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ABSTRACT Facial landmark detection is an essential task in face-processing techniques. Traditional
methods, however, require expensive pixel-level labels. Semi-supervised facial landmark detection has
been explored as an alternative, but previous approaches only focus on training-oriented issues (e.g., noisy
pseudo-labels in semi-supervised learning), neglecting task-oriented issues (i.e., the quantization error in
landmark detection). We argue that semi-supervised landmark detectors should resolve the two technical
issues simultaneously. Through a simple experiment, we found that task- and training-oriented solutions
may negatively influence each other, thus eliminating their negative interactions is important. To this end,
we devise a new heatmap regression framework via hybrid representation, namely HybridMatch. We utilize
both 1-D and 2-D heatmap representations. Here, the 1-D and 2-D heatmaps help alleviate the task-
oriented and training-oriented issues, respectively. To exploit the advantages of our hybrid representation,
we introduce curriculum learning; relying more on the 2-D heatmap at the early training stage and gradually
increasing the effects of the 1-D heatmap. By resolving the two issues simultaneously, we can capture more
precise landmark points than existing methods with only a few annotated data. Extensive experiments show
that HybridMatch achieves state-of-the-art performance on three benchmark datasets, especially showing
26.3% NME improvement over the existing method in the 300-W full set at 5% data ratio. Surprisingly,
our method records a comparable performance, 5.04 (challenging set in the 300-W) to the fully-supervised
facial landmark detector 5.03. The remarkable performance of HybridMatch shows its potential as a practical
alternative to the fully-supervised model.

INDEX TERMS Facial landmark detection, facial key-points, landmark detection, semi-supervised facial
landmark detection, heatmap-based landmark detection.

I. INTRODUCTION
Facial landmark detection aims to identify predefined key
points of the face image, including eyes, nose, mouth,
and facial contour. It has been widely utilized in various
applications, such as face morphing, tracking, expres-
sion analysis, and face identification. Existing landmark
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approving it for publication was Gangyi Jiang.

detection methods can be divided into the coordinate-based
or heatmap-based approach, depending on the representa-
tion of a landmark point set. Since the coordinate-based
approach does not fully utilize spatial and contextual
information of landmark points, it shows relatively lower
performance than the heatmap-based approach. For this
reason, recent studies tend to develop heatmap-based
methods.
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FIGURE 1. Effects of 1-D/2-D heatmap in the fully- (FSL) and semi- (SSL)
landmark detection. FSL uses only r% of the training dataset, while SSL
uses r% as supervised learning and the rest as unsupervised learning. All
results are based on HRNet.

The heatmap-basedmethodsmostly utilize 2-D heatmap as
the landmark representation. Since a 2-D heatmap requires
O(N 2) memory complexity to express N × N heatmap
resolution, N cannot be large in practical applications.
However, various studies [1], [2], [3], [4] have pointed
out that a small N yields the large quantization error
of the heatmap and thus is a performance bottleneck of
facial landmark detection. To alleviate this issue, recent
models have been actively studied to restore the residual
parts (fractional components after quantization). However,
restoring residual parts is sensitive to the size of the original
2-D heatmap; a poor performance with a considerably
small N . Recently, Yin et al. [5] addresses this issue by
representing the coordinate (x, y) of a heatmap with only
O(2N ) memory complexity. That is, they replace a 2-D
heatmap with two 1-D heatmaps by assuming the separability
of the 2-D heatmap. However, a 2-D heatmap is often not
separable and the correlation between x and y coordinate is
informative for landmark regression. To compensate for the
loss of correlation information, they introduce a co-attention
module between two 1-D heatmaps. Overall, the method by
Yin et al. [5] effectively reduces the quantization error by
increasing N . Finally, it significantly improves the accuracy
of fully-supervised facial landmark detection over the 2-D
heatmap-based methods (17% NME improvement in 300-W
common dataset).
Despite the significant performance advantages of the

fully-supervised methods, these models heavily rely on a
large number of clean annotations. In particular, the landmark
detection scenario requires pixel-level labels, which involves
an expensive annotation cost. Besides, it easily suffers
from noisy labels as creating precise pixel-level labels
is challenging even for human annotators. To reduce the
labeling budget and the sensitivity to data quality, recent
studies have investigated the semi-supervised learning regime
for facial landmark detection. The semi-supervised models
utilize a mixture of a small amount of labeled data and a
large amount of unlabeled data for model training, which is a
reasonable setting for practical applications.

