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ABSTRACT Programming for quantum computers is complicated and time-consuming, because quantum
operations are counterintuitive and their combined effects are difficult to understand. Existing tools allow
automatic synthesis of quantum programs, which releases the burden of handwriting. However, many
existing systems arrange predetermined operators in successive manner to gradually reduce the gap with
requirements; these methods are quick but often produce lengthy programs, and they are difficult to adopt for
new operators. Other systems depend on stochastic or heuristic search; they identify near-optimal programs
for certain cases, but it is not easy to tune the algorithms for a wide range of cases. We propose a system that
produces compact programs for most cases and easily evolves with new operators. The system automatically
learns the roles of available operators by composing various possible programs. Based on the knowledge,
it selects a subset of operators most appropriate for requirements and uses them to compose a program.
The learning is geared toward concise programs; thus, the system tends to produce programs with the
fewest operators possible. We implemented the system and evaluated it by synthesizing over 400 programs.
In comparison with a state-of-the-art system, the proposed system produced programs with approximately
40-times fewer operators at the cost of increased synthesis time from seconds to minutes. We also observed
that the system successfully adopted new operators by learning their differences from existing operators and
utilizing them in right places. We believe that the system provides a basis of utilizing machine learning for
quantum program synthesis.

INDEX TERMS Machine learning, neural networks, program synthesis, quantum computing, quantum
program, supervised learning.

I. INTRODUCTION
Quantum computers have been shown to perform certain
operations faster than classical computers, including factor-
ization, database search, and simulation [1]. As such, the two
types of computers are expected to work together, enabling
speedy processing of huge data [2]. The bit of a quantum com-
puter, also known as a qubit, possesses a unique characteristic
of being able to exist in multiple states simultaneously [3].
Therefore, we can perform operations on multiple possibili-
ties at once, thus saving time to explore one possibility at a
time. For example, to search for a specific item usingGrover’s
algorithm, the amplitudes of all items are flipped around their
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mean, causing the amplitude of the target item to become
more pronounced [1].

Many studies recognize the capabilities of quantum com-
puters and propose algorithms that leverage them. However,
implementing and optimizing these algorithms is generally
a difficult task that requires time and effort [4]. The oper-
ators available on quantum computers, such as Hadamard
and Controlled Not [2], manipulate qubits as per quantum
physics, and its principles are often considered counterin-
tuitive. Therefore, it is not easy to understand their roles
and to anticipate the combined effects when a sequence of
operators is jointly used. Hence, hand crafting and optimizing
a quantum program becomes less feasible as more complex
operations are required [5], [6].

Due to the complexity of quantum programming, research
has focused on automatic methods to synthesize quantum
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programs, given requirements (or targets) by a user. Many
methods begin with a small set of operators and continue to
place them according to predefined rules (i.e., in predefined
orders and locations) until the program satisfies the require-
ments [7], [8]. They demonstrate that the operator set can
implement most programs. Moreover, the predefined rules
allow quick synthesis in general. However, the rules are not
always optimal for various targets and often lead to lengthy
programs with many operators [9], which in turn increase
error rates and execution time. Furthermore, the fixed rules
make it difficult to adopt new operators and test how well
these operators can be used to build programs.

Other synthesis methods adopt a different approach by
searching through a range of potential programs to iden-
tify the one that employs the smallest number of operators,
instead of relying on a predetermined set of operators and
arrangement rules. Due to the vastness of the search space,
these methods strive to minimize the search time. In par-
ticular, the methods prioritize the order in which they dis-
cover different possibilities, such as exploring programs with
the fewest predicted operators first. However, most meth-
ods select the order based on stochastic algorithms [4], [10]
or heuristic functions [11], which produces near-optimal
results for small samples but not for a diverse range of
targets.

Considering the existing methods, we aim to devise a sys-
tem that synthesizes programs with as few operators as possi-
ble, quickly produces appropriate results for a wide range of
targets, and easily incorporates new operators. The proposed
system utilizes machine learning. It begins by receiving a
set of available operators, and then it learns what the oper-
ators can implement by composing and observing various
programs. After learning, a user submits synthesis requests.
For each request, the system refers to the learned knowl-
edge and selects a subset of operators necessary to fulfill
the request with a low operator count. Using the selected
operators, the system explores possible programs and iden-
tifies one that matches the request. Table 1 summarizes our
objectives and how we fulfill them. It also lists potential use
cases. A demonstration of the proposed system is posted at
https://youtu.be/WLZ-VjLcEh4.

We summarize our contributions as follows.
• We propose a system that synthesizes quantum pro-
grams with fewer operators than existing systems
(e.g., 10 operators vs. 100 operators on average) and
without excessive delay in synthesis time (i.e., synthesis
completes in the order of minutes). The system uses
knowledge regarding the role of each operator and the
best utilization methods. This knowledge is learned by
composing a diverse range of programs and observ-
ing their characteristics, which does not require human
effort and hand optimization.

• We propose a machine-learning model appropriate for
distinguishing the roles of different quantum opera-
tors with a low learning cost. We also describe details
regarding model training and output utilization, such

TABLE 1. Summary of objectives and use cases.

that synthesis outcomes favor programs with fewer
operators.

