
Received 23 February 2023, accepted 10 March 2023, date of publication 14 March 2023, date of current version 17 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3257099

LLL-CAdViSE: Live Low-Latency Cloud-Based
Adaptive Video Streaming Evaluation Framework
BABAK TARAGHI , (Member, IEEE), HERMANN HELLWAGNER , (Senior Member, IEEE),
AND CHRISTIAN TIMMERER , (Senior Member, IEEE)
Christian Doppler Laboratory ATHENA, Universität Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria

Corresponding author: Babak Taraghi (babak.taraghi@aau.at)

This work was supported in part by the Austrian Federal Ministry for Digital and Economic Affairs; in part by the National Foundation for
Research, Technology, and Development; and in part by the Christian Doppler Research Association.

ABSTRACT Live media streaming is a challenging task by itself, and when it comes to use cases that define
low-latency as a must, the complexity will rise multiple times. In a typical media streaming session, the
main goal can be declared as providing the highest possible Quality of Experience (QoE), which has proved
to be measurable using quality models and various metrics. In a low-latency media streaming session, the
requirements are to provide the lowest possible delay between the moment a frame of video is captured
and the moment that the captured frame is rendered on the client screen, also known as end-to-end (E2E)
latency and maintain the QoE. This paper proposes a sophisticated cloud-based and open-source testbed that
facilitates evaluating a low-latency live streaming session as the primary contribution. Live Low-Latency
Cloud-based Adaptive Video Streaming Evaluation (LLL-CAdViSE) framework is enabled to asses the live
streaming systems running on two major HTTP Adaptive Streaming (HAS) formats, Dynamic Adaptive
Streaming over HTTP (MPEG-DASH) and HTTP Live Streaming (HLS). We use Chunked Transfer
Encoding (CTE) to deliver Common Media Application Format (CMAF) chunks to the media players. Our
testbed generates the test content (audiovisual streams). Therefore, no test sequence is required, and the
encoding parameters (e.g., encoder, bitrate, resolution, latency) are defined separately for each experiment.
We have integrated the ITU-T P.1203 quality model inside our testbed. To demonstrate the flexibility and
power of LLL-CAdViSE, we have presented a secondary contribution in this paper; we have conducted a set
of experiments with different network traces, media players, ABR algorithms, and with various requirements
(e.g., E2E latency (typical/reduced/low/ultra-low), diverse bitrate ladders, and catch-up logic) and presented
the essential findings and the experimental results.

INDEX TERMS Live Streaming, low-latency, HTTP adaptive streaming, quality of experience, objective
evaluation, open-source testbed.

I. INTRODUCTION
Recent statistical studies show a large percentage of the
Internet and mobile network traffic consists of audiovisual
streaming. Video constituted around 70% of all global mobile
network traffic in 2022. This is expected to increase by around
30% annually until the end of 2028, when it is forecast to
account for 80% of global mobile data traffic [1]. HTTP

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

Adaptive Streaming (HAS) encodes a multimedia file at
multiple bitrates, video resolutions, audio sample rates, and
other factors, i.e., representations. Each representation will
then be split into temporal segments and stored on an HTTP
server. On the client side, the media player runs an Adaptive
Bitrate (ABR) algorithm to select, for each segment, the most
suitable representation to be downloaded. The ABR decision
is made by taking into account many factors, and it affects
the QoE significantly. QoE is commonly indicated by the
Mean Opinion Score (MOS). MOS can be divided into two

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 25723

https://orcid.org/0000-0003-2717-4660
https://orcid.org/0000-0003-1114-2584
https://orcid.org/0000-0002-0031-5243
https://orcid.org/0000-0002-8745-1327


B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

FIGURE 1. Low-latency live streaming by HTTP Chunked Transfer Encoding (Illustration inspired by a keynote at ACM MMSys’22 by Ali C. Begen - A
master’s toolbox and algorithms for low-latency live Streaming).

types, predicted and perceived. While perceived MOS can be
obtained only by subjective evaluation, various models for
predicting the MOS exist.

The term latency in live media streaming is the time differ-
ence between themoment the actual event is captured on cam-
era or the live feed comes out of a playout server and when the
end user sees the content on their device’s screen, i.e., E2E
latency. Historically an online live streaming service has a
latency somewhere between 30 seconds to over 60 seconds
(high latency) depending on the viewer device capability and
the used video workflow. Nowadays, the challenge for such a
service is to lower the live streaming latency to a range closer
to linear broadcast signal latency, 3 to 5 seconds (low-latency)
or sometimes lower (ultra low-latency and near real-time) [2].
With more devices capable of playing audiovisual content
with low-latency, research and technological development in
this area gained more attention.

Media players implement a function referred to as catch-up
logic to overcome a challenge that low-latency live media
streaming puts on the table. The procedure defines the strat-
egy of how the player should catch up with the live edge. Two
approaches to this problem are commonly used. The first is
to increase or decrease the playback speed to reach a point
where the content is available, and the achieved latency is
closest to the defined target latency. It can be controlled by
adjusting the maximum and minimum playback speed rates.
The catch-up logic will decide how fast or slow the player
should play the content within the defined playback speed
range to get closer to the target latency. The second approach
is to jump over a few frames of content or introduce a stall
event to reach a point where the content is available, and
the achieved latency is closest to the defined target latency.
With this strategy, the catch-up logic should decide howmany
frames should be dropped from the player buffer or how
long the playback should be stalled to get closer to the target
latency.

