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ABSTRACT The detection of community structures is a very crucial research area. The problem of com-
munity detection has received considerable attention from a large portion of the scientific community. More
importantly, these articles are spread across a large number of different disciplines, from computer science,
to statistics, and social sciences. The analysis of modern social networks becomes rather cumbersome,
as their size and number keeps growing larger and larger. Moreover, in the modern communities, users
participate in large number of groups. From the network perspective, efficient methods should be developed
to automatically identify overlapping communities, that is, communities with overlapping nodes. In this
work, we use a probabilistic network model to characterize and identify linked communities with common
nodes. The innovative idea in this work is that the communities are represented as Markovian networks
with continuously changing states. Each state represents the number of users within a cluster, that have
specific characteristic classes. Based on the current state, we introduce a fast, linear on the number of newly
added users, approach to estimate the probability of each cluster to be homogeneous in terms of sets of
user characteristics and to determine how well the new user fit within a community. Because of the linear
computations involved, our proposed probabilistic model can detect communities and overlaps with low
execution time and high accuracy, as shown in our experimental results. The experimental results have shown
that our probabilistic scheme executes faster and provides more robust communities compared to competitive
schemes.

INDEX TERMS Community detection, social networking, closed networks, linear complexity.

I. INTRODUCTION

Nowadays, more than ever before, the social media and
the social communities produce vast data amounts, which
are used in a variety of ways: Recommendation engines,
marketing, crime detection. Examples abound: Innovative
companies like Netflix and Amazon have used predictive
analytics for years as their basis to develop highly accurate
recommendation systems (like the products recommended
by Amazon or the movies and television shows suggested
specifically to each Netflix customer). The data collected by
users as they browse Facebook or Instagram is used to match
them with a large number of companies which offer products
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and services that, based on statistical models, they would
probably be interested. Facebook and Instagram maintain
the biggest and most comprehensive databases of personal
information. These databases are expanding rapidly every
day.

The meaningfulness and usability of the data retrieved
from the social networks depend highly on the existing rela-
tionships among the social media users. Apparently, peo-
ple that follow the same groups are likely to be suggested
similar products or services. In other words, the extraction
of meaningful relationships among the billions of the social
media provides high value to many applications. The com-
munity detection paradigm mainly uses datasets that include
the likes, the opinions, and the current relationships among
social media users, in order to detect underlying clusters
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and to verify the accuracy of the already formed clusters
within an entire network. In this regard, community detection
can facilitate the uncovering of hidden relationships between
social network users and it has nowadays become one of the
most important research areas in the field of computing and
social networking.

The typical view of a community is that it is a set of user
profiles of same interests and likes. Such a community keeps
enlarging by searching, proposing and adding new members
with the same characteristics, that are likely to interfere with
the existing members. Typically, the social communities are
represented as clusters of an entire network. Most of the
community detection techniques are based on modeling the
communities as graph structures [1]. The analysis of modern
social networks becomes rather cumbersome, as their size
and number keeps growing larger and larger, the network
topologies are rather irregular (which causes difficulties in
balancing the computational load among the available pro-
cessors) and the networks themselves are regularly updated
(users of one community join more communities or depart
from certain communities). In this sense, it is necessary to
apply more computationally efficient strategies to reduce the
excessive computational costs.

In this work, we present a new approach to community
detection, which is based on modeling communities as prob-
abilistic networks. In this way, we can introduce conditional
dependencies among clusters within a community and iden-
tify possible overlaps, which can be considered as new com-
munities or overlapping communities. The main idea is to
split the communities into small clusters and to examine the
probability of user transitions (a transition here means that
a user may fit better to another cluster than the one he/she
currently belongs) from one cluster to another. The main
contributions of our work are the following:

1) It proposes a model where the computations involved
are linear.

2) The model can be extended to a large number of clus-
ters and users because users with similar characteristics
can be handled in a similar manner.

3) The model provides strict rules which determine in
which cases there are overlaps.

4) The simulation results indicate that it can produce
robust and homogeneous, in terms of user character-
istics, clusters.

The rest of this paper is organized as follows: Section II
presents the related work on community detection. Section 111
presents the preliminaries of our work and the problem for-
mulation. In Section IV, we present the details of our proba-
bilistic community detection scheme. In Section V we present
and discuss our experimental results. Section VI concludes
this work and present aspects for future work.

Il. RELATED WORK
Typically, a community can be defined as a set of users with
similar characteristics, opinions and likes [1], [2]. The nodes
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of a community are quite similar to each other and dissimilar
to nodes outside the community [3]. However, there are cases
where there may be considerable similarities among users of
different communities. In this sense, these users can possibly
be members of the same community. In other words, commu-
nities may be overlapping, that is, they may include common
members. Researchers in the field of community detection
focus their efforts on finding such overlaps because the con-
nections between multiple members of different communities
may be a strong indication that these communities may well
be joined to a single one. Although there has been some
work on disjoined communities (a good example is the work
of Staudt and Meyerhenke in [4]), the majority of the latest
algorithms study the problem of overlapped communities.

In this section, we divide the community detection schemes
into three main categories: graph-based (GB), machine learn-
ing (ML), and Probabilistic network schemes. Also, differ-
ent approaches exist: for example, in [5] the authors define
a community as a set of nodes spanning the same sub-
space. A community is differentiated from another commu-
nity based on the difference of the subspace spanned by each.

The GB schemes are strictly based on graph theory
and data structures while the ML schemes introduces ML
approaches for community detection. Our proposed work
belongs to the probabilistic community detection category.

