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ABSTRACT Natural hazards, like wildfires, present various challenges to the electric grid that can leave
many communities without power. To identify vulnerabilities in the grid and the corresponding at-risk
communities, this work considers the implementation of two Graph Theory assessment approaches, namely
betweenness centrality and minimum cut, and combines the results from each with spatial fire probability
data to produce a novel assessment of communities at-risk of losing service because of a wildfire. The
results from a betweenness centrality analysis identified at-risk communities whose critical lines, necessary
for routing power to the community from the numerous generators, were found to be at-risk if they were
located within high probability burn zones. Communities at-risk of separation from the grid with one cut
(or electrical shorting) of a transmission line due its proximity to a high burn probability (BP) area were
also identified using the minimum cut Graph Theory algorithm. When the methodologies were applied to a
demonstration transmission grid, the results found that about one third of the 585 substations had centrally
located lines in high BP areas. About 46% of the substations require just one cut to be removed from the
grid, and the average length of these one-cut segments was 37 km and the longest was 188 km.

INDEX TERMS Electric grid, vulnerability, wildfires, centrality, minimum cut, natural hazards.

I. INTRODUCTION
Power outages are often the result of weather events. Records
show that natural hazards, like severe storms, wildfires, and
high winds, caused over half of the major power outages
in the U.S. between 2000 and 2016 [1]. This will continue
to be a problem if current trends persist [2]. Fig. 1, for
example, shows that since 1983 the number of fires each year
remained relatively constant [3]. However, the total size of the
fires increased significantly over the same time period from
about 2 million acres in 1983 to around 8.5 million acres in
2021. Fig. 1 depicts the collected fire data and includes a least
squares fit line to indicate the general trend of the data.

A system’s resilience, or ability to withstand major
wildfires, depends on many factors, such as redundancy.
Redundancy is one of the resilience components highlighted
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FIGURE 1. Frequency and acres burned from 1983 to 2021 in the U.S.

in [4] and described in [5]. Understanding the grid’s ability
to maintain operations during an event, like a forest fire,
requires a Geographic Information System (GIS) analysis of
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its topology and proximity to likely hazard locations. There-
fore, this work explores the transmission grid’s redundant
topological connections to determine at-risk communities
prone to long-term outages as the result of a wildfire event
near transmission lines.

Abedi et al. highlights various approaches useful for
performing a vulnerability analysis, which usually includes
a topological methodology, flow-based methods, logical
reviews, or functional assessments [6]. Each of these methods
offer different levels of detail and complexity. For instance,
flow-based methods require a detailed physics-based model
that simulates the voltage and power flows throughout the
grid [7], [8]. Whereas topological and logical methods
provide a more simplistic and easier to implement approach
because they don’t require extensive information, detailed
models, and complex modeling software.

Topological and logical methods are useful for assessing
the grid’s connections [9] and identifying critical ele-
ments [10], [11]. Approaches, like minimum cut-set vulner-
ability analysis, assess cascading failures [12] or identify
lines prone to overuse during a contingency event [13],
or identify vulnerable nodes using graph theory betweenness
centrality [14].

An assessment of electric grid vulnerabilities usually
entails metrics that ensure the avoidance of a complete loss
of power throughout a system. These assessments often do
not focus on the impacts of wildfires on a specific location.
This paper, therefore, defines a novel methodology for using
existing topological approaches and focuses on identifying
a specific risk level of a substation (and its connected
community.) More specifically, this paper’s contribution is to
show how graph theory analysis techniques can be combined
with wildfire probabilities to determine the risk of grid
outages to a specific location. To do this, the analysis
combines a grid topology assessment with spatial wildfire
Burn Probabilities (BP.)

The two topological approaches include: betweenness
centrality [15] vulnerability analysis and a minimum cut [16]
complete separation (or community isolation) analysis. The
intent of the centrality analysis is to identify connections (or
electrical lines) of greatest importance to each community.
Importance, in this case, refers to the lines necessary for
continuation of power, or maintaining stable grid conditions
for a particular community and the connected generators.
An analysis from this perspective is novel. A minimum-cut
analysis discovers the lines and their lengths that can separate
a community’s substation from the grid with one cut, which
is commonly left out of typical vulnerability assessments.

II. BACKGROUND
Common methods for assessing the electric grid do not
provide a community perspective. The N-1 contingency
analysis, for example, involves an iterative power flow
simulation that systematically removes a line and checks to
see if the system continues to provide stable operations as

FIGURE 2. Digram depicts the implementation of the topological
assessment approaches to identify at-risk critical lines and one-cut
sections that serve substations.

a whole [17]. It does not, however, require that all loads
continue to be served. Thus, the N-1 takes a top-down
approach and does not focus on the vulnerabilities of each
community. Whereas the proposed methodology intends to
assess vulnerabilities from the perspective of the community
that is connected to a single substation using topological
approaches.