Chunked Transfer Encoding (CTE) is a data transfer mech-
anism in version 1.1 of the Hypertext Transfer Protocol
(HTTP) [3]. The end-to-end perspective of such an approach
for live media streaming is shown in Figure 1.
Introduced in 2016, the Common Media Application For-

mat (CMAF) [4] is a standard transport container for stream-
ingVoD and linearmedia usingMPEG-DASH [5] or HLS [6].
Thanks to CMAF in low-latency mode and with CTE, the
player requests for incomplete media segments, which will
be served by smaller units called chunks. Each chunk can

be 500 milliseconds or lower, depending on the encoder
configuration. As shown in Figure 2, a chunk is the smallest
referenceable media unit, containing a moof and mdat atom.
The mdat box holds a single Instantaneous Decoder Refresh
(IDR) frame, which is required to begin every segment. A seg-
ment is a collection of one or more fragments, and a fragment
is a collection of one or more chunks. The moof box is
required by the player for decoding and rendering individual
chunks [2].

Using CTE, the server can deliver chunks of data with
undetermined size, which enables transferring the generated
CMAF chunks as they come out from the encoder andwithout
the need to be written on the disk (if caching the data was
not desired). The chunked transfer coding wraps content in
order to transfer it as a series of chunks, each with its size
indicator, followed by an optional trailer section containing
trailer fields. CTE enables content streams of unknown size
to be transferred as a sequence of length-delimited buffers,
which enables the sender to retain connection persistence
and the recipient to know when it has received the entire
message [3].

In this paper, we present our sophisticated open-source
testbed: Live Low-Latency Cloud-based Adaptive Video
Streaming Evaluation (LLL-CAdViSE). LLL-CAdViSE is
designed to be highly scalable in terms of a number of real
media players placed in experiments with different network
profiles. Our testbed is capable of evaluating real live streams
with both HLS andMPEG-DASH. The encoder and packager
components are fully customizable, and the parameters can
be adjusted based on the scenarios defined by the evaluator.
This framework will record various significant metrics from
the streaming session, enabling it to measure the latency
precisely. At the end of each experiment, the testbed is capa-
ble of automatically generating a single .mp4 file that is a
chain of played segments stitched together, combined with
the real events and defects that happened in the experimental
session. Our testbed does not require to be supplied by video-
on-demand (VoD) test content. It generates highly dynamic
(randomly moving objects transforming into different shapes
and with constantly changing color and size) video content
and a constant beep as the audio track. Figure 3 is a sample
frame of the generated video in an experiment. The QoE
calculation based on the ITU-T P.1203model [7] is integrated
into the framework. Since this model does not consider the
meaningfulness of the streamed content, it can facilitate the
process of providing predicted MOS automatically.

25724 VOLUME 11, 2023



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

FIGURE 2. Top: A CMAF segment containing a sequence of 20 samples, Bottom: A same size CMAF chunked segment with multiple ‘moof’ boxes, which
decreases the possible encoder output time.

FIGURE 3. A single frame of the highly dynamic (randomly moving
objects transforming into different shapes and with constantly changing
color and size) video generated by the LLL-CAdViSE server.

The remainder of the paper is organized as follows.
Section II reviews related work, followed by the introduction
of our testbed architecture in Section III. Next, the experi-
mental setup is presented in Section IV. In Section V, the
experimental results and key findings are described in detail.
Finally, Section VI concludes the paper with an overview of
the main contributions.

II. RELATED WORK
In 2017, AdViSE [8] was introduced as a framework for test-
ing media players. This testbed was developed to be deployed
on physical machines and evaluate the performance of the
media players by manipulating the network link between
the server and its clients. The presented framework is used
for the comparison and testing media players in the context
of adaptive video streaming over HTTP in Web/HTML5
environments. AdViSE uses a customized Mininet-based
software-defined network (SDN) for network emulation and
bandwidth shaping. Through a Web management interface,
it conducts experiments and runs the adaptive media players.

In 2020, CAdViSE [9] was introduced, a cloud-based
version of the same concept as in AdViSE, with multiple
improvements. This testbed is capable of deployment onto a
cloud infrastructure such as Amazon Web Services (AWS).
It records comprehensive logs from the test streaming ses-
sion and provides visualized statistics over the results on

the Bitmovin Analytics1 dashboard or similar applications.
In another work [10], the authors further developed the func-
tionalities of CAdViSE to suit their project needs, leading to
the implementation of a new network node (an edge) in the
testbed for repackaging the content more efficiently. CAD-
LAD [11] is another extension of CAdViSE, which presented
the implementation of some parts of the Common Media
Client Data (CMCD) standard on this testbed.

Video BenchLab [12] presents an open and flexible bench-
marking platform to measure the performance of stream-
ing media workloads. Video BenchLab can be used with
any existing media server and provides a set of tools for
researchers to experiment with their platforms and protocols.

Ramos-Chavez et al. [13] presented a testbed for the
MPEG Network Based Media Processing (NBMP) stan-
dard [14], implementing all the standard’s components. The
testbed includes many configurable functions for load gen-
eration, monitoring, data collection, and visualization. The
testbed is used to test dynamic adaptive HTTP streaming
functions under different workloads in a standardized and
reproducible manner.

Stohr et al. [15] presented a framework to evaluate
open-source HAS media players. They compared the per-
formance and extracted the strengths and weaknesses of the
media players. A significant observation in their study is
stated as the importance of the target buffer size and the
player implementation compared to the choice of the ABR
algorithm.

Yadav et al. [16] proposed a combination of techniques
collectively called QLive in which they have tried to
resolve the fundamental problem of bandwidth estimation for
low-latency live streaming by using existing chunk parser
and filtering of downloaded chunk data. They have used an
Apache Web server to host the dash.js media player. The
FFmpeg encoder with CMAF packager and origin ran on
the server provided by Streamline.2 The server and client
ran on two Linux-based machines connected by a router and
used the tc NetEm network emulator to control the network
bandwidth.