• We evaluated the proposed system by requesting the syn-
thesis of 400 randomprograms andmultiple benchmarks
that require 2–5 qubits. Our observation revealed that
the system generated programs that used approximately
40-times fewer operators compared to a state-of-the-art
system, albeit with an increase in the average synthesis
time from seconds to minutes. We also demonstrated
that when providedwith new operators, the system could
promptly adopt and use these operators to composemore
compact programs.

The remainder of this paper is organized as follows. Section II
describes preliminaries on quantum programs that are used
throughout the paper and presents existing methods related
to the proposed system. Section III presents the proposed
system in detail, including how to learn the roles of quantum
operators and use the knowledge to synthesize quantum pro-
grams. Section IV evaluates the proposed system compared
with a state-of-the-art system. Finally, Section V concludes
the study and presents future work.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND ON QUANTUM PROGRAMS
In this subsection, we explain background information on
quantum programs. In particular, we explain the notations in
Table 2, which are used throughout the paper. Each notation
has an ID from 1 to 5 and examples on the right.

In a classical computer, a bit is the smallest unit of data,
and its value can be either 0 or 1. In a quantum computer,
the smallest unit is called a qubit; it can simultaneously have
two values with different probabilities and phases [3]. When
we measure the qubit, its value becomes 0 or 1, according
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to the probabilities. As such, a qubit is represented with a
vector of two complex numbers (α, β), as in notation 1 in
Table 2; their amplitudes indicate the probabilities of the qubit
measured as 0 and 1, respectively, such that |α|

2
+ |β|

2
= 1;

the ratio between real and imaginary parts determines the
phases. For example, (1, 0) indicates that the qubit is 0 for
sure, and (0, 1) indicates that it is definitely 1, both demon-
strating zero phases. Another example (1/

√
2 , −1/

√
2) indi-

cates equal probabilities of being 0 and 1 with phases 0 and
π , respectively.
Multiple qubits are representedwith the Kronecker product

⊗ of the qubits’ states. Notation 2 in Table 2 shows the state
of two qubits. The first and second qubits are representedwith
(α1, β1) and (α2, β2), respectively. In the result of the product,
the four complex numbers (α1α2, α1β2, β1α2, β1β2) show the
likelihood and phase of four possible values, namely 00, 01,
10, and 11, respectively. For example, two qubits (1, 0) and
(0, 1) are represented together with (0, 1, 0, 0), indicating that
the two qubits are definitely 0 and 1, respectively. Similarly,
n qubits are represented with a vector of 2n complex numbers.

TABLE 2. Notations related to quantum programs.

We now explain quantum operations performed on qubits.
An operation on n qubits can be represented as a 2n×2n

unitary matrix [12]. By multiplying this matrix on the qubits’
state, we obtain the state resulting from the operation. Nota-
tion 3 in Table 2 demonstrates an operation performed on
1 qubit. The operation is represented as 21×21 matrix and
transforms the qubit’s state from (α, β) to (α′, β ′). The
example on the right shows an operation calledHadamard [2].
It transforms the initial state (0, 1) into (1/

√
2 , −1/

√
2),

so that the qubit can possibly have two values 0 and 1 with an
equal probability.

Operations on different qubits are represented with the
Kronecker product of the corresponding matrices, similarly
to the manner in which multiple qubits are represented.
Notation 4 in Table 2 demonstrates operations M1 and M2
performed on qubit i and qubit i+1, respectively. Their com-
bined effect is represented as M1 ⊗ M2. The first example
on the right shows operations X and H on qubits 0 and 1,
respectively; thus, the resulting operation is X ⊗ H . The
second example does not apply any operation on qubit 0 and
applies X on qubit 1; no operation is considered the identity
operation I , as the qubit’s state remains the same, and thus
the resulting operation is I ⊗ X .
A quantum program performs a sequence of operations

on qubits to transform them into intended states. In this
context, a stage refers the operations that are applied simul-
taneously on different qubits. The effect of two consecutive
stages is represented as their product. Notation 5 in Table 2
demonstrates a subsequent application of two operations,M1
and M2. Their combined effect is represented as M2 × M1.
For example, if stages 1 and 2 perform X ⊗ H and I ⊗ X ,
respectively, then the program as a whole is considered to
perform (I ⊗ X ) × (X ⊗ H ). Although we do not show in
the example, the final stage typically involves observation,
which measures the qubits to obtain the computation results.

Finally, the objective of synthesis is to determine how to
arrange operators to achieve a specific function given by a
user. In particular, we allow the user to describe the target
function as a matrix Mtarget . Given this matrix, the proposed
method discovers an arrangement that implements the target
(e.g., (I ⊗X )× (X ⊗H ) if this is equal toMtarget ). In general,
various implementations exist that implement the same target,
and we aim to find the one with the fewest possible stages and
operators, because it has low error rates and quick execution.
Note that we consider two implementations M1 and M2 to
be equal if they differ only by a global phase (i.e., M1 =

eiθ × M2), as in many previous studies [6], [13]. This is
because algorithms often utilize the relative phase differences
among qubits, rather than the global phase. Moreover, the
global phase can be eliminated during measurement without
affecting the computation results.

