputs of each
module. The calculation formula is:

Ejime = Com2d(ET) € RT*N (22)
Ecombine = Conv1d(EF) € RT*N (23)
Output = o (Linear(®Eime + BEcombine) € RV P (24)
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TABLE 1. The details for the datasets.

Datasets Samples Nodes Rate Time Span
PeMSD4 16969 307 5 min 2 months
PeMSD8 17833 170 S min 2 months

where Conv2d (-) and Convld(-) are two-dimensional and
one-dimensional convolutional layers, and Etine, Ecombine
is the output of the fusion feature attention and multi-
information combination module respectively, o Is the activa-
tion function ReLU, « and § are a learnable linear parameter,
p is the number of prediction steps, and Ouitput is the final
model prediction result.

IV. EXPERIMENT

A. DATASETS

This paper conducts experiments on two real road datasets,
PeMSD4 and PeMSD8. Both data sets are from the perfor-
mance test system of the California Automobile Transporta-
tion Agency [26], which includes three characteristics: traffic
flow, traffic speed, and traffic occupancy. In this paper, traffic
flow is taken as the main feature of prediction, and traffic
speed and traffic occupancy are taken as secondary features.
See Table 1 for detailed data set information. The following
is the supplementary information of the dataset:

e PeMSD4: The traffic data of the San Francisco Bay Area
collected by the performance test system of the California
Automobile Transportation Agency, including three charac-
teristics of traffic flow, traffic speed and traffic occupancy,
selected 307 detectors, each detector collected data every
30 seconds, and then aggregated into data with a time interval
of 5 minutes. The time span was from January 1, 2018,
to February 28, 2018, and was published in ASTGCN [14].

e PeMSD8: The traffic data of San Bernardino Area also
collected by the performance test system of the California
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Automobile Transportation Agency, including three charac-
teristics of traffic flow, traffic speed and traffic occupancy,
were selected from 170 detectors, and each detector col-
lected data every 30 seconds, and then aggregated into data
with a time interval of 5 minutes. The time span was from
July 1, 2016, to August 31, 2016, and was published in
ASTGCN [14].

e Preprocessing: The missing values in the data set are
filled with linear interpolation, and the data is aggregated
every 5 minutes to get 288 data points every day. In addition,
the data are converted through zero mean normalization x” =
x — mean(x) to make the average value 0, speed up the
gradient descent of the optimal solution, and improve the pre-
diction accuracy. Then, the data set is cut into three data seg-
ments with the same length: week, day, and the last three seg-
ments. The initial step size of each data segment is set to 12.

B. BASELINE

To verify the prediction performance of the AC-STSGCN
model proposed in this paper, the following 12 baselines were
selected for comparative experiments:

e VAR: a statistical model that captures the paired relation-
ship of time series.

e Historical Average (HA): Considering the periodicity
of traffic flow, the historical average value is taken as the
prediction result.

e SVR: Support vector regression, a supervised learning
algorithm.

e LSTM: Long- and short-term memory neural network, a
variant of RNN, is used to predict time series.

e Dual self-attention network (DSANet) [28]: Two parallel
modules, the global attention module, and the local attention
module are used. Finally, the prediction results are input into
the self-attention module.

e Diffusion convolutional recurrent neural network
(DCRNN) [20] : Diffusion convolution recurrent neural
network uses diffusion graph convolution and sequence to
sequence to encode spatial information and temporal infor-
mation respectively.

e Graph wavenet for deep spatial-temporal graph modeling
(Graph WaveNet) [24]: Adaptive diffusion convolution and
void causality convolution are introduced to capture spatial
dependence and temporal dependence respectively.

e STGCN [13]: Spatiotemporal graph convolution net-
work uses temporal convolution block and spatial convolution
block to capture temporal and spatial dependencies respec-
tively.

e ASTGCN [14]: Based on the spatiotemporal graph con-
volution network of attention, spatial attention and temporal
attention mechanisms are designed respectively to capture
spatial and temporal dependencies.

e Spatial-temporal graph to sequence model (STG2Seq) [27]:
The multi-step prediction spatial-temporal graph sequence
model uses gated convolution and attention mechanisms to
make a multi-step prediction.
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e STSGCN [25]: The spatiotemporal synchronous graph
convolution network is used to construct a local spatiotempo-
ral graph and capture the spatiotemporal dependency at the
same time.

e Long Short-Term Traffic Prediction with Graph Convolu-
tional Networks (LSGCN) [23]: Long-term short-term graph
convolution network integrates a new attention mechanism
and graph convolution network into a spatial gating block to
capture spatial-temporal dependencies.