1https://bitmovin.com/docs/analytics, accessed Jan. 5, 2023
2https://github.com/streamlinevideo/low-latency-preview, Feb. 21, 2023

VOLUME 11, 2023 25725



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

FIGURE 4. Live low-latency CAdViSE system components.

Taha et al. [17] presented a testbed for evaluation of QoE in
HAS. The testbed uses physical machines to execute experi-
ments. It canmeasuremetrics such as startup delay, frequency
of quality switches, number and length of stall events, CPU
usage, and energy consumption. A CDN testbed is proposed
by Taha [18] that consists of two mechanisms based on the
performance of server load and network congestion to deliver
fast the segmentation of adaptive video streaming and redirect
clients’ requests to appropriate surrogate servers.

Our testbed is a highly scalable and sophisticated evalua-
tion framework for HAS media players and ABR algorithms.
In contrast to mentioned related works, LLL-CAdViSE uses
modern cloud infrastructure. It is also the first comprehen-
sive low-latency enabled live streaming emulator over the
cloud infrastructure that precisely measures various signifi-
cantmetrics. LLL-CAdViSE allows for E2E latencymeasure-
ment alongside a variety of significant metrics such as stall
events duration, startup delay, seek duration, quality switches,
played bitrate for each segment, and playback speed rate. Our
testbed is capable of evaluating any Web-based HAS media
player with ease, and updating themedia players or evaluating
other media players is as simple as replacing an HTML file
with the newmedia player. The calculation of predictedMOS
using the ITU-T P.1203 quality model is integrated with
this framework, and our testbed is available as open-source
software.

III. LLL-CAdViSE ARCHITECTURE
LLL-CAdViSE3 is designed and developed on top of a
testbed introduced in 2020, called CAdViSE4 [9]. CAdViSE
provides a framework for the automated evaluation of media
players and their ABR algorithms. The presented system
has a modular architecture and provides a set of tools for
analyzing and visualizing obtained results. CAdViSE utilizes
a cloud infrastructure to instantiate, control, and continuously
monitor the two network node types in a HAS session, the
server, and the clients. The established network connection

3https://github.com/cd-athena/LLL-CAdViSE, accessed Jan. 5, 2023
4https://github.com/cd-athena/CAdViSE, accessed Jan. 5, 2023

between the nodes is managed andmanipulated by predefined
network profiles using simple JSON files.

Similar to its predecessor, LLL-CAdViSE follows the
same goal, to provide a testbed that makes the execution of
experimental streaming sessions maintainable and scalable.
We have completely redesigned and redeveloped the testbed
so that actual live streaming is enabled and low-latency
factors are considered. Firstly, our framework generates the
audiovisual test content; therefore, unlike CAdViSE, we do
not need to provide encoded and packaged VoD content for
each experiment. A simple file called streams.json will steer
the content generator to define a number of streams with dif-
ferent characteristics, i.e., bitrates, and resolutions. Secondly,
by introducing various adjustable parameters on the server
such as (-tune zerolatency, -ldash and -lhls), the produced
content will be delivered to the clients with low latency
enabled. LLL-CAdViSE, as a plus, also provides experimen-
tal low-latency HLS streams for media players capable of
playing such content. The components of LLL-CAdViSE are
shown in Figure 4 and described in detail in the following.
The LLL-CAdViSE console is in charge of (i) spinning-

up and management of Amazon Elastic Compute Cloud5

(EC2) instances, (ii) initialization of server and clients with
required libraries, applications, and packages, (iii) execution
of defined experiments, and optionally (iv) calculation of
predicted MOS.

EC2 instances are requested from the cloud provider to
be instantiated and available in a specific cloud region and
under a single cluster to minimize the network latency intro-
duced between the nodes. Once the EC2 instances are up and
running, two types of initializers, starters and configuration
scripts will be injected into each machine, specifically cre-
ated for the server and clients. The initializer scripts will be
invoked to install the required libraries and packages.

Next, the starter scripts will be executed synchronously on
all nodes (server and clients), which run the stream producer,
encoder, and packager (called the engine) and bring up the
twoHTTP servers on the server EC2 instance. The first HTTP
server, the ingest server, receives the data from the stream
engine via the HTTP PUT method, caches the ingress data in
the memory (cache object), and stores it on the disk while it is
being streamed. The second HTTP server, called the delivery
server, will initially be on standby to receive requests from the
clients. The received requests will be directly served from the
stored data in the cache object if it is still available; otherwise,
it will be from the disk. If the received request is seeking
for .m4s files the value of Transfer-Encoding on the HTTP
response object will be set to Chunked.
On the client EC2 instance(s), the starter script will bring

up an HTTP server to facilitate the communication between
the media player and the delivery server while recording the
logs of each request and the media player events into the
database. The starter script will also kick off the streaming
session by sending the play command to the media players.

5https://docs.aws.amazon.com/ec2/, accessed Jan. 5, 2023

25726 VOLUME 11, 2023



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

FIGURE 5. Various network profiles trimmed to 420 seconds were used for the experiments. The polynomial (Poly) trendline of the available bandwidth
with order 4 depicts the fluctuations from a broader perspective.