A. GRAPH-BASED SCHEMES

The graph-based schemes can be divided into two categories:
(a) top-down approaches and (b) bottom-up approaches. The
top-down approaches divide the overall network into small
groups, in order to detect communities (link partitioning).
In [6], the authors proposed the Weighted Community Cluster-
ing (WCC), which computes the level of cohesion of a set of
nodes S. A similar triangle-based approach, called k —mutual-
friend subgraph was also used in [7]. Another solution to
the aforementioned issue is the use of a measure called the
“belonging degree”, a measure which is based on the link
coefficients and indicates how well a node fits within a com-
munity. Specifically, in [8] and [9] the nodes are considered
to be parts of a community by comparing the belonging
degrees to pre-specified threshold values. The picaso strategy
introduced by Qiao et al. [10] is another top-down approach
which detects overlapping communities using a modularity-
based mountain model. Specifically, the network is divided
into chain groups (top-down) which are sorted by the weights
of edges. Based on the community features, some edges fall
down and others raise like mountains. New communities are
formed by the mountains produced. An update-modularities
phase is also included.

The bottom-up approaches start from local structures and
expand to the overall network. While this process expands,
more communities are formed. Optimization bottom-up
approaches have been used for community detection. Gen-
erally, these strategies consider communities as subgraphs
identified by the maximization of a measure called the nodes
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fitness. This measure is based on the total internal and exter-
nal degrees of the nodes of a group (or module). The aim of
optimization schemes is start from a specified node and to
find subgraphs such that the fitness value is lowered upon
the inclusion or elimination of a new node [11], [12], [13],
and [14]. The label propagation is a bottom-up approach,
which assigns labels to previously unlabeled data points.
It starts from a few labeled nodes and while proceeding,
the nodes adopt the labels currently used by the majority of
the neighboring nodes [3], [15]. Another interesting label-
based approach is [16], where the authors use a binary label-
based representation scheme and propose an evolutionary
computation-based algorithm called evolutionary-based local
community detection (ELCD) algorithm to detect local com-
munities in complex networks. Finally, the clique percolation
bottom-up approaches assume that a community consists of
fully connected subgraphs, may overlap. The community
detection is based on searching and identifying neighboring
cliques. Initially, all the cliques in the network are found and
represented in the graph by a vertex. When two cliques share
a predefined number of members, then their corresponding
vertices are connected. Thus, connected vertices on the graph
represent network communities [17], [18], and [19]. The
approach of using subgraphs and representing them as a
single node will be used in this work as well.

B. MACHINE LEARNING SCHEMES

A more recent trend in community detection uses ML strate-
gies [20]. Although the majority of works that use ML
do not focus on overlapping communities, there are cer-
tain approaches that have been employed. The Autoencoders
(AEs) and variational graph autoencoders (VGAEs) are very
common in community detection because of their ability
to represent efficiently nonlinear real-world networks. The
deep neural network based auto-encoders are used to learn
data codings (representations of data sets) in an unsupervised
manner [21], [22], [23], [24], [25], [26]. An interesting
AE-based approach to the detection of overlapping commu-
nities is DeCom [27]. The idea is to use autoencoder pipelines
to extract overlapping communities in large-scale networks.
The DeCom strategy is composed of 3 phases: The first
phase is the seed selection phase, where the features of the
network’s vertices are learned in a stepwise greedy approach.
In the second phase, the topology is learned; the goal here
is to get multiple communities in a completely unsupervised
manner, where each community is defined by the seed. The
communities are expanded from each seed using a random
walk with the seed as the starting point. In the third phase, the
formed clusters are refined by modularity optimization. The
network structure is reconstructed and better representations
are detected. Similar approaches are found in [28], [29]. The
main advantages of the auto-encoder based method is that it is
a good method to overcome the efficiency problems of linear
optimization and to combine the topology and node content
information, which are considered as objective functions of a
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linear model. Also, they work very well when we try to map
data points into the lower dimensional spaces.

The Graph Neural Networks (GNNs) are also used in
community detection and they are a powerful tool used to
extract the spatial localization. The GNNs are particularly
useful in cases where the numbers of nodes connections vary
and the nodes are not ordered (irregular on non-Euclidean
structured data). Their main drawback is that the overall
performance degrades as more graph convolutional layers are
added. This affects the quality of the neighbor propagation.
The reason behind this issue is that the addition of many con-
volutional layers is similar to multiple Laplacian smoothing
procedures. This in fact smooths the node features and the
nodes from different clusters become indistinguishable (in the
sense that their attribute values converge and they become
equal). To resolve this issue, many proposed strategies try
to keep the number of layers to relatively small numbers
(up to three). Some examples are [30], [31], [32]) An inter-
esting work based on GNNs is found in [32]. The authors
addressed the issue of overlapping communities using four
datasets as benchmark. They combine the GNNs with the
Bernoulli-Poisson model which is able to produce a variety of
community topologies (e.g. nested, hierarchical) and lead to
dense overlaps between communities. The main advantage of
the GNN approaches is that they consider both data structure
and node features as they can encode the graph structure and
node features for the representation. This information is very
important in data representation learning.