Topological analysis approaches identify grid vulnerabil-
ities by evaluating node connections. Historically, between-
ness centrality was successfully applied to the electric grid
to identify critical lines that would result in the highest
percentage of lost load [18] and assess line limits [19].
One research paper found that when using topological
procedures, the analysis can consider the system’s structures
and the connected generators and loads [20], which were
included in this analysis. Other topological approaches using
betweenness centrality were useful for understanding critical
lines necessary for maintaining stable operations when faced
with a natural disaster like a hurricane [21]. However, like
most of the other studies these documented approaches
consider impacts to the system at-large and how to survive
an outage by reducing loads or through reinforcement
immediately before an event [22]. Yet, none of the past
literature used betweenness centrality to identify critical lines
for each connected community powered by a substation.

The minimum cut set assessments can also identify grid
vulnerabilities. Most use a topological method for large-
scale power failures [23]. For instances, one approach
used the minimum cut analysis to evaluate the impacts of
sequential attacks and the corresponding effect of cascading
failures [12]. Again, no papers, to the best of the authors
knowledge, applied the technique for individual community
vulnerability assessments.

The community centric vulnerability studies that do exist
often focus on individual critical services within a commu-
nity. Tools like the Resilient Node Cluster Analysis Tool
(ReNCAT) identify the location and boundaries of a micro-
grid useful for maintaining power to critical services [24]
in a distribution grid. Some topological approach used to
identify community related vulnerabilities include Graph
Theory community detection techniques [25]. Community
detection was also used to identify critical lines [26], but not
for specific substations.
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FIGURE 3. The analysis includes geographic data: community substation locations (a), generation source locations (b), and transmission line
locations and interconnections (c).

Wildfires impact the electric grid significantly. Stud-
ies examine the challenges and solutions associated with
fires [27]. Modeling attempt to forecast the overall risks [28],
but current literature lacks an assessment methodology that
identifies and compares critical line segments with a spatial
BP. This work, which compares critical lines and BP, provides
a specific and actionable results that defines where the system
should be hardened to improve resilience for a location or
where communities should consider a contingency plan in
preparation of an outage caused by a wildfire.

III. METHODOLOGY
Two topological vulnerability analysis approaches were used
to identify the locations of at-risk communities connected
to the transmission grid via a substation. The approach,
depicted by the bock diagram in Fig. 2, includes the gathering
of inputs, administration of analysis approaches that utilize
the inputs, and a review of the results. The assessment
approaches, depicted in the middle block of Fig. 2, were
the Graph Theory Betweenness Centrality and Minimum Cut
analyses, which are described in Sections III-B2 and III-C2
respectively.

A. GEOSPATIAL INPUT DATA
The spatial data includes location information of com-
munities of interest using the available substation data,
grid topology data, and generation source locations [29].
Geospatial data also included hazard probability results
provided by other modeling efforts.

The grid topology input data includes the location and
information about substations that power local communities
(Fig. 3a), generation resources (Fig. 3b), and the transmission
lines connecting them all (Fig. 3c).
Fig. 3a depicts the substation locations with the gray

circles. Substations connect communities with power from
the transmission electric grid and thus a useful proxy for rep-
resenting a community of people. Areas where there are high
concentrations of them likely indicates metropolitan areas.
Dispersed or sparse substations often represent communities

within rural locations that are more spread out and remote.
The generation systems are also dispersed throughout the
area of interest, as shown in Fig. 3b. The highest capacity of
generation, indicated by the size of the circles, resides in the
top left of the map in Fig. 3b.

The transmission electric grid spans significant distances
throughout the U.S. The high voltage electric lines transfer
power from the generation sources to substations that support
rural and urban communities. At the substations, the voltage
is reduced and then distributed to individual loads via low
voltage distribution lines. The transmission system used in
this evaluation is depicted in Fig. 3c. Fig. 3c provides an
overview of the topology and depicts voltage for each line
with a range of different colors that indicate a voltage between
100 kV to just over 500 kV.

B. CENTRALITY VULNERABILITY ASSESSMENT
The centrality assessment first discovered each substation’s
dependency on lines that connect it with large-scale gener-
ation scattered throughout the grid. Then, it compared the
lines of greatest importance with a hazard probability map to
estimate each substations vulnerability. Ultimately, the result
found at-risk substations that had critical lines within (or
passing through) high probability burn areas.