Clients can be HLS or DASH media players, and since the
engine is enabled to generate CMAF chunks, the delivery
server is capable of serving both types accordingly. The
HTTP server on each client node also receives the events
raised by the media players and stores them in the database
for later retrieval. Another task defined in the starter scripts
is manipulating the network shape based on the selected
network profile on both server and client machines. We use
Wondershaper6 scripts to limit the bandwidth of network
adapters for eachmachine.We also use Linux tc commands to
introduce the network delays. After the experiment duration,
the server retrieves the recorded logs from the database.
It calculates the following metrics: playbackDuration, stalls-
Duration, startUpDelay, seekedDuration, qualitySwitches,
minBitrate, maxBitrate, averageBitrate, minLatency, maxLa-
tency, averageLatency, minPlaybackRate, maxPlaybackRate,
averagePlaybackRate.

If declared by the evaluator via the –withQoE option on
the LLL-CAdViSE console, the predicted MOS will also be
computed using the ITU-T P.1203 QoE model (mode 1), and
the results will be available immediately after the experi-
ment is finished. The authors of [19] made a comparison
between some of the available QoE models and presented
the correlation of results with actual perceived MOS in their
subjective evaluations. ITU-T P.1203 proved to have the most
accurate results in multiple scenarios. This model integrates
predictions based on a large set of training and validation data.

6https://github.com/magnific0/wondershaper, accessed Jan. 5, 2023

Four modes are available within this model: 0, 1, 2, and 3,
in whichmode 0 takes the least metadata as the input, whereas
mode three needs full access to the bitstream. In mode 1,
which we used in our framework, audio/video codec, video
resolution, framerate, audio/video bitrate, frame type, and
frame size are considered while calculating the MOS.

As mentioned before, mode 1 of this quality model
considers audio/video codec, video resolution, framerate,
audio/video bitrate, frame type, and frame size.

The final results for all clients will be stored in an Amazon
Simple Storage Service7 (S3) bucket and in CSV file format.
If the evaluator desires, the testbed can also use the recorded
logs and stitch back the streamed media segment for each
client to generate a single .mp4 file. This generated .mp4 file
can later be used for further investigation of the experimental
session’s video quality and the occurred events with possible
defects. A use case of this functionality can be found in [20].

IV. EXPERIMENTAL SETUP
We performed experiments with the following configurations
to demonstrate our testbed’s capabilities and functionalities.

LLL-CAdViSE provides a platform for evaluating many
characteristics of a media streaming system and producing a
wide variety of results (plots). An extensive set of parameters
and factors can be configured; each might affect the outcome
differently. The stated configuration and setup are chosen as
a sample, providing insight into the available options.

7https://docs.aws.amazon.com/s3/, accessed Jan. 5, 2023

VOLUME 11, 2023 25727



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

TABLE 1. Provided streams (representations) by the origin server in the
experimental setup.

We compared the performance of different ABR algo-
rithms and two widely used media players for the HLS and
MPEG-DASH. Inspired by the work in [21], we have selected
six representations, shown in Table 1. The selection covers
a range of very low to high-definition quality streams the
server provides for our evaluation. The first representation
(index 1 in the table) has an audio bitrate of 128kbps, which
is higher than the video bitrate; this is not usual. This repre-
sentation is not recommended for a production environment,
but here we use it for the sake of testing corner cases. The
last representation (index 6 in the table) provides a video
resolution of 1920× 1080 which is higher than the restricted
view-port as mentioned in IV-B and also, in the P.1203model,
defined the view-port as such. If the media player requests
content with a higher resolution than what it is restricted to,
it can negatively affect the QoE by risking the introduction
of unwanted stall events. And at the same time, the P.1203
model does not give any credit when a higher-than-viewport
video content resolution is played. When such requests are
observed in the stored logs of the testbed, it can be considered
room for improvement in the media player.

We have set four target latencies (TL) in our experiments
according to the claim in [22] that 1s, 3s, 5s, and 10s latencies
are the most expected TLs in live streaming scenarios.

The duration of individual experiments is equal to the
length of provided network profiles, 420 seconds. We did
three runs for each scenario, i.e., ABR algorithm, a network
profile, and the target latency. Each media player was tested
in an isolated network, and there was no competition over the
available bandwidth between the media players as a single
separated server was serving each. The configuration for
FFmpeg8 as our encoder and packager was identical among
all the experiments, as shown in Table 3. In the following,
we will describe the setup with details for the experiments.

A. CLOUD ENVIRONMENT
According to the number of concurrent tasks we have
defined for the server, we have selected a m5ad.12xlarge
size EC2 instance. This instance provides a 10 Gbps net-
work bandwidth suitable for our experiments. Amazon m5ad
instances feature AMD EPYC 7000 series processors with
an all-core turbo clock speed of 2.5 GHz. The 12xlarge
instance has 48 CPU cores and 192 GiB of available mem-
ory. With Amazon m5ad EC2 instances, local NVMe-based
SSDs are physically connected to the host server and provide

8https://ffmpeg.org, accessed Jan. 5, 2023

block-level storage coupled to the instance’s lifetime. The
selected instance size has two SSD volumes of 900 GB.

For the clients in our test environment, we have selected
m5ad.2xlarge, which benefits from the same capabilities as
the server node but with fewer resources. This instance pro-
vides up to 10 Gpbs network bandwidth. There are 8 CPU
cores and 32 GiB of available memory for client instances
with one SSD volume of 300 GB.

B. MEDIA PLAYERS
We have integrated two well-known media players to sup-
port the evaluation of MPEG-DASH and HLS streaming.
For MPEG-DASH, we have used dash.js media player
version 4.4.1, and for HLS, we have used hls.js media
player version 1.2.0. Both players have been placed in a
simple HTML file with a Video element, which restricts
the view-port resolution to 1280 × 720. Via a native
API integration, we then listen for all the events fired by
the HTML video element and, alongside the occurrence
timestamps, store them in the database through the HTTP
server instantiated on the client EC2 instances. We have
enabled the low-latency mode on both players. For dash.js,
we signal the TL and the playback rates without further
modification on the media player defaults through the man-
ifest file. For hls.js, we set the following configuration:
startLevel=−1, enableWorker=true, liveSyncDuration=0,
liveMaxLatencyDuration=[TL], testBandwidth=true, low
LatencyMode=true, and abrController.targetLatency=[TL].