Recently, the Generative adversarial networks (GANSs)
have been introduced to community detection problems. Typ-
ically, the GANs combine two neural networks: a generator
and a discriminator. The latter discriminates if an input sam-
ple comes from the prior data distribution or from the genera-
tor and the former is trained to generate the samples in such a
way that the discriminator is convinced that the samples come
from a prior data distribution. The main drawback of GANs is
that they cannot handle dense overlapping. An idea to resolve
this issue is to combine the effective GANS with affiliation
graph models (AGM), which can model densely overlapping
community structures. Thus, the performance of GANs and
the direct vertex-community membership representation of
AGMs join forces to solve the dense overlapping issues.
An interesting such approach is [33], which jointly solves
overlapping community detection and graph representation
learning. Two models are trained: a generator that tries to
produce a vertex subset to compose a motif (clique) and a
discriminator which tries to deduce if the vertex subset is
a real or unreal motif. The two models are combined by
participating in a game where the generator tries to fool
the discriminator by approximating a conditional probability
value (the preference distribution of motifs covering an edge
over all the remaining motifs), in order to produce the vertex
subsets which are closer to the real motifs covering a spe-
cific edge. Accordingly, the discriminator distinguishes the
ground-truth motifs from the ones produced by the generator.
Given the distribution samples and the samples produced by
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the generator, the discriminator tries to maximize the prob-
ability of correct classification of these samples. A similar
approach can be found in [33]. The Deep learning strategies
(AE- or GNN- based) focus on preserving the structure rela-
tionship and generally ignore the latent data distribution of the
representation. Using GANSs, the new data generated have the
same distribution as real data, and this is a powerful tool for
analyzing network data.

There are two important disadvantages of the ML strate-
gies, which still need to be addressed: (1) Their vast majority
do not deal with overlapped communities, and (2) The anal-
ysis of modern social networks with ML schemes becomes
rather cumbersome, as their size and number keeps growing
larger and larger. Generally, there is still a growing need for
overlapping community detection algorithms that do not fail
to scale linearly with the increasing number of users and
the growing complexity of their relationships. Although ML
strategies can produce more accurate results compared to
probabilistic schemes, these aforementioned issues are still
a burden and subject of future concern. A detailed analysis of
machine learning community detection schemes can be found
in [34].

C. PROBABILISTIC COMMUNITY DETECTION

The probabilistic community detection is based on the idea
of computing the probability of a node to be a member of
a community. To do so, some form of a probabilistic model
is employed [35]. Several probabilistic methods have been
proposed: in [36], the authors proposed the First Passage
Probability Method (FPPM) strategy, which is equipped with
a similarity measure that incorporates the complete structural
information within the maximal step length. The diameter
of the network is chosen as an appropriate boundary of ran-
dom walks, which is adaptive to different networks. In [37],
the authors proposed a PDS (probabilistic data structure)
which is used to reduce the memory requirements for stor-
age and the time required to retrieve and process the data
related to community detection. They proposed a Bloom
filter has been used for clustering and Quotient filter has
been used for storage and access of cluster nodes. In [38],
the authors propose a unified Bayesian generative model to
detect generalized communities. An efficient Markov chain
Monte Carlo MCMC) algorithm is proposed in [39], which
makes clear the need to perform reversible jump MCMC
on the number of clusters. PODCD [40] is another proba-
bilistic method, which considers the task of detecting com-
munities as a non-negative matrix factorization problem.
The proposed method considers the more likely assumption
of dense connections between communities and utilizes a
probabilistic model to control the dynamics of community
structure.

Generally, a disadvantage of the probabilistic methods is
that they consider random walks of maximum length. This
poses difficulties in distinguishing the cluster and topology
information. Also, this approach can be very expensive in
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terms of execution time. The proposed methods that were
discussed in this paragraph try to resolve this issue by
employing random walks with a fixed number of steps. This
may improve the situation, however there is no fixed number
of steps that can be employed universally for all the existing
clusters, because of their different sizes and their irregular
topologies. A different approach, which was proposed in [36]
uses the cluster diameter. Again, there may be differences
between different cluster, but this method at least can give
a clear picture of the cluster topology and works relatively
faster.

Our proposed scheme is a Markov-based probabilistic
model, which consider each cluster as a probabilistic network
with changing states. For all the possible states, we perform
linear computations to find the probability of having pure (or
homogeneous) clusters, based on their dominant classes of
characteristics. Then, we use the current statistics of each
cluster combined with the computer probabilities, to deter-
mine if the newly added users fit better to one cluster or
another, or if they should form a new cluster. In this way,
we avoid heavy computations and issues regarding the topol-
ogy of each cluster. We summarize the main advantages of
our probabilistic scheme as follows:

1) The computations involved are linear.

2) The model can be employed for any topology.

3) We do not need to perform random walks, instead we
only need to examine the connections of the newly
added users within and outside a given cluster.

lll. PRELIMINARIES

Let G = (V,E) be a weighted, undirected graph, where
V and E are the sets of nodes and edges, respectively.
Nodes represent users and edges represent the relation-
ship between two users (e.g., friendship in Facebook). The
similarity matrix s(x,y) is a matrix that shows the extent
to which a group of i classes of user characteristics (the
term ‘‘characteristics’ includes features, opinions, likes etc)
are similar between users x and y. Each class has m dis-
crete characteristics (for example, a class of characteris-
tics regarding education, a class of characteristic regarding
employment etc).

Each value of s(x,y) value lies in the interval [0...1].
As will be described in the Experimental Results and Dis-
cussion section, such classes of user data can be found in the
real data sets collected for various social networks. In the
example of Fig. 5, there are 3 community clusters with a
total of 14 users. There are i = 3 classes of characteristics.
For users 0 and 1, we have: s(0,1) = [0.8,0.7,0.88. The
following subsection provides the necessary definitions.