C. SETUP OF EXPERIMENTS

All data sets in this paper are divided into training data, vali-
dation data and test data according to the ratio of 6:2:2. The
test data is the result of the experimental results. The history
window of the main informatio traffic flow is set to H = 12
(1 hour). The initial history window and the characteristic
dimension of the two secondary information, traffic speed and
traffic occupancy are consistent with the main information.
The size of the prediction target window is P = 12 (1 hour).
MSELoss is selected as the loss function. The learning rate
of PeMSD4 is set to 0.003, and the learning rate of PeMSD8
is set to 0.01. The performance of the model in this paper
is evaluated by selecting three indicators: root means square
error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE).

In this paper, all baselines were repeated for 5 times under
the appropriate environment. The parameter settings of all
baselines are as follows:

e VAR: The degree of hysteresis selected is set to 1.

e HA: The data of the first week will not be involved in the
forecast. From the eighth day, the average value of the same
time of the previous week on the same day will be taken as
the forecast.

e SVR: The initial value of the penalty coefficient C is set
to 1, the kernel function selects the Gaussian function, and the
initial value of the kernel function coefficient is set to 0.001.

e LSTM: The number of LSTM layer is set to 1. The
number of LSTM hidden dim is set to 10. The history window
is set to 12. The learning rate is set to 0.01. The batch size is
set to 64.

e DSANet: The number of Mutil-head is set to 16. The
number of layers in encoder is set to 12. The learning rate is
set to 0. 005.The batch size is set to 64.

e DCRNN: The number of DCRNN layer is set to 1. The
number of DCRNN units is set to 5.

e Graph WaveNet: The layers of Graph WaveNet is set to
8. The sequence of dilation factors is setto [1,2, 1,2, 1,2, 1,
2]. The learning rate is set to 0. 001.Dropout is 0.1.

e STGCN: The channels of three layers in ST-Conv block
is set to 64, 32, 64. The initial learning rate is set to 0.001 with
a decay rate of 0.8 after every 5 epochs.

e ASTGCN: The number of all graph convolution layers is
set to 64. To ensure the fairness of the experiment, the length
of the three-time segments is set to 12. The batch size is set
to 64 and the learning rate is set to 0.0001.
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e STG2Seq: The number of GCN units is set to 10. The
number of GGCM is set to 5. The learning rate is set to 0.
001.The batch size is set to 64.

o STSGCN: The number of STSGLCs is set to 4. The filters
of all graph convolutional operations are set to 64. The batch
size is set to 64.

e LSGCN: The channels of the GLU are set to 32. The
channels of GCN are set to 32. The channels of cosAtt are set
to 32. The batch size of PeMSD4 is set to 32. The batch size
of PeMSDS is set to 16. The learning rate is set to 0.001.

e LSGCN: The channels of the GLU are set to 32. The
channels of GCN are set to 32. The channels of cosAtt are set
to 32. The batch size of PeMSD4 is set to 32. The batch size
of PeMSDS is set to 16. The learning rate is set to 0.001.

D. EXPERIMENTS RESULT

The prediction results of this model and each baseline on
the two data sets are shown in Table 2. On the PeMSD4
and PeMSDS datasets, the three indicators of this model are
obviously better than each baseline.