B. RELATED WORK
A universal set of quantum operators refers to those that
can implement any unitary target. Early studies discover uni-
versal sets and suggest methods to arrange them to imple-
ment a target. A universal set is typically composed of one
2-qubit operator and several 1-qubit operators. For exam-
ple, Barenco et al. [7] show that successive application of
a 2-qubit operator {CNOT} and 1-qubit operators {Rx , Ry,
Rz} can approximate any n-qubit target. Boykin et al. [8]
propose different 1-qubit operators {H , T} and demon-
strate that the operators can be implemented with greater
fault tolerance compared to previously proposed operators.
It is also shown that the 2-qubit operator {CNOT} can be
replaced with either of {CZ, iSWAP} while the set remains
universal [5].
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Given a universal set, various methods exist to implement a
target. Many of the methods are based on predefined rules—
they continue to arrange operators in particular locations,
such that each placement reduces the distance from the tar-
get. For example, Shende et al. [14], as shown in Fig. 1,
decompose an n-qubit target into (n-1)-qubit unitaries and
controlled operators. The decomposition continues until the
unitaries become 1 or 2 qubits, which are then mapped to
the universal set of operators [15]. Other studies decompose
a target into basic tasks and implement one task at a time.
For example, Niemann et al. [16], [17] synthesize a target
by implementing superpositions, followed by permutations,
and then by incorporating phase shifts. To summarize, the
rule-based methods use predefined operators and rules for
their arrangement. These rules quickly synthesize most of
the targets, but the resulting programs tend to use numerous
stages and operators, exponentially proportional to the num-
ber of qubits [9]. Furthermore, to explore a different operator
set, the rules must to be adjusted considering the peculiarities
of the new operators; such adjustment takes time and effort
even by experts. We aim to devise methods that produce more
compact programs and that can be easily adjusted to new
operators.

FIGURE 1. Example of rule-based synthesis: Decomposition of n-qubit
unitary into (n-1)-qubit unitaries.

A few studies take different approaches from the rule-based
methods. The studies are based on search—they explore var-
ious possible programs until they find one that matches the
target [4], [6], [10], [11]. This approach can generally identify
more compact implementations than the rule-based strategy,
because it examines more arrangements than those that are
predefined in rules.

Some search-based studies employ stochastic search based
on ant colony optimization [4] and genetic algorithm [10].
One method develops a program by appending operators up
to a certain depth, where the operators are randomly selected
in accordance with a probability distribution [4]. Considering
how well the program fits the target, the method updates
the probability distribution, which then is used to develop
the next program. This process is repeated until the program
matches the target. Another method continues to revise an

initial program by randomly performing one of multiple revi-
sions, such as adding and removing an operator, replacing
one operator with another, and switching the locations of
two operators [10]. This method also considers how well
the resulting program fits the target and accordingly updates
the possibility of the revisions in the next round. Overall, the
stochastic methods depend on random selections. They may
find the target in a few iterations if the selections happen to be
on the right track. However, the methods may also take many
iterations, and the resulting program can be lengthy and far
from the optimal. The proposed method does not depend on
randomization, and it usesmachine learning to select themost
appropriate operators for each different target.

Other search-based studies propose methods to limit the
search time. QSearch [11] utilizes A∗ search algorithm to
explore programs with the fewest predicted operator counts
first. The prediction is based on a heuristic function, and its
accuracy determines the synthesis time and the conciseness
of resultant programs. It is not easy to devise a heuristic
function that produces accurate prediction over a wide range
of targets. The Meet-in-the-Middle algorithm [6] saves syn-
thesis time by exploring programs with up to s stages to
synthesize a program that requires 2s stages. In particular,
if the algorithm discovers two programs P1 and P2, such
that P†1 × Mtarget = P2 (Mtarget represents the target matrix,
and P† is the conjugate transpose of the unitary P), then
they synthesize the target by concatenating the two programs
(i.e., Mtarget = P1 ×P2). Similar to the existing studies, the
proposedmethod is based on search, but introduces a different
strategy to narrow down the search. The method begins with a
pool of operators and selects a subset necessary to implement
the target with low cost. Since this subset is relatively smaller
than the initial pool, we can explore fewer programs, thereby
reducing search time. The proposed system can be used along
with the existing methods and improve efficiency.

In practice, a combination of rule-based and search-
based methods are used. For example, Qiskit [18], the soft-
ware development kit for IBM’s quantum computers, uses
rule-based method to decompose a target into 1–2 qubit uni-
taries [19], and then performs stochastic search to implement
the unitaries with a minimum number of operators. Further-
more, Qiskit has a final optimization stage that merges mul-
tiple operators into one and thus reduces operator count [20].
For example, two consecutive operator S’s are replaced with
one operator Z−1, because S × S = Z−1. The proposed sys-
tem also uses such relationships, not only to reduce operator
count but also to explore unique programs. In Section IV,
we evaluated the proposed method compared to Qiskit,
because it is the most up-to-date, widely used, and produces
decent results.

III. LEARNING AND SYNTHESIS METHODS
A. OVERVIEW OF SYNTHESIS METHOD
We outline the proposed learning and synthesis methods in
this subsection. Fig. 2 presents an overview of the methods,
which proceed in two phases.
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FIGURE 2. Overview of proposed learning and synthesis methods.

FIGURE 3. Overview of utilization of machine learning to differentiate operators in input 1.

In phase 1, the user specifies input 1 of the system, a set
of operators to use for synthesis. This set contains native
operators directly supported in the hardware, as well as
those composed of multiple such operators. The user can
also define a previously-built program as a custom operator,
so that it can be used as a building block for synthesis. Then,
the system learns to distinguish the operators—it composes
various programs with the operators and characterizes the
functions that each operator can implement. For example,
in Fig. 2, the user specifies operators available at a quantum
computer (e.g., X and H ) and also defines a custom operator
(the one defined with a matrix). Then, the system learns their
characteristics, such as X inverts a qubit,H creates a uniform
superposition, and the custom operator flips amplitude about
the mean.