We have tried to minimize the changes in media players’
configurations and leave the default values as they are. There
might be possible adjustments and tuning on bothmedia play-
ers, which would lead to better results than what is presented
in Section V.

C. ABR ALGORITHMS
Three ABR algorithms have been prepared for our experi-
mental evaluations in combination with the two media play-
ers. The default algorithms for both dash.js and hls.js have
been used, plus the L2A-LL and LoLP algorithms, which are
explained in the following subsections.

1) Learn2Adapt-LowLatency
According to the published work in [23], Learn2Adapt-
LowLatency (L2A-LL) is a novel bitrate adaptation algorithm
based on online learning and the Online Convex Optimiza-
tion (OCO) theory that is a general framework for deci-
sion making which leverages convex optimization to allow
for efficient algorithms, tailored for low-latency streaming.
It performs well over a broad spectrum of network profiles
in real experiments due to its design principle: its ability to
learn. It does so without requiring parameter tuning, modifi-
cations according to application type, statistical assumptions
for the channel, or throughput estimation. The robustness
property of L2A-LL allows it to be classified in the small
set of bitrate adaptation algorithms that mitigate the main

25728 VOLUME 11, 2023



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

FIGURE 6. Average latency and predicted MOS comparison of three ABR algorithms implemented on dash.js media player with four given
target latencies and five network profiles (Note that average latency range is from 0 to 20 seconds).

FIGURE 7. Average latency and predicted MOS comparison of three ABR algorithms implemented on hls.js media player with four given target
latencies and five network profiles (Note that average latency range is from 0 to 40 seconds).

VOLUME 11, 2023 25729



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

TABLE 2. LLL-CAdViSE raw results of low-latency live streaming with MPEG-DASH. Each row represents average values for three experiments.

25730 VOLUME 11, 2023



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

TABLE 3. Origin server encoder and packager configuration parameters
in the experimental setup.

limitation of existing HAS approaches: the dependence on
statistical models for the unknowns. L2A-LL is lightweight
while concurrently facilitating easy adjustments to consider
other streaming applications and use cases.

2) LOW-ON-LATENCY PLUS
The Low-on-Latency or, in short, LoL ABR algorithm [24]
was a significant step forward in multi-bitrate low-latency
live streaming. Low-on-Latency Plus (LoLP) [25] is the
enhanced version of the LoL ABR algorithm, which tries
to implement improvements in three main areas: LoL used
hard-coded parameters computed from an offline training
process in the rate adaptation algorithm, and this was seen
as a significant barrier in LoL’s wide deployment. Second,
LoL’s objective was to maximize a collective QoE function.
Yet, specific use cases require singular QoE, which had to be
accommodated. Third, the adaptive playback speed control
failed to produce satisfying results in some scenarios. LoLP
is designed explicitly for LLL streaming and delivers good
QoE for any TL.

D. NETWORK PROFILES
We have selected four real LTE network traces [26], plus
a static network profile without limitations on the available
bandwidth, for our experimental setup. The selection covers
various network trace scenarios, i.e., (i) a commuter by train,
(ii) a biker, (iii) a commuter by tram, (iv) a car driver, and
(v) the static network profile called network 0 (net0). All
the network profiles apply a network latency of 80 millisec-
onds, which is an average and typical latency in modern
networks [20]. We have trimmed the network profiles to
420 seconds. The shape of the network profiles are depicted
in Figures 5a, 5b, 5c, and 5d. We have omitted network
0 from the figures since it adds no limitation over the available
bandwidth between the network nodes (i.e., up to 10Gpbs as
described in IV-A).

V. RESULTS AND FINDINGS
To demonstrate the power and potential of evaluating a
low-latency live streaming session with our testbed, LLL-
CAdViSE, we have executed different experiments described

in Section IV. Here we will present the essential findings
and the results from the experimental low-latency live stream-
ing evaluations. The obtained results with minor processing
and in raw format can be found in Table 2 and Table 4,
respectively.

The evaluated media players have taken different
approaches to catch up with the live edge. As presented in
Tables 2 and 4, the playback rate for the hls.js player always
remains one but with a higher overall seek time whereas the
dash.js player has played the content sometimes up to the
max allowed playback rate and in few cases slowed down the
playback speed. None of the approaches has been dictated to
the players as a catch-up logic.

As seen in Figures 6 and 7, MPEG-DASH performs bet-
ter than HLS in providing low-latency in live streaming.
For instance, with a target latency of one second shown in
Figures 6a, and 7a, MPEG-DASH streaming has the highest
average latency of 10.42 with the L2A-LL ABR algorithm
and in the Car network profile. At the same time, HLS can
reach an average latency of 38.81 with the L2A-LL ABR
algorithm and in the Train network profile. This pattern can
also be seen with other defined target latencies. In general,
MPEG-DASH outperforms HLS in low-latency live stream-
ing.