To this end, existing semi-supervised landmark detec-
tion methods focus only on training-oriented issues, such
as effectively handling unlabeled data. They implicitly
learn facial shapes via unsupervised training [6], devel-
oping a selective pseudo-labeling scheme by assessing
pseudo-label quality [7], formulating multi-task learn-
ing [8], or utilizing style transfer to increase training
dataset [9]. However, we argue that semi-supervised land-
mark detection should resolve two technical challenges
at the same time; (i) the task-oriented issue such as
quantization errors caused by low-resolution heatmap rep-
resentation, and (ii) the training-oriented issue such as
noisy pseudo-labels caused by the semi-supervised learning
scenario.

Assuming that the task-oriented solution and training-
oriented solution independently affect the performance, it is
natural to combine the state-of-the-art of each side and
then constitute the framework. Therefore, we attempt to
combine the 1-D heatmap-based method by Yin et al. [5]
for handling the quantization error and the high-performance
semi-supervised framework (FixMatch [10]). Interestingly,
through a simple experiment, we found that a 1-D heatmap
is no longer more effective than a 2-D heatmap in the
semi-supervised setting. Figure 1 compares facial landmark
detection performances using a 1-D and 2-D heatmap,
respectively. As expected, 1-D heatmap (FSL 1-D [5])
outperforms 2-D heatmap (FSL 2-D [11]) in the fully-
supervised setting as reported in [5]. Counter-intuitively,
under the semi-supervised scenario, we found that using
the 1-D heatmap (SSL 1-D) and 2-D heatmap (SSL 2-D)
reported similar NME values. It means that the semi-
supervised training is facilitated better with a 2-D heatmap
than a 1-D heatmap when observing the performance gain
of each method over its fully-supervised counterpart; 24.2%
and 11.4% NME improvements at 5% data ratio for 2-D and
1-D representation, respectively. From these results, we con-
clude that task-oriented and training-oriented solutions may
negatively influence each other, thus eliminating their
negative interactions is an important issue to bridging the
performance gap.

To understand what causes negative feedback, we further
investigate the learning profiles using 1-D and 2-D heatmaps
and confirm the positive role of the 2-D heatmap in the
semi-supervised setting. The estimated 2-D heatmap is more
accurate than the estimated 1-D heatmap at the early training
stage. Then, we propose a new training strategy that uses 1-
D and 2-D heatmap representations simultaneously to enjoy
the advantages of both sides, namely HybridMatch. The
proposed model is built upon FixMatch [10]; it learns unla-
beled data via consistency regularization between weakly-
augmented and strongly-augmented samples and labeled data
via conventional cross-entropy loss. Then, it utilizes the
high-resolution 1-D representation to reduce the quantization
errors in the heatmap. The low-resolution 2-D representation
plays a central role in facilitating semi-supervised learning.
To enjoy the advantages of both 1-D and 2-D representation,
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we employ the curriculum learning strategy. It focuses only
on the feedback from the 2-D heatmap at the beginning of
training, and gradually increases the feedback from the 1-D
heatmap.

The motivation behind our training scheme is two-fold.
First, it increases the quality of the pseudo-label at the early
training stage with 2-D heatmaps. Second, it exploits higher
performance with a high-resolution 1-D heatmap when it is
available (i.e., at the end of training). Through this coarse-
to-fine approach, our HybridMatch significantly outperforms
the existing semi-supervised models on three datasets
(26.3% NME improvement in 300-W full set at 5% data
ratio), even comparable with those of the fully-supervised
models.

II. RELATED WORKS
A. SUPERVISED FACIAL LANDMARK DETECTION
Supervised facial landmark detection techniques can be
categorized into two groups; (i) coordinate regression meth-
ods [12], [13] and (ii) heatmap regression methods [2],
[14], [15], [16], [17], [18], [28]. The coordinate regression
predicts a normalized landmark coordinate, and the heatmap
regression estimates a heatmap per landmark coordinate.
Owing to the performance advantages, recent methods
adopt heatmap regression for facial landmark detection.
Several heatmap-based methods utilize additional geometric
constraints to improve performance; Merget et al. [19] using
a PCA-based 2-D shape model, LAB [18] exploiting face
boundary information, and ODN [20] learning additional
weighting from occlusion probabilities. Awing [21] resolves
the imbalance between foreground and background on
the heatmap and significantly improves the performance.
HRNet [11] develops a new model architecture by exploiting
high-resolution representation. SLPT [22] proposes a sparse
local patch transformer for learning the inherent relation
between facial landmarks.