In phase 2, the user specifies input 2 of the system,
the target function to synthesize as a matrix format. The
system then selects a subset of operators likely to imple-
ment the target, based on the knowledge learned in phase 1.
Following the selection, the system examines different
arrangements of the operators and finds one that correctly
implements the target. For example, in Fig. 2, the user spec-
ifies a target that exhibits inversion and superposition; thus,
the system selects {X , H}. By arranging the selected oper-
ators, the system discovers the implementation, as shown
in the output in far right. When the synthesis is complete,
the system repeats phase 2 as the user specifies different
targets.

We consider two objectives when designing the learn-
ing methods. The first objective is to synthesize a target
without excessive delay. For this purpose, the system must
select a subset of operators essential to implement the target;
otherwise, the system needs to explore a large number of
arrangements with unnecessary operators. An accurate selec-
tion of operators depends on how well the system learns
their characteristics in phase 1. The second objective is to
discover an implementation with a low cost (i.e., we prefer an
implementation with fewer operators and stages). This goal
is also related to the learning in phase 1. If multiple arrange-
ments implement the same target, we choose to learn those
with minimal costs. The following subsection (Section III-C)
describes details on how we realize the two objectives when
preparing training data and learning operator characteristics.

B. PHASE 1: LEARNING OPERATOR ROLES
In phase 1, the proposed system learns the characteristics of
operators in input 1 using a machine-learning model. Fig. 3
shows the input/output of this model and its utilization.1

We aim to train the model, such that when it receives a target
function as a matrix in phase 2, it produces a vector of prob-
abilities p1 to pNoperator , one for each operator. Probability pj
is the chance of operator Oj required to implement the target,
and Noperator is the number of operators in input 1. If the

1The machine-learning model can be various models, and we demonstrate
the use of neural networks in the evaluation (Section IV-A).
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predicted probability is greater than a threshold, the system
selects Oj as a building block for implementing the target.
To train the model in this manner, we need to prepare various
target functions as matrices (i.e., input to the model) and label
them with probability vectors (i.e., output to the model).

We prepare the training data as follows. When the user
specifies the set of operators in input 1, they specify two
additional parameters Nqubit and Nstage_train, the numbers
of qubits and stages to use for training, respectively. The
system then composes various programs by arranging the
operators to fill Nqubit qubits and up to Nstage_train stages. For
each such program, the system computes the corresponding
matrix representation and labels it with a probability vector
[p1, p2, . . . , pNoperator ]; pj =1 if operator Oj is used in the
program and pj =0 otherwise. Using these labeled matrices,
we train the machine-learning model. As a result, when the
trained model receives a target matrix in phase 2, the pre-
dicted probability pj is likely to be near 1 if Oj must be used,
and thus Oj is selected; otherwise, pj is likely to be near 0,
and thus Oj is not selected.

Table 3 lists two training examples generated by the pro-
posed system. We assume that Nqubit = 2, Nstage_train = 2,
and input 1 includes four operators {I , X ,

√
X , H}. Exam-

ple 1 is a one-stage arrangement, and its matrix represents
X ⊗

√
X . This arrangement uses X and

√
X , and thus is

labeledwith probabilities [0, 1, 1, 0]. Example 2 is a two-stage
arrangement, and its matrix represents (I ⊗ X ) × (X ⊗ H ).
This arrangement includes I , X , and H , and thus is labeled
with [1, 1, 0, 1].

TABLE 3. Examples of training data.

When the system generates training data by arranging
operators, different arrangements often result in the same
function. In this case, we include one arrangement for train-
ing data and exclude the others to improve implementation
cost and learning accuracy. Table 4 presents four different
sample arrangements that lead to the same function. Arrange-
ments 1–3 result in the same matrix, and arrangement 4 dif-
fers from the others only by a global phase. Among such
equivalent arrangements, we select the one with the low-
est cost of implementation—we prefer the one with fewer

stages and operators.2 For example, Table 4 shows that
arrangements 1–2 have fewer stages than arrangement 4 and
fewer operators than arrangement 3; thus, we include either
of the two for training data. As a result, the system learns
implementations with lower costs and thus tends to prefer
these implementations when synthesizing targets in phase 2.
This way of pruning training data also improves learning
accuracy; this is because different operators have fewer over-
lapping examples in training data, and thus the system can
better distinguish the operators.

TABLE 4. Examples of equivalent programs.