A. MPEG-DASH
The comparison between different low-latency ABR algo-
rithms in terms of achieved latency and the predicted
MOS with the MPEG-DASH standard are shown in Fig-
ures 6a, 6b, 6c, and 6d. We executed experiments, stored
the logs of significant metrics in the database, and plotted
these diagrams to better understand the ABR algorithms’
performance. The blue, red, and green lines represent the
average predicted MOS, and the orange, yellow, and green
bars represent the average latency. The error bars represent
the standard deviation values. As standard deviation is always
a positive integer we have illustrated them in one direction to
save space on the diagrams. We have marked (bold) the best
performance (closest average latency to the TL and highest
QoE score) of ABR algorithms for each TL in Table 2. It has
been discovered that when a target latency is set for media
players, they tend to sacrifice the QoE in favor of achieving
the closest value to the target latency, which might not be the
intention in all cases and could be better configured to serve
the exact need.

According to the experiments and the shown data, when
the network profiles are challenging with lots of fluctu-
ations, e.g., a car driver network profile (Figure 5b), all
algorithms, i.e., the player default algorithm, L2A-LL, and
LoLP are set to prefer providing low quality but deliver
better latency. It can be seen that when the network profile
allows, e.g., in network 0, the MOS values increase while the
latency remains in the target latency range.

It is also observed that in all experimental scenarios, the
LoLP algorithm, unlike the other two algorithms, provides
very low QoE (green line in Figures 6a, 6b, 6c, and 6d), and

VOLUME 11, 2023 25731



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

TABLE 4. LLL-CAdViSE raw results of low-latency live streaming with HLS. Each row represents average values for three experiments.

25732 VOLUME 11, 2023



B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

even when the network profile does not limit the available
bandwidth, i.e., in network 0.
The L2A-LL algorithm assessment results, presented with

bold font in Table 2 for the network 0 profile and the
TL of three seconds, show better performance in deliver-
ing expected latency and providing the highest QoE score
(2.94 seconds and 3.92 MOS), and this is also the case for
almost all other challenging network profiles for this ABR
algorithm in MPEG-DASH low-latency live streaming.

Unlike hls.js, the dash.js media player and the three exam-
ined ABR algorithms for live streaming keep the average
latency very close to the defined target latency in almost all
scenarios, as shown in Figure 6.

Further investigation is advised, e.g., by running more
experiments with each algorithm and with different con-
figurations (which was not the intention of our designed
experiments, but rather the comparison between the ABR
algorithms) and comparing retrieved metrics for a specific
algorithm in order to find out what is the root cause of any
poor decision. Additionally, other metrics, e.g., stall events’
duration or the number of quality switches, shown in Table 2,
can give better insights into where the ABR algorithms could
be improved.

B. HLS
The results and comparisons of achieved latency and the
predicted MOS between the ABR algorithms with HLS
streaming are shown in Figures 7a, 7b, 7c, and 7d. The blue,
red, and green lines represent the average predicted MOS,
and the orange, yellow, and green bars represent the aver-
age latency. The error bars represent the standard deviation
values. As standard deviation is always a positive integer
we have illustrated them in one direction to save space on
the diagrams. We have marked (bold) in Table 4 the best
performance (closest average latency to the TL and highest
QoE score) of ABR algorithms for each TL.

An immediate observation is that the defined target latency
(set by abrController.targetLatency) is not honored by hls.js
and the plugged algorithms. In some cases, such as shown
in Figure 7c, the algorithms have more difficulties with the
Train commuter network profile (Figure 5c).
The average latencies for HLS live streaming proved

higher when the TL is set to be one second and with the
network 0 profile. On the other hand, when the TL is set to
ten seconds, the achieved latency with network 0 is less than
ten. This indicates that hls.js with our simple configuration
(refer to Section IV) has other priority parameters and factors
rather than being dictated by a defined TL.

As seen in Table 4, the MOS values for all ABR algo-
rithms and network profiles except for the network 0 profile
in HLS streaming remain very low. This leaves room for
major improvement, specifically when the network profiles
are more challenging.

The LoLP algorithm assessment results inHLS low-latency
live streaming, presented with bold font in Table 4 for the
network 0 profile and the TL of three seconds, show better

performance in delivering the expected latency and providing
the highest QoE score (2.54 seconds and 4.28 MOS) in com-
parison with other ABR algorithms and with other network
profiles and defined TLs.

VI. CONCLUSION
As the main contribution, this paper introduces our sophisti-
cated cloud-based and open-source testbed, LLL-CAdViSE,
a framework for evaluating HAS from different perspectives.
LLL-CAdViSE provides multiple functionalities, i.e., eval-
uations of live media streaming significant metrics such as
stall events and quality switches, precise measurement of
media streaming E2E latency, assessment of objective QoE,
and helps with preparation of a single media file to fur-
ther investigate the possible defects in the experimental live
streaming session. As a second contribution, we extensively
tested well-known media players and ABR algorithms using
LLL-CAdViSE. The results show that the L2A-LL ABR
algorithm plugged into the dash.js media player and using
MPEG-DASH low-latency live streaming outperforms other
ABR algorithms in providing the closest latency to a target
latency and maintaining a high QoE score. Our testbed is
publicly available on GitHub with the following link and can
be used for the evaluation of different live media streaming
scenarios, media players, and ABR algorithms:

� https://github.com/cd-athena/LLL-CAdViSE

REFERENCES
[1] Ericsson. (2022). Ericsson Mobility Report. [Online]. Available:

https://www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-
report/documents/2022/ericsson-mobility-report-november-2022.pdf

[2] C. Mueller. (2018). Low Latency Streaming: What is It and How Can
It be Solved? [Online]. Available: https://bitmovin.com/cmaf-low-latency-
streaming/

[3] (IETF). (2022). HTTP/1.1. [Online]. Available: https://
httpwg.org/specs/rfc9112.html