However, heatmap-based methods commonly suffer from
large memory complexity because they estimate a 2-D
heatmap per landmark coordinate value. Consequently, the
heatmap resolution is usually lower than the resolution of
the input image in practice. Then, the fractional part of
the landmark coordinates is neglected, resulting in severe
quantization errors. HIH [23] observes that NME caused by
quantization error is even larger than 1/3 of the state-of-
the-art item. To tackle the quantization error, Sun et al. [2]
exploits the probabilities of all landmarks to estimate
the landmark coordinates with fractional parts. DSNT [1]
converts discrete 2-D heatmaps into continuous coordinates
by adding a differential layer. FHR [3] estimates fractional
parts of landmarks by fitting the 2-D Gaussian distribution
from samples of a 2-D heatmap. DARK [4] estimates
landmarks by approximating the distribution using Taylor
expansion. However, when the resolution of a 2-D heatmap
is considerably low, it no longer carries the informative
spatial distribution. Then, various strategies for estimating the
fractional part are often not effective. Recently, Yin et al. [5]

introduces the idea of representing a 2-D heatmap via two
1-D heatmaps with a co-attention mechanism and shows that
significant performance gain can be achieved by effectively
handling the quantization error.

B. SEMI-SUPERVISED FACIAL LANDMARK DETECTION
RCN [8] proposes a multi-task framework, performing
both attribute classification and landmark detection. SA [9]
employs a data augmentation method by generating style-
translated examples to secure more training data. TS3 [7]
utilizes a teacher-students framework. Here, the teacher
criticizes the quality of the student-generated samples, and
the students are re-trained with the refined pseudo samples
via quality filtering. 3FabRec [6] shows that unsupervised
generative training captures implicit facial shape information.
Then, it sufficiently trains a facial landmark detector with
supervised follow-up training, only using small supervised
samples.

While our HybridMatch uses pseudo-labels like TS3,
we do not require multiple trainable networks with multi-
stage training. More importantly, existing semi-supervised
facial landmark detectors focus only on the training-oriented
issue (i.e., how to use unlabeled data). That is, they do not
consider task-oriented issues such as quantization errors in a
semi-supervised setting, leading to sub-optimal performance.
To the best of our knowledge, we are the first to argue
that semi-supervised landmark detection should resolve the
task-oriented issue as well as the training-oriented issue.
In this work, we propose an integrated 1-D and 2-D
heatmap representation and an effective training strategy for
semi-supervised facial landmark detection, which effectively
utilizes unlabeled data and tackles quantization errors at the
same time.

III. METHODS
A. PRELIMINARY: FixMatch
According to the semi-supervised learning scenario, the
training dataset can be partitioned into a labeled set {xs, ys} ∼

Ds and an unlabeled set {xu} ∼ Du. Here, xs and xu are
image data and ys is a corresponding label of xs. Following
the convention, the model learns Ds in the same way as a
fully-supervised model. For unlabeled data Du, one of the
common approaches is to extract the pseudo-label ŷu =

PL(xu) via the pseudo-label extractor PL(·) and then guide
the model training using {xu, ŷu}. Recently, FixMatch [10]
shows impressive performance improvement in the semi-
supervised image classification task. The method selectively
uses pseudo-labels and exploits consistency regularization to
handle unlabeled data. Specifically, FixMatch generates high-
confidence one-hot pseudo-labels from weakly-augmented
unlabeled data ŷu = PL(Tw(xu)). Then, it trains the model
fθ (·) parameterized by θ by mapping strongly-augmented
unlabeled data Ts(xu) to ŷu, where Tw(·) and Ts(·) are weak
and strong data augmentation polices, respectively. Finally,
the supervised data loss Ls and the unsupervised data loss Lu
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FIGURE 2. Convergence trends of fully- and semi-supervised scenarios
using NME across training epochs. Interestingly, SSL 2-D shows faster
convergence than SSL 1-D. Here, FSL uses 10% of labeled data, while SSL
uses 10% of labeled data with 90% of unlabeled data. All results are
based on HRNet.

of FixMatch are expressed as follows:

Ls =
1

|Ds|

∑
{xs,ys}∼Ds

d (fθ (xs), ys), (1)

Lu =
1

|Du|

∑
xu∼Du

d (fθ (Ts(xu)),PL(Tw(xu))), (2)

where d(·) is an error metric. The final objective L is,

L = Ls + λu · Lu, (3)

where λu(≥ 0) is a weighting parameter of the unsupervised
loss. In the following, we develop the proposed model based
on the semi-supervised learning framework of FixMatch
for handling unlabeled data. (For a fair comparison, the
same FixMatch framework is employed for semi-supervised
competitors.)