A. DEFINITIONS USED IN THIS WORK

Definition 1: The connectivity degree C of a cluster c is
a matrix indexed [0, ..., i — 1] (i elements) that stores the
average values of the class similarities among all the cluster
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couples (x, y), that is:

Si(.x, y)
n(x, y)

Cc) = Z

for all i
all pairs .y

ey

where n(x, y) is the number of user pairs within a cluster c.
For the example of Fig. 5, for cluster 0 we have:
C(0)

. |:O.8 +0.75+0.8 0.740.84+0.7 0.88+0.9+ 0.85:|

3 ’ 3 3
— [0.78.0.73. 0.87].

Definition 2: The dominant class, i., within a cluster ¢
is the class whose value dominates the values of the other
classes of characteristics within the cluster. It indicates which
class characteristic is the one that more strongly relates the
members of a cluster.

For cluster O of Fig.5, the class i = 2 dominates the
values of classes i = 0 and i = 1: for pair (0,1): 0.7 <
0.8 < 0.88, for pair (0,3): 0.75 < 0.8 < 0.9, for pair (2,3):
0.7 < 0.8 < 0.85.

Definition 3: The belonging degree B.(x) of a specific
user X to a cluster c is the ratio of the average class values
of x within c to the average of the class values of x outside c:

> silx,y)/ex

all pairs (x,y) within ¢
B.(x) = ; 2

D silx, y)/é

all pairs (x,y) outside ¢

where (x, y) are all the links involving a specific user x e(x)
is the number of links of this user within cluster ¢ and €’(x) is
the number of links of x outside c.

For the example of Fig. 5, we have three classes and for
node 3 we have:

Bo@3) = [(0.8 + 0.75)/2’ (0.7 +0.8)/2 (0.9 + 0.85)/2}
0.9/1 0.85/1 0.88/1

_ [0.775 0.75 0.875

_[ 0.9 " 0.85" 0.88

3

] — [0.86, 0.88, 0.99]

By its definition, the belonging degree can show if a user is
more strongly linked to a different cluster than the one he/she
currently belongs:

o If all the elements of the matrix B.(x) > 1, then the user
is absolutely more related to cluster c.

o If at least the dominant class value in B.(x) > 1, then
the user is more strongly related to cluster ¢ based on
the dominant class of characteristics.

o If the dominant class value in B.(x) < 1, then the user
is more strongly related to another cluster, other than c,
with a different dominant class of characteristics than the
one found in c.
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\[ L 14 //
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Cluster 2

FIGURE 1. A community with 3 clusters.

o If B.(x) < 1 for all the elements of this matrix, then this
user is more closely related to a different cluster, other
than c.

In our example, user 3 has a belonging degree of [0.86,
0.88, 0.99] which indicates that means that he/she is more
strongly linked to cluster 2, based on class i = 0. In this case,
since class 0 dominates in cluster 2, then a transition of user 3
to cluster 2 is necessary. The definition of transition is given
next:

Definition 4: A transition is a movement of one user from
a cluster to another, based on its belonging degree. Such
a movement will change the status of the overall network,
as will be described later in the following subsection, where
we typically formulate the problem.

B. PROBLEM FORMULATION

In this work, we represent the network as a Markovian net-
work. The state of this network can be defined by a vector
N = (Ny, Ny, N> ...N;_1), where N; is the number of users
whose dominant class of characteristics is i. These users may
initially be found in different clusters for the simple reason
that a user is linked to a community due to a relationship with
current community members and he/she is surely unaware
of the characteristics of all the other community members.
It is known that a Markov proposes model is irreducible, that
is, each state can be reached from any other state with non-
zero probability. Therefore, there exists an equilibrium state
probability distribution:

No N Ni_

P(N)=P00P11 "'P,-_ll 3)
where p; are the probabilities of each state. The equilib-
rium describes the fact that the probability of transitioning
from a state N to any other state equals the probability of
transitioning from any other state to N. Also, the well-known
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TABLE 1. Notations used in this paper.

Notation Description

G = (V,E) | A weighted, undirected graph

s(z,y) Similarity matrix between users = and y

7 the number of classes of characteristics stored in matrix s
C Connectivity degree

c Cluster index

n(z,y) The number of all the user pairs (z, y) within a cluster
n The number of users per cluster

ex Number of internal links of a user = within a cluster ¢
el Number of external links of a user x outside a cluster ¢
Be(x) The belonging degree of a user = within a cluster

ic Dominant class a cluster ¢

formula holds:
> N =1 “
allN

The following formula has been proven in [41]:
pN) = ——[] ¢, )

where 7 is the number of users per cluster, C; is the average
of class i values within the cluster as computed by Eq. 1, and
F(N) is computed as follows:

n—1

> Ila™ ©)

for all statesny k=0

F(N) =

The exponent terms N in Eq. 5 and Eq.6 are all the possible
distributions of users within a cluster.

For clarity, let us return to the example of Fig.5. In this
example, there are i = 3 classes. In cluster O the dominant
class is i = 2 with an average value C; = 0.87. In cluster 1,
the dominant class is again i = 2 with an average value
C = W‘M = 0.975. Finally, in cluster 2, class i =
0 dominates, with an average value of w =0.95.
The average values that will be used in Eq. 5 are Cyp = 0.87 for
cluster 0, C; = 0.975 for cluster 1, and C» = 0.95 for
cluster 2.

With the definitions given, the problem we try to solve can
by defined as follows:

Given:

1) An initial set of clusters which include a number of

users with their characteristics defined.