[4] Information Technology—Dynamic Adaptive Streaming Over HTTP
(DASH), Standard 23000-19:2020, 2020. [Online]. Available:
https://www.iso.org/standard/79106.html

[5] Information Technology—Dynamic Adaptive Streaming Over
HTTP (DASH), Standard 23009:2022, 2022. [Online]. Available:
https://www.iso.org/standard/65274.html

[6] R. Pantos and W. May. (2017). HTTP Live Streaming. [Online]. Available:
https://www.rfc-editor.org/info/rfc8216

[7] Parametric Bitstream-Based Quality Assessment of Progressive Download
and Adaptive Audiovisual Streaming Services Over Reliable Transport—
Video Quality Estimation Module, Standard 1203. [Online]. Available:
http://handle.itu.int/11.1002/ps/P1203-01

[8] A. Zabrovskiy, E. Kuzmin, E. Petrov, C. Timmerer, and C. Mueller,
‘‘AdViSE: Adaptive video streaming evaluation framework for the auto-
mated testing of media players,’’ in Proc. 8th ACMMultimedia Syst. Conf.
New York, NY, USA: Association for Computing Machinery, Jun. 2017,
pp. 217–220, doi: 10.1145/3083187.3083221.

[9] B. Taraghi, A. Zabrovskiy, C. Timmerer, and H. Hellwagner, ‘‘CAdViSE:
Cloud-based adaptive video streaming evaluation framework for the auto-
mated testing of media players,’’ in Proc. 11th ACM Multimedia Syst.
Conf., May 2020, pp. 349–352, doi: 10.1145/3339825.3393581.

[10] J. Aguilar-Armijo, B. Taraghi, C. Timmerer, andH.Hellwagner, ‘‘Dynamic
segment repackaging at the edge for HTTP adaptive streaming,’’ in
Proc. IEEE Int. Symp. Multimedia (ISM), Dec. 2020, pp. 17–24, doi:
10.1109/ISM.2020.00009.

[11] M. Nguyen, B. Taraghi, A. Bentaleb, R. Zimmermann, and C. Timmerer,
‘‘CADLAD: Device-aware bitrate ladder construction for HTTP adap-
tive streaming,’’ in Proc. 18th Int. Conf. Netw. Service Manag. (CNSM),
Oct. 2022, pp. 198–204, doi: 10.23919/CNSM55787.2022.9964669.

VOLUME 11, 2023 25733

http://dx.doi.org/10.1145/3083187.3083221
http://dx.doi.org/10.1145/3339825.3393581
http://dx.doi.org/10.1109/ISM.2020.00009
http://dx.doi.org/10.23919/CNSM55787.2022.9964669


B. Taraghi et al.: LLL-CAdViSE: Live Low-Latency Cloud-Based Adaptive Video Streaming Evaluation Framework

[12] P. Pegus, E. Cecchet, and P. Shenoy, ‘‘Video BenchLab: An open
platform for realistic benchmarking of streaming media workloads,’’
in Proc. 6th ACM Multimedia Syst. Conf. New York, NY, USA:
Association for Computing Machinery, Mar. 2015, pp. 165–176, doi:
10.1145/2713168.2723145.

[13] R. Ramos-Chavez, R. Mekuria, T. Karagkioules, D. Griffioen, A. Wage-
naar, and M. Ogle, ‘‘MPEG NBMP testbed for evaluation of real-time
distributed media processing workflows at scale,’’ in Proc. 12th ACM
Multimedia Syst. Conf. New York, NY, USA: Association for Computing
Machinery, Jul. 2021, pp. 173–185, doi: 10.1145/3458305.3463380.

[14] Information Technology—-Coded Representation of Immersive Media—-
Part 8: Network Based Media Processing, Standard 23090-8:2020, 2020.
[Online]. Available: https://www.iso.org/standard/77839.html

[15] D. Stohr, A. Frömmgen, A. Rizk, M. Zink, R. Steinmetz, and
W. Effelsberg, ‘‘Where are the sweet spots? A systematic approach to
reproducible DASH player comparisons,’’ in Proc. 25th ACM Int. Conf.
Multimedia. New York, NY, USA: Association for Computing Machinery,
Oct. 2017, pp. 1113–1121, doi: 10.1145/3123266.3123426.

[16] P. K. Yadav, A. Bentaleb, M. Lim, J. Huang, W. T. Ooi, and
R. Zimmermann, ‘‘Playing chunk-transferred DASH segments at low
latency with QLive,’’ in Proc. 12th ACMMultimedia Syst. Conf.NewYork,
NY, USA: Association for Computing Machinery, Jul. 2021, pp. 51–64,
doi: 10.1145/3458305.3463376.

[17] M. Taha, J. Lloret, A. Ali, and L. Garcia, ‘‘Adaptive video streaming
testbed design for performance study and assessment of QoE,’’ Int. J.
Commun. Syst., vol. 31, no. 9, p. e3551, Jun. 2018, doi: 10.1002/dac.3551.

[18] M. Abdullah, ‘‘A novel CDN testbed for fast deploying HTTP adaptive
video streaming,’’ inProc. 9th EAI Int. Conf.MobileMultimedia Commun.,
2016, pp. 65–71, doi: 10.4108/eai.18-6-2016.2264163.

[19] B. Taraghi, M. Nguyen, H. Amirpour, and C. Timmerer, ‘‘Intense: In-
depth studies on stall events and quality switches and their impact on the
quality of experience in HTTP adaptive streaming,’’ IEEE Access, vol. 9,
pp. 118087–118098, 2021, doi: 10.1109/ACCESS.2021.3107619.