B. MOTIVATION
Semi-supervised facial landmark detection inherits two per-
formance bottlenecks; (i) limited representation power due to
low-resolution heatmap (i.e., task-oriented bottleneck), and
(ii) noisy pseudo-labels in semi-supervised learning [7], [24]
(i.e., training-oriented bottleneck). Presuming the solution for
each issue does not affect the other, one may introduce a
1-D heatmap representation into the FixMatch framework,
collectively choosing the state-of-the-art methods for each
side. As shown in Figure 1, we observe that the 1-D
heatmap-based method in the semi-supervised setting has
less performance gain than the 2-D heatmap-based method,
unlike the fully-supervised setting.

From the counter-intuitive observation, we further inves-
tigate why the 2-D heatmap-based method is more suitable
for the semi-supervised setting. For that, we compare the
convergence trends under different fully-supervised settings
based on HRNet [11], and semi-supervised settings based
on FixMatch [10] using the same feature extractor [11].
Figure 2 shows that the 2-D heatmap-basedmethod converges

faster than the 1-D-based method. We conjecture that the
different convergences are induced by the different levels
of representation power. By definition, the 2-D heatmap
inherently encodes the relationship between x-y coordinates
and thus can reveal the relationship naturally in the heatmap
output. On the other hand, the 1-D heatmap-based method
ignores the dependency along x-y coordinates to simplify
the representation. Although a co-attention module is used
to restore their relationships, gaps in convergence speed are
inevitable. That is, the 1-D heatmap-based method shows a
slower convergence speed than that of the 2-D heatmap-based
method.

Slow convergence is critically negative in a semi-
supervised setting. Note that, at the early stage of the
semi-supervised training, the 2-D heatmap-based method
provides more accurate pseudo-labels than those of the 1-D
heatmap-based method. This large gap in the early training
stage affects even the final performance, especially in the
semi-supervised training [25]. The importance of the early
training stage is also discussed in Liu et al. [24]. Based
on our experiments on convergence trends, we confirm that
the state-of-the-art method for reducing the quantization
error can provide negative feedback to the state-of-the-art
semi-supervised framework. Our method eliminates negative
feedback by enjoying fast convergence by 2-D representation
and accurate performance by 1-D representation simultane-
ously. Details of the method will be discussed in the next
section.

C. HybridMatch
We propose HybridMatch, utilizing both high-resolution
1-D and low-resolution 2-D heatmap representations. Our
key motivation is to eliminate the negative effects between
task- and training-oriented solutions in semi-supervised
landmark detection, thus enjoying the advantages of both
sides. Specifically, the high-resolution 1-D heatmap enables
the model to reduce quantization errors. Meanwhile, the
low-resolution 2-D heatmap provides more accurate pseudo-
labels at the early stage of semi-supervised training. Figure 3
depicts the overall architecture for training unlabeled data.
Our model is built upon the HRNet architecture. (i) It
first regresses the 2-D heatmap supervised by 2-D pseudo-
labels like HRNet. (ii) It estimates the 1-D heatmap via a
1-D heatmap regressor using the estimated 2-D heatmap.
For the parameter updates, both the 1-D and 2-D pseudo-
labels are used to update all parameters except for the
1-D heatmap regressor. Here, the parameters for the 1-D
regressor are updated only with 1-D pseudo-labels. In this
way, we enjoy the advantages of both 1-D and 2-D
heatmaps because both heatmaps participate in the training
loss.

Motivated by our analysis of convergence trends in
Section III-B, we rely more on feedback from the 2-D
heatmap at the early training stage. For that, we have
gradually increased the importance of 1-D heatmap feedback
by controlling λ1D

u in Eqn. 5 as the training evolves. Finally,
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FIGURE 3. Overall framework of HybridMatch for training unlabeled data. L2D
u and L1D

u are pseudo-labeling-based 2-D and 1-D heatmap regression
feedback, respectively (see Eqn. 5).

the total loss for the labeled data Ls and the unlabeled data
Lu are written as follows:

Ls = L2D
s + λ1D

s · L1D
s , (4)

Lu = L2D
u + λ1D

u · L1D
u , (5)

where λ1D
s is a constant weighting factor for L1D

s and λ1D
u is

a varying weighting factor for L1D
u . We use linear scheduling

for λ1D
u in Eqn. 5, which is defined as follows:

λ1D
u =

{
i/K · λ1D if i < K .