In Table 5, we put together the methods for generating
and pruning training data. The code begins from the func-
tion find_unique_programs It uses a while loop to explore
Nqubit -qubit and s-stage arrangements, where s ranges
from 1 to Nstage_train (lines 12–23). We compare each
arrangement Pnew with previously reported arrangements
(lines 16–18) to retain only unique programs with the lowest
costs (lines 19–20). If the function of Pnew emerges the first
time, we store it for comparison with later arrangements
(lines 21–22). We compute and compare the matrix repre-
sentations of two arrangements to confirm their equivalence
(line 16). In particular, we transform the matrices, such that
they appear identical if they differ only by a global phase,
as follows (lines 17, 28–30). If the first non-zero element of a
matrix is (a+ bi) (i.e., the non-zero element with the smallest
row and column numbers), we multiply the matrix with a
scalar eiθ = (a− bi)/

√
a2 + b2, so that the element becomes√

a2 + b2 and thus has a zero phase. For example, in arrange-
ments 1 and 4 in Table 4, the first non-zero elements are 1/

√
2

and −1/
√
2 at row 1 and column 3, respectively. Therefore,

2We can fine-tune the cost assignments to better reflect the peculiarities
of hardware (e.g., by assigning different weights to operators).
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TABLE 5. Algorithm for exploring unique programs with low costs.

the corresponding matrices are multiplied by the scalars 1
and −1, respectively, making them appear identical.
Before we compute matrix representations and test their

equivalence, we skip two types of arrangements that defi-
nitely lead to duplicate programs (lines 15, 33–37). We found
that these two types form a majority of duplicate programs;
thus, skipping these arrangements reduces the cost of matrix
computation and comparison. The first type occurs when
an operator I in stage s− 1 precedes a non-I operator in
stage s (line 34); this type is equivalent to having the non-
I and I in stages s− 1 and s, respectively. For example,
in arrangement 2 in Table 4, the I in stage 1 precedes the
X in stage 2 on q[0]; this is equivalent to having X and I
in stages 1 and 2, respectively, as in arrangement 1; thus,
we skip arrangement 2. The second type occurs when two
successive operators in stages s− 1 and s are equivalent to
another operator O (lines 35–36); replacing the two with
one O leads to an equivalent arrangement with one fewer
operators. For example, in arrangement 3 in Table 4, one
√
X precedes the other on q[0]; replacing the two

√
X ’s

with one X leads to an equivalent arrangement with fewer
operators, as in arrangement 1; thus, we skip arrangement 3.
We identify all such equivalent relationships before we begin

find_unique_programs For example, when input 1 is {I , X ,
√
X , H}, we first discover three equivalent relationships X ×

X = I ,
√
X ×

√
X = X , and H × H = I , and then use them

to skip duplicate arrangements in find_unique_programs To
summarize, when we explore programs and generate training
data, we perform multiple checks to eliminate duplicates at
early stages, thereby retaining only unique programswith low
costs.

C. PHASE 2: SYNTHESIS WITH LEARNED KNOWLEDGE
In phase 2, the proposed system synthesizes the target func-
tion specified in input 2. Among the operators in input 1, the
system predicts a subset of operators required to implement
the target, based on the knowledge learned in phase 1. Using
this subset, the system explores unique programs and identi-
fies one that matches the target.

Table 6 shows a pseudo code for phase 2. The code begins
from the function synthesize(), and this function takes four
arguments. The first argument Mtarget is the target function
as a matrix, and we assume that it requires Nqubit qubits
(i.e.,Mtarget has 2Nqubit rows and columns). The second argu-
ment Soperator is the set of operators to use for synthesis,
as specified in input 1. The third argument Toperator is the
threshold for selecting a subset of operators3; the operators
with predicted probabilities greater than this threshold will
be used as building blocks. The last argumentNstage_synthesis is
themaximum number of stages to search; the system explores
arrangements with up to Nstage_synthesis stages until the target
is found.

TABLE 6. Algorithm for synthesizing target function.

The function synthesize() works as follows. We first feed
Mtarget to the machine-learning model, which then outputs

3In the evaluation (Section IV-B), we used the threshold Toperator = 0.5.
In practice, the range 0.45–0.55 produced similar results, while a threshold
outside this range decreased prediction accuracy.
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a vector of probabilities, one for each operator (line 13).
Among the operators, we select those with probabilities
larger than the threshold (line 14). Using these operators,
we compose various programswith up toNstage_synthesis stages
(lines 17–21); if we identify a match with the target, we return
the program (line 20). If the machine-learning model fails to
predict the probabilities accurately or if a proper threshold is
not chosen, then we may not identify any match. In this case,
we include one additional operator with the highest probabil-
ity among those that have not been included (line 22). Using
this new operator, we repeat the same process of exploring
possible programs. Thus, we end up adding operators in
descending order of their probabilities (lines 16–22). If we
utilize all operators in input 1 and fail to identify any match,
we return none (line 23), meaning that the target cannot be
implemented with the operators and Nstage_synthesis stages.4

When we compose programs with a subset of operators
(lines 17–21), we explore unique programs (line 19) and dis-
regard those with the same function again. For this purpose,
we apply the same methods of duplicate removal as described
in Section III-B (lines 15–17 in Table 5 ); (i) we skip the two
types of arrangements that must lead to duplicates with pos-
sibly large costs, and (ii) we compare matrix representations
after multiplying them with scalars, such that those that differ
by a global phase appear identical.

TABLE 7. Application of algorithm in table 6 on target in fig. 2.