2) An unknown number of users with different character-

istics, which will enter the network,
we use a probabilistic network to find the cluster to which
each new user fits better so that the connectivity degree of
each cluster and the probability of having more homogeneous
classes increase. Also, we define the conditions under which
we consider two or more clusters as overlapping, that is, as a
new community.

Table 1 provides the notations used in this paper.

IV. OUR PROBABILISTIC COMMUNITY DETECTION
STRATEGY

One of the basic ideas of our probabilistic approach is, at any
time, to compute the probability of having homogeneous
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clusters, in the sense that they are purely composed of user
with a common dominant class of characteristic i. This prob-
ability, pj, is computed as follows:

n—1

Ni
[Ia
k=0

Nij=n
pi= — (7
> le*
forall N, k=0
Nij#n

where the numerator is the product of all the C; (average
value of the dominant class values in a cluster ¢) for the case
where Nj = N (all users have the same dominant class)
and the denominator is the product C; (average value of the
non-dominant class values in cluster ¢) for all the possible
user distribution within ¢, such that not all of the users have
the same dominant class.Proposition 1 shows that p; can be
efficiently computed using a recursive formula.

Proposition 1: Regardless of the number of users the com-
plexity of computing pj is linear.

Proof: Let us assume that the dominant classisi = 0 (the
proof is similar for any other dominant class if we mutually
change the position of Cy with any of the other C;’s). The
numerator computations are a simple product, as there is
only one possible distribution such that N;j = n, which is
(N, 0,0, ,0). Thus, the product here is simply Ci" as all the
other Nj values are zero so the terms produced are equal to 1.
Therefore, we need to show how the denominator can be effi-
ciently computed. Let us assume, with no loss of generality,
that there are 3 classes of characteristics (the derivation that
follows can be easily extended to more than 3, although the
discrimination of user attributes to three classes is usually
enough for experimental purposes). The sum of products in
the denominator has the following form:

cy~'eied +cy'ede)
+Cpmciey +epreley + +epredct+

+ : : : : : :
0,n—1,0 0,0 -n—1

+CyCl™ C5 +CyCiCh ®)

Now, let us analyze these sums of products, starting from

n = 1 and keep on increasing the number of users. We denote

as Y1(n) the sum of products produced for the first two
classes, i = 0 (the dominant) and i = 1.

o forn=1,wegetY(1)=Co+Ci
o forn =2, we get
Y1(2) = C} + CoCy + Cf
=C+C1(Co+C)
=C3+CYi(1)
o forn =3 we get
Y1(3) = C3 + C5C1 + CoC3 +C3
=Cy + Ci[C§ + C1Co + CF]
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= C3 + C1[CE + C1(Co + C1)]
=C3 +C1Y1(2)

By proceeding in a similar manner, we obtain the linear
recursive formula:

Yioi(n) =Cy+CiYi(n— 1) ©))

Now, let us analyze Y>(n) the sum of products produced for
all three classes, i = O (the dominant) andi =1,i = 2.

o forn=1,wegetY2(1)=Co+C1 +C

o forn =2, we get

Y2(2) = C3 + CoCy 4 CoCa + C1C2 4 CF + C3
=C(Co+C1 +Ca) +C3 +Ci(Co+C1)
=CY () + 112

o forn =3, we get

Y2(3) =C + C3C1 + C3Ca + CoCi + CoCiCa + CoCy
+C+C3+CIC +CiC3
=Ca(Cy + CoCi1 + CoCa + C1Ca + CF +C3)
+Cy +C1(C} + C1Co +CD)
=0Y2(2) + Y1(3)

By proceeding in a similar manner, we obtain the linear
recursive formula:

Yi(n) = C2Ya(n — 1) + Yi(n) (10)

From Equations 9 and 10, it is clear that the computations
of pj can be implemented in linear time using these recursion
formulas. It can easily be seen that these formulas can be
extended for more classes and users. |

Proposition 2: The value of p; increases when Cj and
decreases when the average value of the other characteristics
C; increase.

Proof: The proof is straightforward from Eq. 7.

Our community detection scheme is comprised of a series
of steps, which are presented below:

Step 1: We start with a number of clusters, each having its
own dominant class.

Step 2: We compute the average connectivity degree for each
cluster C.

Step 3: We import a set of n’ new users within a cluster ¢ with
dominant class i. We use Eq. 7 to estimate the probability of
having a purely homogeneous cluster if these n’ users connect
in cluster c. These new users may change the average Cj and C;
values which are used in Eq. 7. Then, we apply the following
rules:

Rule 1 - Best or Perfect Fit: If a new user
x is added into a cluster ¢ via a number of ex connections of
the form (x, y), such that:

%= [ Z Si(X»Y)

all pairs (x,y)

:| > C;, for class i

(X, .
zi= Z si y):| < C;, for all classes # i.
all pairs (x,y) o

(11)
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where i refers to the dominant class and i refers to all the other
classes within c, then a perfect or best fit incurs.