λ1D if K ≤ i ≤ I ,
(6)

where i is the index of the current training iteration, I is the
total iterations, and K is the end iteration when the linear
ramp-up ends. With our adaptive training strategy, Hybrid-
Match can receive high-quality feedback at the beginning
of the training from the 2-D heatmap representation. Then,
it finally has the advantage of high-resolution 1-D heatmap
representation that helps reduce quantization errors.

In the following, we describe three training skills to further
improve our model. They are data augmentation, a mean
teacher framework, and confidence-regularized hard pseudo-
labeling.

1) DATA AUGMENTATION
We adopt a data augmentation strategy from Sohn et al. [10]
andmake several modifications for facial landmark detection.
Firstly, to ensure the pixel alignment between pseudo-
labels from the weakly and strongly augmented image,
we set Ts(·) = T ′

s(Tw(·)), where T ′
s only includes

photometric transformation. By doing so, the geometric
alignment between Tw(·) and Ts(·) is guaranteed. Specifically,

we chooseAutoAugment [26] followed byCutout [27] except
for rotation, shear, and translation for T ′

s(·).

2) MEAN TEACHER FRAMEWORK
We employ a mean teacher framework [28], widely used
in the semi-supervised scenario to improve the training
stability and prediction quality. Instead of generating the
pseudo-label ŷu = PL(Tw(xu)) using the model PL(·) =

fθ (·), we use the model PL(·) = fφ(·), where φ is an
exponential moving average of the previous values in θ

throughout the optimization. The mean teacher framework
is regarded as a temporal ensemble and leads to stable
prediction without an expensive computing cost. Following
the convention, themodel fφ is used to obtain the pseudo-label
of Tw(xu). The model fθ provides the predicted heatmap for
Ts(xu). The parameters θ are updated using the loss between
the predicted heatmaps and the pseudo-labels.

3) PSEUDO-LABELING
How to use the prediction fφ(Tw(xu)) as the pseudo-label
(i.e., whether to use the soft or hard label) remains an
open question in semi-supervised learning. Many semi-
supervised methods use a hard label with confidence-
based thresholding for entropy minimization [10], [29].
Confidence-based thresholding can also be applied to facial
landmark detection. It selects a point of the highest intensity
on the heatmap as the confidence score for the heatmap and
then uses it if the confidence is greater than the threshold.
However, it is non-trivial to choose an appropriate threshold
value for different datasets. Furthermore, we observe that the
optimal threshold value should change upon each landmark
point. To bypass the reliability issue of thresholding, we use
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a hard label with confidence regularization as follows:

Lmu =
1

|Du|

∑
xu∼Du

Am
conf · d

(
f mθ (Ts(xu)), ŷmu )

)
,

Lu =
1
M

M∑
m=1

Lmu , (7)

where f mθ (·), Am
conf and ŷmu are the mth heatmap prediction,

its highest intensity value, and its pseudo-label. Here, xu is
the unlabeled input andM is the number of landmarks. Since
Aconf ∈ [0, 1] is the highest value in the heatmap, it naturally
penalizes the low-confidence heatmap (i.e., generally having
low intensities) but promotes the high-confidence heatmap.
In this way, we can focus on the high-confidence heatmap
without additional parameters for thresholding.

By conducting experiments on various benchmark
datasets, we confirmed that both soft labels and hard labels
with confidence regularization are successful on datasets
with small variations, such as human faces. Meanwhile, hard
labels with confidence regularization are more effective on
datasets with large variations, such as caricature faces (see
Section IV-F2). To achieve the generalized performances
on various datasets, we use hard labels with confidence
regularization and then generate pseudo-labels from the
prediction fφ(Tw(xu)) in all experiments. To render hard
labels, we specifically apply the argmax operation on
the heatmap to obtain coordinate information. Then,
we transform the coordinate information to the heatmap by
fitting the Gaussian distribution; it is a common protocol, thus
identical to all other methods of producing the heatmap label
from the coordinate label.We use the generated pseudo-labels
as guidance for unlabeled data.

IV. EXPERIMENTAL RESULTS
A. DATASET
300-W is a semi-automatically annotated facial landmark
dataset with 68 landmark points, including LFPW [30],
AFW [31], HELEN [32], XM2VTS [33], and additional
data [34]. We use the same data split as Ren et al. [35], which
composes 3,148 training and 689 testing images (full). The
test split consists of 135 images for a challenging subset
and 554 images for a common subset. For the experiments,
we report performances on challenging, common, and full
testing sets.