[20] B. Taraghi, A. Bentaleb, C. Timmerer, R. Zimmermann, and
H. Hellwagner, ‘‘Understanding quality of experience of heuristic-
based HTTP adaptive bitrate algorithms,’’ in Proc. 31st ACM Workshop
Netw. Operating Syst. Support Digit. Audio Video, Jul. 2021, pp. 82–89,
doi: 10.1145/3458306.3458875.

[21] B. Taraghi, H. Amirpour, and C. Timmerer, ‘‘Multi-codec ultra high defini-
tion 8KMPEG-DASH dataset,’’ in Proc. 13th ACMMultimedia Syst. Conf.
New York, NY, USA: Association for Computing Machinery, Jun. 2022,
pp. 216–220, doi: 10.1145/3524273.3532889.

[22] Bitmovin. (2022). The 6th Annual Bitmovin Video Devel-
oper Report. [Online]. Available: https://bitmovin.com/wp-
content/uploads/2022/12/bitmovin-6th-video-developer-report-2022-
2023.pdf

[23] T. Karagkioules, R. Mekuria, D. Griffioen, and A. Wagenaar, ‘‘Online
learning for low-latency adaptive streaming,’’ in Proc. 11th ACM Mul-
timedia Syst. Conf. New York, NY, USA: Association for Computing
Machinery, May 2020, pp. 315–320, doi: 10.1145/3339825.3397042.

[24] M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann,
‘‘When they go high, we go low: Low-latency live streaming in dash.js
with LoL,’’ in Proc. 11th ACM Multimedia Syst. Conf. New York, NY,
USA:Association for ComputingMachinery,May 2020, pp. 321–326, doi:
10.1145/3339825.3397043.

[25] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann,
‘‘Catching the moment with LoL+ in twitch-like low-latency live stream-
ing platforms,’’ IEEE Trans. Multimedia, vol. 24, pp. 2300–2314, 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9429986

[26] J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, ‘‘HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks,’’ IEEE Commun. Lett., vol. 20, no. 11,
pp. 2177–2180, Nov. 2016, doi: 10.1109/LCOMM.2016.2601087.

BABAK TARAGHI (Member, IEEE) received
the bachelor’s degree in information technology,
in 2015, and the M.S. degree in software engi-
neering from the University TechnologyMalaysia,
in 2017. He is currently pursuing the Ph.D.
degree with the Institute of Information Technol-
ogy (ITEC), Alpen-Adria-Universität Klagenfurt
(AAU), with the ATHENA Project with a focus
on adaptive video streaming. He possesses a strong
background in software development engineering

with many years of professional experience in software solution design
and construction. His research interests include multimedia communication,
streaming, adaptation, and the quality of experience. Further information is
available at https://tiny.one/tbabak

HERMANN HELLWAGNER (Senior Member,
IEEE) is currently a Full Professor of computer
science with Alpen-Adria-Universität Klagenfurt
(AAU), where he leads the Research Group
Multimedia Communication (MMC), Institute of
Information Technology (ITEC). Earlier, he held a
position as an Associate Professor with the Tech-
nical University of Munich (TUM) and a Senior
Researcher with Siemens Corporate Research,
Munich. He has published widely on parallel com-

puter architecture, parallel programming, and multimedia communication
and adaptation. His current research interests include distributed multimedia
systems, multimedia communication and adaptation, QoS/QoE, and commu-
nication in multi-UAV networks. He was a member of the Scientific Board
of the Austrian Science Fund (FWF) from 2005 to 2016 and the FWF Vice
President from 2013 to 2016. He is currently a Senior Member of the ACM.
He is also a member of the CD Senate of Christian Doppler Forschungsge-
sellschaft (CDG). Further information is available at https://www.itec.aau.at/
hellwagn/

CHRISTIAN TIMMERER (Senior Member,
IEEE) is currently a Full Professor of computer
science with the Institute of Information Technol-
ogy (ITEC), Alpen-Adria-Universität Klagenfurt
(AAU), and also the Director of the Christian
Doppler (CD) Laboratory ATHENA. His research
interests include multimedia systems, immersive
multimedia communication, streaming, adapta-
tion, and the quality of experience, where he has
coauthored seven patents and more than 300 arti-

cles. He was the General Chair of WIAMIS 2008, QoMEX 2013, MMSys
2016, and PV 2018, and has participated in several EC-funded projects,
notably DANAE, ENTHRONE, P2P-Next, ALICANTE, SocialSensor,
COST IC1003 QUALINET, ICoSOLE, and SPIRIT. He also participated
in ISO/MPEG work for several years, notably in the area of MPEG-21,
MPEG-M, MPEG-V, and MPEG-DASH, where he also served as a Standard
Editor. In 2012, he has cofounded Bitmovin to provide professional services
around MPEG-DASH, where he holds the position of the Chief Innovation
Officer (CIO)—the Head of Research and Standardization. Further informa-
tion is available at http://timmerer.com

25734 VOLUME 11, 2023

http://dx.doi.org/10.1145/2713168.2723145
http://dx.doi.org/10.1145/3458305.3463380
http://dx.doi.org/10.1145/3123266.3123426
http://dx.doi.org/10.1145/3458305.3463376
http://dx.doi.org/10.1002/dac.3551
http://dx.doi.org/10.4108/eai.18-6-2016.2264163
http://dx.doi.org/10.1109/ACCESS.2021.3107619
http://dx.doi.org/10.1145/3458306.3458875
http://dx.doi.org/10.1145/3524273.3532889
http://dx.doi.org/10.1145/3339825.3397042
http://dx.doi.org/10.1145/3339825.3397043
http://dx.doi.org/10.1109/LCOMM.2016.2601087