Proof: A perfect fit indicates that this new user fits
perfectly in cluster ¢. Suppose that z; > Cj and 73 < ;.
Then, to re-compute p; using Eq.7, we will embed z; to C; (the
numerator in Eq. 7). Also we will embed the other z; values
to the products of the form Cfv ¥ (the denominator in Eq. 7).
Thus, after embedding the new values z; and z; into Eq. 7, it is
rewritten as follows:

n—1 n—1
H (Cizi)™e H o
k=0 k=0
L Nj=n Nj=n
pi= n—1 = n—1
Ny N
> e > Tle*
forall N, k=0 forall N, =0
Ni#n Ni#n

(12)

Therefore, the probability p; of cluster ¢ to be homogeneous
increases. |
Overlapping Issues Under Best Fit
To consider overlapping, we need to examine the belonging
degree of the new user x. We set:

D silx, ¥/ ex D si(x,y)/ex

, _ all &,y within ¢ , _ all &,y within ¢

= ad g = —F————.
D six, /e > silx. y)/é

all (x,y) outside ¢ all (x,y) outside ¢

In other words, z; is the belonging degree of x in ¢ regard-
ing the dominant class of characteristics of ¢ and z] is the
belonging degree of x in ¢ regarding its non-dominant classes.
We examine the following cases:

() If z; < 1, it follows that there are connections of x in
other clusters (let us symbolize them using the nota-
tion ¢’), outside ¢, with which x has larger similarity
values regarding the dominant class, compared to its
similarities within ¢. These connections should also be
considered as members of ¢, thus c overlaps with clusters
¢’. By including these overlaps, we increase the updated
probability of p; of c.

2) If zg > 1, there are no overlaps. The connections of x
within ¢ are stronger than those outside ¢, regarding the
dominant class.

(3) Ifz; < 1 for one or more classes other than the dominant
i, then:

(3.1) 7'i > C. for class i, which is dominant for ¢/, then
x becomes member of ¢’ as well, thus overlapping
occurs. The addition of x to ¢’ will increase pj for
community ¢’.

(3.i) Z'i < Cy, then, no overlapping occurs. The addition
of x to ¢’ does not add anything to p; of ¢’.

Rule 2 - Good Fit: If a new user x is added into a
cluster ¢ via a number of ex connections of the form (x, y),
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such that:
= [ Z s,'(x,y)i| > C;, forclassi
; €x
all pairs (x,y)

z,:[ 3

all pairs (x,y)

> C;, for some class j # i.

Si(X, )’)i|

(13)

where, as in Rule 1, i refers to the dominant class and i refers
to all the other classes within ¢, then a good fit incurs.

Proof: A good fit indicates that thin new user fits well
in cluster ¢, but one should consider if it fits better to another
cluster, ¢’. To see this fact, suppose that we re-compute p;
using Eq.7. We embed z; to C; (the numerator in Eq. 7). Also
we will embed the other z; values to the products of the form
C,.N" (the denominator in Eq. 7). Thus, after embedding, the
denominator part of Eq. 7 will be:

n—1

> Tleas
forall N, k=0
Ni#n,

where:

A =1 for classes i # j
A > 1 forclassi=j

It follows, that, all the product factors produced for i =
J> CJN * will be larger than the ones computed in the initial
computation of p;. In other words, of z; > z; (thatis, fori = j),
then the new value of p; will be reduced. |

Overlapping Issues Under a Good Fit
In a scenario of good fit, we either consider transitioning the
new user to community ¢’ or overlap the two communities.
Three cases are examined:

(1) Ifj is the dominant class of ¢’ and the belonging degree
of xin ¢’ as far as class j is concerned is larger compared
to the current connectivity degree of ¢’ regarding j, that

1S
z Si(xay) (14)
S ey
or j

all pairs ¢y in ¢

and

Z si(X,y) > C(C/)j (15)
all pairs in ¢’(x.y) &

it follows that the x should be considered as member of
both ¢ and ¢’ (overlap) as this will increase the average
value of py p| for ¢ and ¢’ respectively. In other words,
including x to both ¢, ¢’ will increase their probabilities
to be homogeneous.

(2) Ifj is the dominant class of ¢’ and the belonging degree
of x in ¢’ as far as class j is concerned is smaller com-
pared to the current connectivity degree of ¢’ regarding j
(Eq. 15 is reversed), then it follows that x shoukd remain
in c.
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(3) Ifj is not the dominant class of ¢/, we simply keep ¢ in c.

Rule 3 - Bad Fit: If a new user x is added into a
cluster ¢ via a number of ex connections of the form (x, y),

such that:
[ X1 .
5= |: Z sic y)j| <, forclassi
" €x
all pairs (x,y)

:[ 3

all pairs (x,y)

si(X,y)

j| > C;, for some class j # i.

(16)

where i refers to the dominant class and i refers to all the other
classes within ¢, then a bad fit incurs.

Proof: A bad fit indicates that the new user does not
fits well in cluster ¢, but it can well fit to another cluster
¢’. Suppose that z; < Cj and z; > Cj. Then, if we try to
re-compute p; using Eq.7, we know that the numerator will
become

n—1 n—1
[T@ca™ < [T a" (17)
k=0 k=0
Nj=n Nj=n

because the average values of the terms z;C; will be less than
the ones of the C; terms. On the other hand, as in Rule 2, the
denominator terms will increase. As a result, the probabil-
ity pj is reduced and therefore the new user x does not fit
well in c. ]
Overlapping/Transitioning Issues Under
a Bad Fit In the case of a bad fit, our overlapping or
transitioning decision depends on the values of the non-
dominant classes of ¢ :

(1) Ifclassjfor which the second part of Eq.16 holds is dom-
inant for a cluster ¢’ and Eq. 15 do hold, then the new user
transitions to ¢’. In this case, it increases its probability
to be homogeneous. Moreover, this transition recovers
the last (and larger) p; value for cluster c.