AFLW is a large-scale collection of annotated face images
from Flickr, exhibiting a large variety of appearances (e.g.,
pose, expression, ethnicity, age, and gender). AFLW [36]
contains 24,386 images, and we use splits of 20,000 images
for training and 4,386 images for testing (full). The test split
includes 1,165 images for a frontal subset. Following the
convention as in [37], we use only 19 out of 21 annotated
landmarks.

WFLW [18] is a manually annotated facial landmark
dataset with 98 landmark points, whose images are sourced
from theWIDER FACE dataset [38]. WFLW contains 10,000

faces with 7,500 training images and 2,500 test images. The
test split consists of several different test subsets, where each
subset varies in pose, illumination, expression, occlusion,
make-up, or blur.

WebCari [39] is a large photograph-caricature dataset with
252 identities collected from the web. We composed the
WebCari dataset for our work with only caricature images,
which vary in artistic styles with 17 landmark points. The
WebCari dataset includes a total of 6,042 caricature images
with 246 identities and we divide them into 3,942 training
images and 2,100 test images. Unlike a real face dataset, the
structural information and style information of each image
vary significantly in this dataset.

B. EXPERIMENTAL SETUP
1) NETWORK ARCHITECTURE
Our model is based on HRNetV2-W18 [11], which performs
2-D heatmap regression on the input. We follow the same
model configuration as inWang et al. [11]. In order to perform
1-D heatmap regression, we add 1-D heatmap regressor as
suggested in [5] at the end of the last layer.

2) IMPLEMENTATION DETAILS
We follow the configuration from HRNetV2-W18 [11],
which is widely used in facial landmark detection. All images
are cropped and resized to 256 × 256. We choose random
horizontal flipping (p = 0.5), random rotation (±30◦), and
random scaling (±25%) for weak data augmentation Tw(·).
The total training epoch is 60. We use an Adam optimizer
with a linear warmup. The learning rate is 0.0001, where the
rate decreases by 0.1 times in the 30th and 50th epochs. The
output resolution is 64 × 64 and 256 × 2 for the 2-D and
1-D heatmap, respectively. We randomly sample r% of data
using a fixed seed value and report the best performance out
of 3 runs in all experiments. Our experiments are carried out
on NVIDIA Titan Xp GPUs.

Curriculum learning. In Eqn. 6, we use linear scheduling
for λ1D

u . For the hyper-parameters in the equation, we use
K = 0.1I and λ1D

= λ1D
s = 0.05 for the rest of the

paper.

C. EVALUATION METRIC
1) NME
For facial landmark detection, the mean squared error has
a significant limitation in that it neglects the scale of the
face. Thus, the normalized mean squared error (NME) is
widely adopted as an evaluation metric in the literature. NME
includes a normalization factor of L, which is often defined
as the distance between eyes and is defined as follows:

NME =
1
M

M∑
m=1

||pm1 − pm2 ||2

L
, (8)

where pm1 and pm2 are landmark coordinate points andM is the
number of landmarks. We use Inter-ocular norm for 300-W
andWFLW datasets, which defines L as the outer-eye-corner
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FIGURE 4. Qualitative results on 300-W, AFLW, and WFLW datasets. The second to sixth columns depict predicted landmark points overlaid input images
along with the labeled image ratio (%) or the number of images. GT indicates ground-truth landmark points overlaid images. Better viewed when
zoomed in.

TABLE 1. Upper-bound performance on 300-W, AFLW, and WFLW datasets. ‘‘†’’ and ‘‘‡’’ denote semi-supervised method and fully-supervised method,
respectively. ‘‘-’’ denotes unavailable, {100%, 20%} indicate the labeled data ratio, and the results are NMEb↓ (%). We highlight that our HybridMatch
achieves comparable performance to the HRNet using a fully labeled dataset.

distance for quantitative evaluations as following [6], [7]. For
AFLW, we define L as the width of the square bounding box
following Zhu et al. [40].

2) FAILURE RATE AND AREA UNDER CURVE
Failure Rate (FRr ) indicates the ratio of failed predictions out
of the given images. We consider an image that has NME
larger than the threshold r as a failed prediction. We use
r = 10% as a threshold.
Area Under Curve (AUC) computes the area of the

cumulative error distribution curve (CED(x) = 1 − FRx).
A larger AUCmeans higher accuracy and lower sensitivity to
the threshold. We evaluate CED(x) for x ∈ [0%, 10%].