In this paper, traditional statistical methods, traditional
machine learning methods and deep learning methods are
selected as the baseline for comparison. As shown in Table 2,
VAR and HA are both traditional statistical methods. Except
for PeMSDS, which is slightly better than STG2Seq, the
performance of the three indicators on the two data sets is
far worse than that of other methods. VAR and HA can
only accept linear input and only consider time correlation,
which is not good for forecasting traffic flow, a non-linear
spatial-temporal data. Compared with traditional statistical
methods, SVR, which is based on traditional machine learn-
ing, can deal with nonlinear input, but also can only con-
sider time dependence. The method LSTM based on deep
learning is improved based on RNN [18]. It realizes the
memory of longer historical information through cell state
and different gate mechanisms and reduces the possibility
of gradient disappearance and gradient explosion. Therefore,
the length of temporal information that can be processed is
greatly increased, but its disadvantage is that spatial corre-
lation is not considered. DSANet also only considers time
dependence, but it adds bidirectional attention to capture the
time dependence between nodes from both global and local
perspectives of the entire timing information, and finally
integrates it into a self-attention module output. Compared
with LSTM, the processing ability of timing information
is further improve; For the traffic data, it is not enough to
only consider the time dependence. DCRNN uses the cod-
ing and decoding architecture to model, bidirectional graph
convolution to capture spatial dependence, and GRU [19] to
capture time dependence, while considering the space-time
relationship of the traffic data. Both ASTGCN and LSGCN us
attention mechanisms to capture spatial relationships, which
is much better than traditional statistical methods and most
methods that only consider temporal relationships. However,
Table 2 shows that the three indicators of LSGCN are far
better than ASTGCN, indicating that attention mechanisms
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have different abilities to mine information spatial-temporal
dependencies. Graph WaveNet and STGCN respectively use
two modules to capture temporal and spatial relationships,
ignoring the spatial-temporal synchronization of traffic data,
so the prediction effect needs to be improved. STG2Seq and
STSGCN both try to build models to capture spatial-temporal
dependencies at the same time. Unlike the model in this paper,
STG2Seq simply connects adjacent time node information
through graph convolution, while STSGCN only processes
local spatial-temporal graph information, while the model in
this paper adds a linear layer after local graph convolution to
further aggregate adjacent features, and simultaneously pro-
cesses global spatial-temporal graph information in the multi-
information integration module, The spatial-temporal depen-
dency of synchronous capture is greatly improved. It can be
seen from Table 2 that the prediction result of STG2Seq is
poor, and the thre indicators of the model in this paper on the
two data sets are better than each baseline.

To further compare the prediction performance of this
model and each baseline, we selected three models, STGCN,
ASTGCN and STSGCN, to make a shorter prediction com-
parison on the data set PeMSD8, using two evaluation indica-
tors, MAE and RMSE, and the results are shown in Table 3.
It can be seen from Table 3 that the prediction performance
of the two indicators of the model AC-STSGCN in the three
short time steps is significantly better than the three com-
parison baselines. Among the baselines, STSGCN has the
best prediction performance, and the synchronous extraction
mechanism shows a good effec; STGCN performance takes
the second plac; ASTGCN has the worst prediction perfor-
mance, and the use of attention mechanism alone cannot
extract the space-time relationship of traffic flow well. In a
word, the prediction performance of the model in this paper
is better than that of the baseline in a shorter time.

E. COMPONENT ANALYSIS

To analyze the impact of each module of this model on the
overall prediction performance, this paper designs four vari-
ants of the model after removing different modules respec-
tively:

(1) One secondary information in the fusion feature atten-
tion module is removed, and the model is named AC-
STSGCN/fI.

(2) Remove both kinds of secondary information in the
fusion feature attention module and name the model AC-
STSGCN/f2.

(3) Remove the information aggregation module, and
directly convolve the whole time series. The model is
named AC-STSGCN/a.

(4) Remove the multi-information combination module, and
directly send the output after information aggregation to
the output layer to get the prediction results. The model
is named AC-STSGCN/c.

The experimental results of 12 step prediction of four variant
models on PeMSD8 are shown in Figure 6.

VOLUME 11, 2023



X. Cheng et al.: Traffic Flow Prediction

IEEE Access

TABLE 2. Performance evaluation of AC-STSGCN and baselines on two real-world datasets.

PeMSD4 PeMSD8
Model MAE RMSE  MAPE(%)  MAE RMSE  MAPE(%)
HA 36.76 54.14 21.83 29.52 44.03 16.59
VAR 33.63 51.62 19.73 23.46 36.33 15.42
SVR 28.71 44.57 19.21 23.26 36.18 14.75
LSTM 27.34 41.82 18.61 22.38 34.38 14.69
DSANet 22.79 35.77 16.03 17.14 26.96 11.32
DCRNN 24.92 38.38 17.49 17.89 27.88 11.48
Graph WaveNet 25.48 39.74 17.63 19.21 31.12 13.25
STGCN 23.34 36.30 14.80 18.16 28.03 11.50
ASTGCN 24.22 37.12 17.92 19.01 28.64 14.08
STG2Seq 25.20 38.48 18.77 20.17 30.71 17.32
STSGCN 22.19 33.85 13.95 17.22 26.98 11.03
LSGCN 21.53 33.86 13.18 17.73 26.76 11.20
AC-STSGCN 19.74 32.11 12.65 15.12 23.69 10.43
TABLE 3. Performance evaluation of AC-STSGCN and baselines on two real-world datasets.
PeMSD8
Model P=1 P=3 P=6

MAE RMSE MAE RMSE MAE RMSE

STGCN 16.45 24.69 17.22 26.13 17.75 27.11
ASTGCN 17.47 25.65 18.12 26.69 18.94 28.10
STSGCN 16.01 23.14 16.76 24.57 17.03 25.33
AC-STSGCN 12.14 20.76 13.28 21.50 13.94 22.45

BN AC-STSGCN/f1
B AC-STSGCN/f2

BN AC-STSGCN/a
mmm AC-STSGCN/c

B AC-STSGCN

Model
(a)MAE on PeMSD8

FIGURE 5. Component analysis of AC-STSGCN.