(2) If class j is dominant in ¢’ and Eq. 15 does not hold or
if j is not dominant in ¢’ the new user is transitioned to
a new cluster, with dominant characteristic the higher
value within the belonging degree matrix of x. This new
cluster overlaps with the connections of x and grows
under the rules presented in this paragraph, as more users
are added.

Rule 4 - Worst Fit: If a new user x is added into
a cluster ¢ via a number of ex connections of the form (x, y),
such that:

|
|

where, as in the other rules, i refers to the dominant class and
i refers to all the other classes within ¢, then a worst fit incurs.

Z si%, y):| < (j, forclassi
ex

all pairs (x,y)

(X, .
Z Sil y):| < C;, for some class j # i.
e
all pairs (x,)

(18)
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In the worst fit, the new user does not fit well in any of the
cluster.

Overlapping/Transitioning Issues Under
a Bad Fit Here, we act as in the second case of over-
lapping/transitioning issues discussed under the bad fit case.
We prefer to create a new cluster including x. As before, this
new cluster overlaps with the clusters where the connections
of x belong and, as users are being added on, it grows using
the rules presented in this paragraph.

A. COMPUTATIONAL COMPLEXITY

To compute the overall complexity, we have to consider the
computations of the clusters connectivity degree (Eq. 1),
the belonging degree of each user within the cluster (Eq.2),
the probabilistic computations of pj. These computations are
required for the application of our rules. For the probabilistic
computation of Eq. 7, we have already proved that we can
implement numerous of computations within the cluster in
linear time. The connectivity degree values depend on n(x, y)
for the first time the cluster is generated and at most n(x, y)-m,
where m is the number of new entries within each cluster.
Thus, the overall cluster update requires / - n(x,y) - m for a
total of I clusters, which is linear.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we verify the functionality of the community
detection algorithm which is used for data distribution across
the network. To verify the community detection scheme,
we carried out a series of simulations implemented using a
Java simulator and we compare it to well-known algorithms
in the literature. To implement our simulations, we used
the well-known benchmark provided by Lancichinetti and
Fortunato [42]).

The following parameters are required by the benchmark:

o The degree of each node, which is taken by a power law
distribution with exponent y, with ki, and k4 being
the extreme values of the distribution chosen in such a
way, that the average degree is k. Typically, 2 < y < 3.

o The mixing parameter, which is the most important
parameter for the implementation of our scheme. The
mixing parameter is the average ratio of external
degree/total degree for each node, which is denoted by
. Specifically, each node shares 1 — p of its links with
the members of its community and p with members of
other communities.

o The exponent for the community size power law distri-
bution 8. Typically, | < B < 2. The community sizes
should sum to n, the number of nodes of the cluster.

For our experiments, we set the above parameters as shown
in Table 2. We set the mixing parameterto u = 0.8 and y =2
and based on the computations defined in [42], we have
obtained ki, and kg

To have fair comparisons (in terms of network sizes) with
other probabilistic schemes found in the literature, we used
two real-world datasets: ego-Facebook, and ego-Twitter.
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TABLE 2. Simulation parameters.

Parameter Value
Number of nodes N up to 4000
Mixing parameter g1 0.1-0.8
Node degree power law distribution exponent ~y 2
Minimum node degree, Ky in 8
Maximum node degree, kmax 24
Average node degree, k 16

Community size power law distribution exponent 5 1to 2

Larger real world datasets are also available, but they can be
used for larger networks. Examples are: Pokec, LiveJournal
or Google+. The statistical properties of these networks are
given in Table 3.

For each of the two networks, we used a combination
of characteristics which were organized in 3 classes. The
original data can be found in [43] and since they were not
in a proper form for the purpose of our algorithm, so we
had to make some kind of transformations, so that the data
was suitable for our implementation. Here, we describe the
transformations we made for the ego-Facebook network. For
Twitter, we worked similarly.

For each user examined (called ego), a set character-
istics has been created. In [43], one can find data for a
total of 26 attribute classes, including hometowns, education,
birthdays, political affiliations, schools. For our simulations,
we used three of these classes, namely education, occu-
pation and demographic characteristics. For our purposes,
3 classes suffice to evaluate our work, however one can use
more classes without adding a lot of computational effort.
In Table 4 one can see 5 of the characteristics for class
education. Note that the characteristics are encoded as integer
values, to maintain users’ privacy. All the characteristics
in [43] are accompanied by an ID.

Each ego forms circles (clusters according to our termi-
nology) with a set of nodes, based on the attribute values.
These circles will be used as the initial communities for our
algorithm. Based on the data given in [43], circle_13 is
formed by the node ID’s (or users) 138, 131, 68, 143, 86.
The binary values at positions 0,21,30,53,72, and 100 of their
bit_vectors are given in Table 5.

To find the similarity matrix between each pair of users x
and y, for a given class we simply perform a bitwise XNOR
between the values within the class and we divide the number
of 1s produced as a result of the XNOR operation by the
number of characteristic. For example, consider users 68 and
143 of Table 5. The bitwise XNOR gives 5 1s. Thus, the
similarity of the two users regarding class ‘““Education” is 5/6.

To verify the functionality of our community detection
scheme, we have conducted a series of experiments and com-
pared our scheme with two recent probabilistic community
detection schemes: [36] and [38].

In the first set of simulations, we have compared the Nor-
malized Mutual Information (NMI) of our scheme against
the FPPM scheme [36]. This scheme is based on the first
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TABLE 3. Statistical properties of the datasets for ego-Facebook and ego-Twitter.