D. COMPARISON WITH STATE-OF-THE-ART
Table 1 compares the upper-bound performances of existing
semi-supervised methods and HRNet. The upper-bound
performances of SSL methods are computed with the model
trainedwith the entire training data (100% supervision). From
these comparisons, HRNet shows comparable or superior
upper-bound performances over existing semi-supervised
models, thus our HybridMatch is implemented based on
HRNetV2-W18. HRNet is denoted as FSL 2-D throughout
this paper, and Figure 1 clearly shows that HybridMatch
significantly improves the HRNet baseline.

In Table 2, we compare our method with state-of-the-
art semi-supervised models on the 300-W dataset. Our
HybridMatch outperforms the existing methods for all data

FIGURE 5. Qualitative results on the WebCari dataset. The second and
third columns depict the predicted landmarks using 246 and 197 (5%)
training images, respectively. For 246 images, each image is sampled from
246 identities of the WebCari dataset. Better viewed when zoomed in.

ratios. Semi-supervised models are evaluated under 20%,
10%, 5%, and even extreme ratios such as 1.4% (50 samples)
and 0.3% (10 samples). Our method is more robust against
data ratio variation than the other methods; the effects of
HybridMatch are more pronounced under harsh conditions.
For example, 3FabRec shows a performance degradation of
0.93%p (full testing set) when it only uses 5% labeled data
ratio, compared to the same model using full supervision.
On the other hand, HybridMatch shows a performance
degradation of 0.18%p under the same setting. It indicates
that our method is less sensitive to the size of the training
set. Notably, given only 50 labeled samples, HybridMatch
outperforms 3FabRec with 100% training data.
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TABLE 2. Quantitative results of semi-supervised methods on the 300-W dataset. Each column represents {common, challenging, full} testing set. The
results are NMEb↓ (%).

TABLE 3. Quantitative results of semi-supervised methods on AFLW dataset. Each column represents {full, frontal} testing set, respectively. The results
are NMEb↓ (%).

TABLE 4. Quantitative results of semi-supervised methods on WFLW full
testing set. The results are NMEb↓ (%).

TABLE 5. Area Under Curve (AUC) and Failure Rate (FR10%) on the 300-W
test set.

Table 3 summarizes NME scores on the AFLW dataset.
HybridMatch records the robust performances across varying
data ratios on the AFLW dataset as it is on the 300-W.
More importantly, even with only 1% annotation labels,
we achieve 1.77/1.62 (full and frontal testing set), which
is comparable to the accuracy of 3FabRec using full
supervision (1.84/1.59).

Table 4 shows NME scores on the WFLW, which is
considered the most challenging dataset. Our HybridMatch
still outperforms all existing methods with large gaps.
In particular, SA reports outstanding performance on the
WFLW full testing set, even outperforming HRNetV2-W18
in the fully-supervised setting of Table 1. However, in the
semi-supervised setting, our method performs remarkably
better than SA with a 2.35%p gain on 10% labeled data
ratio.

To investigate the effectiveness of our HybridMatch,
we compare the proposed method with other fully-supervised
models using FR and AUC metrics. We evaluate the
methods on the 300-W test set. Table 5 shows that our
HybridMatch with only 20% of labeled data achieves the
best results in both measurements. Our FR indicates that
only one image out of the full 300-W test set has a larger
NME than the threshold. Furthermore, our HybridMatch
outperforms 3FabRec in AUC at a high margin. This result
indicates that our model shows accurate results with low
deviation. Note that our HybridMatch depicts FR10% =

0.67 and AUC = 56.33 only with 50 labeled images
training.

E. QUALITATIVE RESULTS
Figure 4 visualizes our landmark prediction results on
the 300-W, AFLW, and WFLW datasets. Although NME
increases by reducing the labeled data, we observe that our
predicted landmark points are sufficiently close to ground-
truth landmark points. Besides, the predictions are generally
robust against facial orientation, expression, and occlusion.
In the second row on the left image in the WFLW dataset,
we find that the predicted facial contour is imprecise when
only 10 samples are labeled. This is because the labeled
samples are extremely few, thus the model is incapable
of learning challenging cases, such as occluded or rotated
faces. In general, our model achieves compelling quality
at a 20% labeled data ratio, which is on par with the
fully supervised model. Considering the impressive results
and the computational efficiency, HybridMatch can serve
as a good alternative to fully-supervised facial landmark
detection.