Table 7 illustrates the programs explored by synthesize(),
during the synthesis of the target in Fig. 2. We assume that
input 1 includes four operators {I , X ,

√
X , H} and their

predicted probabilities are [0.92, 0.84, 0.002, 0.46]. We also
assume that Toperator = 0.5 and Nstage_synthesis = 2. The
system initially selects {I , X}, since their probabilities are
greater than Toperator . With the two operators, the system
explores three unique programs with one stage. The sys-
tem skips all programs with two stages, because they are

4If the system confirms that the target cannot be implemented, the user can
increaseNstage_synthesis or add more operators to input 1, and retry synthesis.

duplicates of one-stage programs. After exploring programs
with {I , X}, the system cannot find the target. Thus, the
system addsH , the remaining operator with the largest proba-
bility. The system then continues to explore unique programs
that have not been considered in the previous rounds, and
finally discovers the target among those with two stages. Note
that the system does not explore possibilities with opera-
tor

√
X , because it has a low probability and the target was

found before this operator was added. If the system used all
four operators from the beginning, it must have explored 3–4
times more programs till the target was identified. With more
operators in input 1, an accurate selection of its subset will
make even greater differences.

IV. EVALUATION
We implemented and demonstrated the proposed system,
based on the learning and synthesis methods in Section III.
Section IV-A describes the details of experimental setup,
including data preparation and learning operator patterns.
Section IV-B evaluates the synthesis results of the proposed
system, in comparison with an existing work.

A. PHASE 1: DATA PREPARATION AND LEARNING
We prepared data for machine learning (i.e., programs)
and trained the machine-learning model, as described in
Section III-B. Table 8 summarizes the parameters and algo-
rithms used for the learning. We explain them throughout this
section.

TABLE 8. Parameters and algorithms used for learning in phase 1.

Input 1 includes 20 operators as building blocks. We chose
the first 16 operators (i.e., {I , X , . . . , CSWAP}), because
they are supported in many quantum computers [21], [22].
The four other operators are controlled-S (CS), controlled-
T (CT), and quantum Fourier transforms for 2 and 3 qubits
(QFT2, QFT3). These operators are typically implemented
with multiples of the first 16 operators [1]. We assumed that
the four operators were recently added to the user operator
set, because they had been frequently used as building blocks
for large programs. The operators work on a range of qubits,
including one qubit (I , X ,

√
X , H , Y , Z , S, S†, T , T †),

two qubits (CNOT, CZ, SWAP, iSWAP, CS, CT, QFT2), and
three qubits (CCNOT, CSWAP, QFT3). Using the operators,
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FIGURE 4. Neural-network model for learning to differentiate operators in input 1.

FIGURE 5. Prediction accuracy of neural-network model for various numbers of units and hidden layers.

we aimed to synthesize programs that require 2–5 qubits
(Nqubit ). To this end, we produced various programs that
utilize 2–5 qubits and learned the relationships between the
programs and their operator usage. For each qubit number in
the range 2–5, we performed the same steps in the following
paragraphs.

We generated programs that use up to 4 stages (Nstage_train).
In particular, for each number of stages, we randomly chose
3,000 programs.We then split the programs into the following
three sets: (i) Strain with 2400 programs for training machine-
learningmodels, (ii) Sparams with 300 programs for estimating
parameters (i.e., parameters in Table 8, machine-learning
model, and thresholds), and (iii) Stest with the 300 remaining
programs for testing the models.5 We annotated the programs
with their matrix representations and probability vectors,
as shown in Table 3, so that themachine-learningmodel could
learn their relationships.

Using the data in Strain, we trained the machine-learning
model (Fig. 3), so that it learns the characteristics of oper-
ators. Fig. 4 depicts the model, and it consists of a set of
feedforward neural networks [23]. Each network focuses
on one operator Oj in input 1 and learns to differentiate
whether Oj is required or not for various programs in Strain.
After training, the network receives a target function as input
and generates a probability pj, indicating the possibility of
requiring Oj for synthesizing the target. Hence, the entire

5There can be fewer than 3,000 programs. For example, 104 unique
programs exist that utilize 2 qubits and 1 stage. In this case, we used all of the
programs and split them into three sets, Strain, Sparams, and Stest , according
to the ratio 8:1:1.

set of networks learns the characteristics of all operators and
produces a vector of probabilities, one for each operator.

Each of the neural networks performs the following func-
tions; it receives ① a target matrix as input and flattens
the matrix into ② a one dimensional array. This flattening
preserves all matrix elements and does not lose information.
The network then passes the array through ③ two hidden
layers and ④ an output layer, producing ⑤ a probability pj for
operator Oj. Each of the hidden layers in ③ includes 20 units,
where one unit performs linear regression and ReLU [24].
The output layer in ④ contains one unit that performs lin-
ear regression and sigmoid, producing a probability between
0 and 1 in ⑤.

The number of hidden units in the neural networks affects
the prediction accuracy, and the optimal number can change
as we alter the operators in input 1. Therefore, we describe
guidelines on determining the number. We incrementally
incorporated more units, trained the networks with Strain, and
measured the prediction accuracy with Sparams. We measured
the accuracy as the average proportion of operators that
are correctly classified when the threshold Toperator = 0.5.
An operator is correctly classified (i) when it is required and
its predicted probability ≥ Toperator or (ii) when it is not
required and its probability < Toperator . Fig. 5 presents the
effect of different unit numbers. On the horizontal axis, {N1,
N2, . . . , NL} indicates the numbers of units over different
layers, where Nj is the number of units at layer j, and L is the
number of hidden layers. For example, {20,5} indicates two
hidden layers with 20 and 5 units, respectively. The vertical
axis shows the distribution of prediction accuracy over all
programs in Sparams. The accuracy generally increased with
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FIGURE 6. Stage/operator counts in synthesized programs and time required to synthesize them for proposed and existing
systems.