Analysis of centrality, using the Betweenness algorithm,
provides a legitimate review of grid vulnerabilities. A com-
parison of vulnerability techniques in past work includes the
same betweenness algorithm and power-flow models. The
past work found that the two approaches produce very similar
results [30].

1) ANALYSIS OVERVIEW
This assessment calculated the centrality of substation
connections to multiple generators. The implementation only
considered major generators over 100 MW connected to the
transmission system. The approach used a graph (G) of the
electric grid and the substation and power generation nodes,
represented by S and P in Algorithm 1 respectively.

35632 VOLUME 11, 2023



C. B. Jones et al.: Electric Grid Vulnerability Analysis to Identify Communities Prone to Wildfires

Algorithm 1 Centrality of Substations & Generators

Input: G, S,P; /*Graph of grid & nodes
Output: C ; /*Substation centrality

Function SubstationCentrality(S,P):
1: C ←− G, S,P
2: for all ns ∈ S do
3: for all np ∈ P do
4: Pathi = ShortestPath(G, ns, np)
5: end for
6: Gj = CreateGraph(Path)
7: Cj = Centrality(Gj)
8: end for
9: return C

Algorithm 1 provides a general overview of the centrality
function, which involves two for loops that iterate over all
of the substation nodes (S) and power generation nodes (P).
Within the for loops the shortest path in G between each
substation and generator was discovered using the Dijkstra
method [31]. The shortest path calculation considered each
conductor’s voltage rating as a weight. The voltage rating
weight meant that the shortest path often followed a higher
voltage rather than just theminimum length. Each path (i) was
combined into a graph and j graphs were produced for each
substation. Finally, the centrality, described in Section III-B2,
for each substation graph (Gj) was computed.

2) BETWEENNESS CENTRALITY
Betweenness centrality was used to find the most important
lines in each graph Gj, which was a subgraph of G that
connected the substation of interest with the generators.Many
types of centrality metrics have been used in past work to
investigate network resilience [32]. Some were applied to
various networks including water distribution systems [33]
and the electric grid [34]. The betweenness centrality used
in this work was originally defined by [35]. And this
implementation used the approach defined in [36] using
Python momepy [37] through the Networkx wrapper [38].
The approach identifies the centrality for node v using Eqn. 1:

cB(v) =
∑
s,tϵV

σ (x, y|v)
σ (x, y)

(1)

where V is the set of nodes, σ (x, y) represents the number of
shortest paths, and σ (x, y|v) are the number of paths that pass
through a v that are not x or y. In this case, the betweenness
values were normalized using:

2
((n− 1)(n− 2))

(2)

where n is the number of nodes in the graph. The approach
added heterogeneity to the analysis by considering weights
associated with the graph’s edges (or transmission lines).
In this case, the weights assigned to each edge were the
voltage rating for each line. Therefore, the algorithm assessed

Algorithm 2 Community Separation Algorithm

Input: G, S ; /*Graph of grid & nodes
Output: MC,L ; /*Minimum cuts & length

Function CommunitySeparationRisk(S,P):
1: MC,L ←− G, S
2: c = graphCenter(G)
3: for all ns ∈ S do
4: for all an ∈ atRisk do
5: MC = [minimumCut(G,c,ns)]]
6: atRisk ←− MC = 1
7: for i← 0 to len(path) do
8: if path[i] ∋ atRisk then
9: if G.degree(path[i]) ≤ 3 then

10: InPath = path[i]
11: else
12: InPath = path[i]
13: break
14: end if
15: else
16: InPath = path[i]
17: end if
18: segmentsi = computeDistance(path[i], path[i −

1])
19: end for
20: end for
21: L = [totalDistance] ; /*Minimum cuts &

length
22: end for
23: return MC,L

each node by summing the weights of all its adjacent edges
using Eqn. 3.

xi =
N∑
j=1

aijwij (3)

The a and w, in Eqn. 3, represent the adjacency and weight
matrices for nodes i and j.

C. ISOLATION VULNERABILITY ASSESSMENT
Substations, and their connected communities, at the edge
of the grid are prone to separation because of limited
connections (or adjacent edges.) This analysis considers this
scenario and identifies at-risk substations by first finding
the ones that can be disconnected with one cut. Then, the
analysis approach computes the distance of all the grid line
segments that if cut once would segregate the substation and
the community would not receive power from the electric
grid.