Network | Num. of Nodes Num. of Edges Diameter | Average local clustering coefficient
(longest shortest path) (alcc)
Facebook 4,039 88,234 8 0.6055
Twitter 81,306 1,768,149 7 0.5653
TABLE 4. Some characteristics for class “Education”.
Attribute ID | Combination Attribute Description
0 birthday;anonymized feature 0 A birthday value
21 education,;degree;id;anonymized feature 21 | Education and degree (For example, University, Informatics)
30 education, school;id;anonymized feature 30 | Education and school user graduated from
53 education;type;anonymized feature 53 Education and type (for example High education and college)
72 education;year;id;anonymized feature 72 Education and year or period of years
100 languages;id;anonymized feature 100 Languages spoken

TABLE 5. Bit_vectors for the class “Education” for the ego_13 network.

Node ID | Bit_vector values

EGO=0 [000100]
138 [00000O0]
131 [0000O0O0]
68 [0000O0O0]
143 [00O010 0]
86 [0000O0O0]

passage probabilities and uses the diameter of the network
as the maximal step length of random walks which can be
adaptively appropriate to different networks. The similarity
measure used is based on the average correlation between first
passage probabilities at multiple times. This measure consid-
ers the overall structural information, not just one step of fixed
length. Hierarchical clustering is used to group the nodes into
communities and a post-processing procedure removes very
small communities to improve accuracy.

The NMI compares the similarity between parts of differ-
ent network, thus, when the ground truth is known, it is a
good indicator of the similarity between the ground truth and
the partition delivered by probabilistic schemes algorithms.
Reference [36] and [38] The NMI computations involve com-
puting the similarity (mutual information) between parts of
different networks and it is a good indicator of the robustness
and homogeneousness of a clustering method. The larger the
value of the NMI, the better the results are. The results shown
in Figures 5 and 5 are mean values taken from 10 simulations.
The results indicate that both strategies perform well in terms
of NMI, for various cluster sizes (250-1000). The perfor-
mance is improved when the y value becomes 3 (a higher
node degree usually indicates higher similarities, especially
between neighboring nodes). The performance degrades as
we increase the mixing parameter (more external than internal
links). However, our strategy, as described in the previous
section, takes into account the importance of each user in the
cluster structure and its purity. Also, instead of completely
removing small communities (as in [36]), our scheme regu-
larly transitions nodes that have bad or worst fit, thus it guar-
antees that the NMI values are high for different parts within
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a cluster (even for small ones) and between clusters with the
same dominant class of characteristics. The results indicate
that, although the performance degrades as p increases, this is
done in a smooth fashion compared to FPPM. Also, we have
included the NMI values of the very well-known Louvain
approach [44], to show the deviation of our approach to the
ground truth. Apparently, the NMI values of the Louvain
scheme approach 1 (very close to the ground truth), so this
approach can well indicate how well a probabilistic method
can approach the ground truth.

In the second set of simulations, we evaluate the running
time of our scheme against the running time of another recent
probabilistic strategy for comminity detection introduced by
Tian et al. [38]. This work uses unified Bayesian generative
model to detect generalized communities. Also, it provides
semantic descriptions using a combination of network topolo-
gies and node attributes. The proposed scheme has two parts.
First, it applies a mixture model to describe network regulari-
ties and then it adjusts the classic Latent Dirichlet Allocation
(LDA) topic model to define community semantics.

The comparison results are shown in Figure 5. In Fig. 5(a),
we used the relatively smaller ego-Facebook network with
smaller number of nodes per cluster. In Fig. 5(b), we have
used the ego-Twitter network, which is larger, with more
dense clusters. In both scenarios, our scheme executes faster
and its running time increases smoothly as more users added
in the clusters, because of the linearity of the computations
involved. On the contrary, the two-part model in [38] involves
more complex computations and this is affected in the execu-
tion times.

Finally, we tested the accuracy of our work by comparing
the total number of communities (including overlaps) that our
probabilistic scheme detects against our previous effort which
is based on threaded binary trees [45]. The results indicate
that the probabilistic scheme detects about 15% fewer com-
munities for the ego-Facebook network and about 25% fewer
communities compared to the ego-Twitter network. This is
because the threaded binary tree produces more overlaps in
a more loose way (simply when “‘stronger”” paths are found
within “weaker” ones, based on the link weights). Instead,
the probabilistic strategy requires specific conditions to hold
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for each of the four possible fits(see the rules described in the

previous section).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a probabilistic community detec-
tion scheme. The clusters are represented as a network of
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changing states, where each state represents the number of
users in the cluster with a specific class of characteristics.
Our scheme computes the probability of a class being homo-
geneous based on its current state. Using this probability and
the statistic metrics that describe each cluster, we determine
each new user’s fit within a cluster. The main advantages of
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our scheme is the linearity of the computations involved and
that it can be used independently of the cluster topology. For
our simulations, we used data from the ego-Facebook and
ego-Twitter networks. The experimental results have shown
that our strategy detects robust and homogeneous clusters
and its accuracy (regarding the number of clusters detected)
is satisfactory compared to other schemes. Also, it executes
faster than comparable schemes.

In the future, we will try to organize our strategy in
such a way that it facilitates parallelism using both parallel
CPU and GPU devices. Also, we plan to perform extensive
experiments on more and even larger networks, using similar
system configurations. In this regard, we need to make proper
changes to allow a trade-off between certain parameters,
in order to target larger communities. Finally, we need to
consider the memory requirements for storage, especially in
case where GPU processing is involved.
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