the number of units. When the unit numbers reached {20,20},
the median accuracy was nearly 85% with the minimum
above 70%. We selected {20,20} for two reasons. Firstly,
beyond the selected numbers, the accuracy increased only
slightly, whereas the time required to train the models rapidly
increased. Secondly, the proposed system selected a subset
of the required operators when the prediction was not per-
fect; however, if the minimum accuracy was above 70%, the
system soon added the rest of required operators in the next
few iterations (lines 16–22 in Table 6) and thus synthesized
the target without excessive delay (i.e., within 10 minutes on
average).We demonstrate that this is the case in Section IV-B.
We trained the models on a machine with a 3.4GHz

CPU (Intel Core i7-6700) and a 16GB RAM. We used the

machine-learning algorithms and parameters summarized in
Table 8 (IDs 4–7), and implemented the algorithms using
Python, TensorFlow [25], and NumPy [26]. Training the
neural networks took approximately 20 minutes to 6 hours
for Nqubits in the range 2–5.

B. PHASE 2: SYNTHESIS AND EVALUATION
Using the trained model, we synthesized various target func-
tions and evaluated the results.6 In particular, we compared
the proposed methods with the synthesis functionality of

6At GitHub (https://github.com/sihyunglee26/Quantum-Program-
Synthesis-23), we post our experiment data, including target programs
that we synthesized and the synthesis results, so that they can be used as
benchmarks in later work
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Qiskit [18]; it is one of the most widely used libraries
for quantum programming, under active maintenance and
updates, and its codes are publicly available.

We synthesized the targets in Stest , the programs generated
in phase 1 and set aside for testing. In particular, we randomly
selected 100 programs from Stest for each Nqubit = 2–5.
We also synthesized known functions that are used as bench-
marks in previous studies [6], [13]; these functions include
controlled gates (i.e., controlled-X ,

√
X , Y , Z , H , P, and T ),

W , Toffoli, Fredkin, Peres, quantum OR gates, the Grover’s
algorithm, quantum Fourier transform, and a reversible full
adder. Many of these functions are meant to be used as
building blocks for large programs.

The proposed system used the 20 operators learned in
phase 1. We also configured the system, such that it begins
with the operators with probabilities ≥ Toperator = 0.5 and
explores programs up to Sstage_synthesis = 7 stages. Qiskit used
{I , RX , RY , RZ , CNOT} as building blocks, as required by
its synthesis rules. We set the optimization level of Qiskit to
the highest possible value of 3. This setting enabled Qiskit
to merge consecutive operators using the most of predefined
rules, resulting in the smallest possible number of operators.

To compare the quality of synthesis results, we used
two measures that have been used in the previous stud-
ies [6], [13]: the numbers of (i) stages and (ii) operators.
For (ii), the number of operators, we counted an n-qubit
operator as n. For example, if a program contains one 1-qubit
operator X and one 2-qubit operator CNOT, then we consider
that the program uses 1+2=3 operators. This is because an
operator with a larger n is considered more expensive in
general. We counted the operator I as 0, since it corresponds
to an empty place. In addition to the two quality measures,
we recorded the time required to synthesize the programs.
When the time exceeds 3 hours, we terminated the synthesis
process and marked the case as a failure.

Fig. 6 shows the cumulative distribution of the three mea-
sures for the proposed system and Qiskit. Each row has three
subfigures that collectively correspond to a distinct Nqubit ,
ranging from 2 to 5. The three subfigures present stage count,
operator count, and synthesis time. The horizontal axes list
the three measures in log scale and the vertical axes indicate
the cumulative percentage of programs. On the horizontal
axes, the F’s in the far right indicate failures.

Overall, the proposed system used fewer stages and oper-
ators than Qiskit at the expense of synthesis time. This trend
became more evident as Nqubit increased. The proposed sys-
tem used 1.9-, 20.0-, 85.5-, and 398.7-times fewer stages
and 1.8-, 12.0-, 33.1-, and 116.1-times fewer operators than
Qiskit as Nqubit progressed from 2, 3, 4, and 5, respec-
tively. In the meantime, the average synthesis times of the
proposed system grew from 39.3 sec, 54.5 sec, 334.5 sec
(5.58 min), and 779.2 sec (13.0 min) for Nqubit = 2, 3,
4, and 5, respectively, whereas those of Qiskit remained
within 10.0 sec.

We identified the primary factor behind the reduced num-
ber of stages and operators in the proposed system, which is

outlined below. Qiskit uses the same set of operators and con-
tinues to stack them in the predefine manner that gradually
reduces the distance from the target. Depending on the target,
its distance varies greatly as well as the number of operators
required. In contrast, the proposed system inspects the target
and accordingly selects from a spectrum of operators themost
suitable subset. Often, there exist several different subsets
that implement the same target; among the subsets, the sys-
tem is trained to prefer those with low costs. We illustrate
the differences in Fig. 7 and Fig. 8. Each figure contains
three subfigures (a)–(c) showing different implementations
of the same target, and the targets are Grover’s algorithm
with 2 qubits (Fig. 7) and Peres gate with 3 qubits (Fig. 8).
The subfigures (a) present reference implementations in the
literature, where Fig. 7(a) is hand optimized [1] and Fig. 8(a)
is synthesized by the method presented in [6]. The sub-
figures (b) and (c) show synthesis results of the proposed
system and Qiskit, respectively. The proposed system gener-
ally found implementations with fewer stages and operators
than the others. This is because it selects a different subset
of operators that are necessary and cost-efficient for each
particular target (i.e., {CNOT, H , Y , Z} for Grover’s and

FIGURE 7. Synthesis results for Grover’s algorithm with proposed and
existing systems.