1) ANALYSIS OVERVIEW
Algorithm 2 describes the iterative process for evaluating
the electric grid’s graphic representation to identify at risk
communities in danger of complete separation. This function
uses the inputs G and the substation nodes (S) to find the
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minimum cuts (MC) for each substation and the length of the
lines connecting at risk (i.e., one cut to remove) substations.
The iterations start by looping through all the substation
nodes. At this stage, the algorithm computes the minimum
cuts (described in Section III-C2) and substations with only
one minimum cut are found. The second embedded iteration
only consideres the at-risk substations and computes the path
of each substation to the center of the graph. Then, the
algorithm iterated through each path to find the segments of
the grid within the minimum cut of one. In this loop, the path
point is first evaluated to see if it is within the at-risk data
set. If it is considered at-risk, the point is added to the in-path
set of data. If not, the point is evaluated further to compute
the number of adjacent edges. Adjacent edges less than or
equal to 3 meant that the point could be added to the in-
path data, but if not the iterative assessment ends and moves
to the next at-risk substation. The adjacent edges threshold
number of 3 was chosen because it was the maximum number
of connections observed in this demonstration grid.

2) GRAPH THEORY MINIMUM CUTS
Partitioning the electric grid into segments that do not have
a reasonable power source, or access to a source, results in
power outages for customers. This was represented using
the Graph Theory minimum cuts analysis [39], where the
electric grid was represented by a connected graph G, and
a set of cuts will result in two or more partitions (or a
disconnected G) [40]. This analysis identifies vulnerabilities
in G by finding segments that are removed by cutting the
smallest number of edges. It also identifies the length of the
single segment that if removed will de-energize a community.

D. WILDFIRE HAZARD PROBABILITIES
The final step in the vulnerability analysis involved a
comparison of the centrality and minimum cut results with
BP data. The U.S. National Forest Service Research Data
Archive provides wildfire risk assessment for all lands
throughout the U.S. [41], and plotted for this paper’s area of
interest in Fig. 4. Scott et al. describes how this BP helps
characterize infrastructure exposure and potential effects
due to a fire [42]. The probability map considers various
elements including weather, fuels and topography, large-
fire suppression, and fire growth and behavior [43]. The
probability was determined using simulation outputs. The BP
was computed by dividing the number of times an image
pixel section burned by the amount of model runs, and thus
provides a relative approximation.

Wildfires in the area of interest often occurred in forested
areas in or around mountains. Fig. 5 provides the location,
boundaries, and reported burn acres for fires that occurred
between 1911 and 2014 [44]. A comparison of the actual
burn areas with the BP map shows that many of the historical
wildfires occurred within high probability zones - shown in
the Fig. 6 map. For instances, fires in the lower left are clearly
within the high BP areas. This includes the large fire that

FIGURE 4. Burn probabilities and white lines represent the transmission
power lines.

FIGURE 5. Satellite image compares the burned areas with forested areas.

burned over 500,000 acres in 2011. There were also many
fires in the forested area in the center and lower center of the
map that correspond with the high BPs. Some fires occurred
in the low probability areas, but most of these events had very
small boundaries.

IV. RESULTS
This section reviews the results for the two approaches
on an electric grid subject to wildfires. In Sec. IV-A, the
centrality of each substations’ paths to the generators were
identified and compared with the wildfire potential. The final
results subsection (Section IV-B) describes outcomes from
the isolation vulnerability analysis that identified areas prone
to complete separation due to a fire.

A. CENTRALITY VULNERABILITIES
A community substation’s ability to remain powered during a
contingency event anywhere on the grid may vary depending
on how much it relies on one or more line segments.
This means that the removal of a line segment, that was
centrally located between a substation and multiple genera-
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FIGURE 6. Map that compares past fires with the estimated burn
probabilities.

TABLE 1. Betweeness burn probability statistics.

tors scattered throughout the grid, may result in inadequate
power flows that will require the disconnection of the
substation.

This analysis iterated through all of the 585 substations to
discover the lines that each depend on the most. The analysis
took about 300 seconds (5 minutes) to execute. Fig. 7a
depicts an example substations grid connectivity. The graph,
depicted with the colored lines describing each segments
centrality, connects the sample substation (shownwith the red
circle) with the many generators (black circles). The colors
of the lines in this graph depict the betweenness centrality
results, which describe which lines are most important for
maintaining system operations in this subgraph. The lines
most important to this sample substation pass through areas
with varying burn probabilities as indicated by Fig. 7b.

A summary of the betweenness and BP values in this area
of interest are provided in Table 1. This table describes the
average, minimum, andmaximum betweenness metric values
and the BP. Betweenness values ranged between 0.033 and
0.67 and observed BP were between 0 and 0.027.