It can be seen from Figure 6 that the removal of one
secondary information in the fusion feature attention module
has little impact on the prediction of the model, while the
model’s prediction ability decreases significantly when both
secondary information is removed, indicating that the sec-
ondary information can improve the prediction accuracy of
the main information, and the auxiliary effect of adding multi-
ple secondary information is better; The information aggrega-
tion module and multi-information combination module have
a greater impact on the model than the fusion feature atten-
tion module. The information aggregation module enhances
the connection of main information in different historical
periods, which can greatly improve the prediction perfor-
mance; The multi-information combination module includes
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Model
(b)RMSE on PeMSD8

MAPE

Model
(c)MAPE on PeMSD8

the combination of primary and secondary information on the
spatial-temporal graph. By modeling a good spatial-temporal
dependency between nodes on the dynamic graph, the pre-
diction performance of the model is improved most. To sum
up, each module designed in this paper can well capture the
temporal and spatial dependence between traffic data and
improve the prediction performance of the model.

F. SECONDARY INFORMATION ANALYSIS

The traffic system contains a variety of traffic information,
and different traffic information is different from each other
and affects each other. This paper has conducted the follow-
ing analysis experiments on PeMSD8 on how the secondary
information affects the main information, taking the historical
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FIGURE 6. Secondary information analysis.

TABLE 4. Secondary information details.

.Seconda.ry Historical time Nodes
information step
ST1 3 170
S12 6 170
SI3 9 170
S14 12 170

time step of the secondary information as the experimental
variable. The specific data of the secondary information is
shown in Table 3.

It can be seen from Figure 7 that with the increase of the
historical time step of secondary information, the prediction
effect of the model is getting better and better, which indicates
that the secondary information added in this paper has a good
auxiliary effect on the prediction of primary information.
At the same time, the more secondary information, the more
obvious the auxiliary effect.

V. CONCLUSION

Aiming at the complex and changeable traffic flow prediction
problem, this paper proposes a comprehensive time-space
synchronous graph neural network prediction model based
on information aggregation. This model not only fully aggre-
gates the historical information of traffic flow data, but
also effectively combines the traffic flow and other sec-
ondary information in time and space. The fusion feature
attention module excavates the time dependence between
the traffic flow itself and the secondary information; The
information aggregation module and the multi-information
integration module realize the synchronous capture of spatial-
temporal dependency. In addition, the combination mode of
the multi-information combination framework is to build a
space-time map to connect primary and secondary informa-
tion, so it is not limited to primary and secondary information
with the same dimension, type, and number of nodes. The
experimental results on two real datasets show that the perfor-
mance of our model is better than that of each baseline; The
module analysis experiment also verified the different effects
of each module on the model; At the same time, the influence
of secondary information on traffic flow is analyzed. The
more secondary information, the more obvious the auxiliary
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effect. In the actual traffic flow prediction, compared with
other models, this model ensures the stability of the predic-
tion. When one information is missing or seriously deviated,
other information can assist the prediction.

There are three main advantages of the model proposed
in this paper. First, it can accept multiple information inputs
related to the prediction target at the same time, and integrate
relevant auxiliary information through different modules to
improve the prediction accuracy of the main targe; Sec-
ond, multiple related information can be freely transformed
between main information and auxiliary information as long
as simple dimensional transformation is carried ou; Thirdly,
in addition to the prediction of traffic data, the model in
this paper is also applicable to weather, electricity, stock and
other forecasts, with wide applicability. However, the model
proposed in this paper also has shortcomings. For example,
when severe weather events and traffic accidents occur, these
factors cannot be quickly converted into the impact on traf-
fic for subsequent prediction, which may lead to inaccurate
prediction.

In the future work, we will try to use different loss func-
tions, such as marginal loss function [34], to optimize our
model, and carry out multi-step prediction research for a
longer time. At the same time, we will add more types of
secondary information, deeply explore the impact relation-
ship between different information, and take traffic accidents,
weather events and other factors into account to achieve more
accurate prediction and apply this model to the prediction
work in a broader field.
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