FIGURE 8. Synthesis results for Peres gate with proposed and existing
systems.
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{CCNOT, CNOT} for Peres). Note that it is not easy for
humans to identify an optimal subset of operators, since there
exist many different targets and operators; thus, the proposed
system utilizes machine learning. Qiskit tended to use more
stages and operators. It utilizes the same set of operators and
places them in a predetermined manner, which is not always
optimal for a diverse range of targets. In fact, Qiskit uses an
additional stage that finds a more optimal implementation
through stochastic search and merging equivalent operators
into one; however, it is applied after the target is decomposed
into 1−2 qubit operators, rather than at an earlier stage, and
thus is not sufficient to find a solution more concise than that
of the proposed system.

The operator selection in the proposed system has an extra
positive outcome that it adapts to changes in the operator pool
(input 1). This is illustrated in Fig. 9. The three subfigures
show changes in the synthesis results with the inclusion
of additional operators. The target remained the same as
quantum Fourier transform with 3 qubits. When we used
the first 16 operators in input 1 plus {CS, CT}, the system
selected {I , H , CS, CT} and synthesized a program with
5 stages and 9 operators (Fig. 9(a)). When we added QFT2
to the operator pool, the system utilized this new operator to
create a program with fewer stages and operators (Fig. 9(b)).
Finally, whenwe addedQFT3, the system recognized that this
operator is an exact match of the target and thus generated the
simplest implementation (Fig. 9(c)). In all of the three cases,
the operator selections were based on the machine-learned
knowledge about the operators.

FIGURE 9. Synthesis results of proposed system for quantum Fourier
transform with different operator pools.

We now explain two main reasons why the synthesis times
grew more quickly in the proposed system than in Qiskit.
We also suggest ways to suppress the growth rate. The first
reason is that the operator selection in the proposed system
becomes inaccurate as more qubits are used, and thus the sys-
tem must go through more iterations until all required oper-
ators are selected. With more qubits, target matrices become
larger and more diverse. Therefore, accurately learning these

matrices requires more complicated machine-learning mod-
els and larger training data, although these solutions come at
the cost of increased learning time. The second reason is that
the proposed method needs to explore various arrangements,
evenwhen all necessary operators are correctly selected.With
more qubits, more diverse arrangements exist to explore,
and thus more time is required to discover a target imple-
mentation. We were able to reduce the time from hours to
minutes by disregarding duplicate arrangements, as described
in Sections III-B and C. One way to further reduce the time is
to learn and predict likely locations of selected operators. For
example, when the system selects operators {H , X}, it can
also predict that X on q[0] and H on q [1] is more likely
to produce the target than other arrangements. We plan to
explore this method in future work.

As for failure rates, the proposed system failed to synthe-
size 16 targets out of 421 (3.80%), and Qiskit failed to synthe-
size 11 targets (2.61%). In the proposed system, most failures
occurred when the synthesis time exceeded the 3-hour limit.
In particular, the system tended to produce more failures as
Nqubit increased (i.e., we observed 2, 4, 3, and 7 failures
for Nqubit = 2, 3, 4, and 5, respectively). This was because
the number of arrangements to explore increases with Nqubit ,
as well as the time required to identify a target. In Qiskit, most
failures occurred due to an internal error, ‘diagonalization
failure.’ We reported these cases to the developer community
and hope that the issues are resolved in later versions.

To summarize, the proposed method can be used as an
alternative to the existing system, when synthesizing a more
compact program is a priority and an increase in synthesis
time can be tolerated. In other words, one can choose between
the proposed and existing methods, considering acceptable
time and program size. The proposed system can also be
applied to assess the feasibility of introducing a new operator,
either at the user or hardware level. By synthesizing different
programs with the new operator, we can determine whether it
contributes to building a diverse range of programs and if it
is worthwhile to incorporate the new operator.

V. CONCLUSION
We propose a method to synthesize programs for quantum
computers, given a set of arbitrary operators. The method
explores various programs with the operators and learns to
distinguish the types of programs that each operator can
implement. Based on the knowledge, the system selects a sub-
set of operators necessary to implement a target and arranges
the selected operators to match the target. We evaluated the
system by requesting 400 randomly selected programs and
several benchmarks that require 2–5 qubits. The system suc-
cessfully synthesized most of the programs. Although the
synthesis times increased from seconds to minutes as the
number of qubits increased, the resulting programsweremore
compact than those of an existing system, using 0.79% and
2.45% of stages and operators on average, respectively.

We plan to apply the system to synthesizing programs with
more than 5 qubits. The major obstacle is that synthesis time
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grows quickly as more qubits are used, since the system needs
to explore more diverse programs. We have been trying to
learn and utilize additional information beyond operator char-
acteristics to decrease synthesis time. One such candidate is
to learn proper positions to place operators. Using this knowl-
edge, the system can predict how to best position selected
operators and does not need to explore many unnecessary
arrangements. We observed encouraging results and intend to
perform more extensive experiments. We also plan to apply
different machine-learning algorithms, such as the extreme
learning machine, to further reduce training time and increase
learning accuracy.
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