The results from each of the 585 substation subgraphs
were aggregated and summarized in Fig. 8 and Fig. 9.
An overview of the maximum centrality results for all of the
substations is shown in the Fig. 8 map. This map describes
the dependence of each substation on a centrally located line

FIGURE 7. The maps in (a) and (b) depict one of the 585 substation
subgraphs. (a) describes the results from the betweenness centrality and
(b) shows what burn probability areas the lines in this subgraph pass
through.

as: high dependence using orange and red colored circles;
medium dependence with circles colored in yellow; and low
dependence using green and blue circles. Visual inspection
of the map indicates that sections of the grid tended to have
similar results, which was expected since substations close
by one another will likely depend on the same lines and also
located in the same area of the grid.

Fig. 9 describes the final step in the centrality analysis,
which was to identify the maximum BP for each of the
most centrally located lines. The map in Fig. 9 indicates that
substations located in the middle of the grid were subject
to lower BP crossing their most centrally located lines.
Substations located in the lower right portion of the map
had centrally located lines that crossed areas with slightly
higher probabilities than the middle ones. And the substations
located in the top and left areas of the map had centrally
located lines that crossed the highest BP areas.
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FIGURE 8. This map indicates how much each substation relies on a
centrally located line segment by plotting the maximum betweenness
centrality value.

FIGURE 9. The substation colors, shown in this map, indicate the
maximum burn probability that the most centrally located lines for each
substation cross.

B. ISOLATION VULNERABILITIES
An evaluation of each substation isolation potential involved
the identification of single cut line segments prone to wildfire
damage. This analysis took about 1.22 seconds. Similar to the
centrality analysis, this approach iterated through all of the
substations to find lines that could disconnect the substation
with one cut.

The isolation vulnerability statistics are described in
Table 2. The average number of edges needed to cut to
disconnect a substation was 1.69. The electric conductor line
segments ranged from 0.02 to 188 km, but most remained
below 58 km. And the BP in and around the electric grid
ranged from 0 to 0.027.

The multi-step process included the analysis of all of
the substations. Fig. 10a provides a map of each substation
where the size and color represents the number of minimum
cuts needed to disconnect it from the grid. The maximum
cuts required to remove a substation was 8, as indicated by
Fig. 10a, which exists in the center of the map.

TABLE 2. One-cut burn probability statistics.

FIGURE 10. The two maps depict the number of cuts it takes to remove
the substation (a) and the length of the one cut section (b).

After identifying the total number of cuts required to
isolate each substation, the next step identified all those that
only required one cut to remove. About 255 (46%) of the
substations require one cut to remove and are colored in
the Fig. 10b map. This map also indicates the length of
the transmission line that if damaged could disconnect a
substation completely. The lengths ranged from 0.021 km to
about 188 km. The average substation that could be removed
with one cut was connected to line segments that on average
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FIGURE 11. This figure depicts the burn probability for the line segment
that with one cut can remove the substation from the electric grid.

FIGURE 12. The substation colors, shown in this map, indicate the
maximum burn probability for the line segments that if cut once could
disconnect the substation completely from the grid.

were 37 km long. The top 75% were found to be 58 km and
above, while the bottom 25% were below 5 km.

The next step in the analysis compared the segments of the
transmission line that can be cut once to remove a substation
with the BP map. Fig. 11 indicates which line segment would
have to be cut only once to eliminate power to the sample
substation. For this substation, the one cut line segment
happens to be within an area that has a high BP.

Fig. 12 depicts where the single cut lines for each
substation reside in relation to the estimated BP. Some
substations have long single cut lines, as discussed earlier and
displayed in Fig. 11, that pass through low risk burn areas.
There are also some substations with short single cut lines
in the lower left of the Fig. 12 map that pass through high
probability burn areas.

V. CONCLUSION
The two assessment approaches identified critical lines and
their proximity to high probability wildfire burn locations.
The community centric betweenness centrality assessment
approach found the most critical lines that connect each
substation to the major generation sources. Many of the
communities in the center of the grid were fount to be at

a lower risk due to the proximity to likely wildfires than
those on the outer parts of the grid. This was because the
communities in the center had critical lines that did not pass
through high probability burn zones, whereas communities
on the out sectors were near forested areas with high BPs.

The minimum cut analysis found at-risk communities
that could be separated from the grid with one cut. The
assessment also identified the length of the one cut section,
which provided further information on the community’s
risk. Then, after comparing the one cut sections with the
BP a few communities stood out. As expected, the highest
vulnerabilities were located in isolated areas that included
minimum adjacent edges. Also, the electric lines pass through
high forested areas with high BPs.

This study reviews the potential for two topological
approaches to identify grid vulnerabilities from the per-
spective of each connected community. Further studies can
elaborate on this work and incorporate power flow models to
confirm and complement the topological methods.
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