Figure 5 shows landmark prediction results on theWebCari
dataset. Although WebCari is a challenging dataset with high
variation (i.e., diverse shapes and textures), the proposed
model successfully provides accurate predictions. In the
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TABLE 6. Effects of the heatmap representation. All results are based on
HybridMatch architecture. The results are NMEb↓ (%) on the 300-W
dataset. FSL and SSL indicate fully- and semi-supervised learning,
respectively. FSL uses only 10% of the training dataset.

TABLE 7. Effects of pseudo-label type. All results are based on
HybridMatch architecture. The results are NMEb↓ (%) on 300-W (full ) and
WebCari datasets.

image of the first row on the left, we observe that the
predicted forehead point is inaccurate. However, since
the corresponding subject is bald, the human also suffers
from pinpointing the accurate forehead point. Considering the
difficulty of the task, we conclude that our model is fairly
robust against the highly varying dataset.

F. ABLATION STUDY
1) EFFECTS OF HEATMAP REPRESENTATION
Figure 1 and Table 6 exhibit the effects of the heatmap repre-
sentations on the 300-W dataset. In a fully-supervised setting
based on [11], the 1-D heatmap representation [5] (FSL 1-
D) outperforms the 2-D heatmap representation [11] (FSL 2-
D). This is expected because the high-resolution 1-D heatmap
helps reduce quantization errors. However, in the semi-
supervised setting based on [10], the 2-D heatmap provides
more accurate pseudo-labels from the early training stage.
Thus, the performance gap between the 2-D heatmap-based
method (SSL 2-D) and the 1-D heatmap-based method (SSL
1-D) is significantly reduced. On the other hand, our method
utilizes 1-D and 2-D heatmap representations simultaneously
to have the advantages of both sides, improving the final
performance.

2) EFFECTS OF PSEUDO-LABELING METHOD
Table 7 compares the accuracy of the pseudo-labeling meth-
ods. We observe that both the hard labeling
and soft labeling methods as PL(·) show no significant
difference on the dataset with low geometric variation
such as 300-W. However, we observe a considerable
performance gap in high geometric variation datasets such as
WebCari. Based on our observation, we conjecture that the
soft pseudo-label under the dataset with high geometric
variation tends to produce a low-confidence heatmap,
which is blurry and distorted. Then, the key point no

longer obeys the Gaussian distribution. This misleads the
feedback from unlabeled data, thus resulting in performance
degradation.

G. MEMORY USAGE AND MODEL PARAMETERS
Since HybridMatch uses both 1-D and 2-D heatmaps, one
might consider the increase in model parameters as a negative
side effect. However, compared to the 1-D based model [5],
our model only adds two convolutional layers with batch nor-
malization (for regressing a 2-D heatmap), thus the increase
in parameters is negligible. Furthermore, as our model
provides feedback from the 2-D representation, we reduce
the network size of the 1-D heatmap branch without much
performance drop. As a result, the total weight of our model
is 11.23M while the 1-D-based model [5] is 16.44M. Our
memory cost is much lower than that of the state-of-the-art
semi-supervised model [6] (25.97M). Another computational
factor is the memory capacity during training. Since the
2-D heatmap requires much more capacity, increasing the
2-D resolution can incur out-of-memory issues. Although
our hybrid representation inherits the same memory capacity
issue, adding the 1-D heatmap is marginal in terms of
memory capacity. Overall, our hybrid representation does
not consume many model parameters over the 1-D heatmap
model [5] andmemory capacity compared to the 2-D heatmap
model [11].

V. CONCLUSION
We propose an effective semi-supervised facial landmark
detection framework via hybrid representation, namely
HybridMatch. This paper first identifies that we should
consider both task-oriented (i.e., quantization error) and
training-oriented (i.e., noisy pseudo-labels) issues simultane-
ously when tackling a semi-supervised landmark detection
problem. To this end, we propose HybridMatch for simul-
taneously mitigating the performance bottlenecks caused
by quantization error and noisy pseudo-labels. Specifically,
our HybridMatch utilizes the high-resolution 1-D heatmap
representation for reducing quantization error and the low-
resolution 2-D heatmap for facilitating the fast convergence
of semi-supervised learning. Extensive evaluations demon-
strate the effectiveness of our HybridMatch and the outstand-
ing performances, the new state-of-the-art accuracies for
semi-supervised facial landmark detection on 300-W, AFLW,
andWFLW datasets. Concretely, our method achieves 26.3%
NME improvement over the existing method in 300-W full
set at 5% data ratio. Our HybridMatch can capture more
precise facial landmark points than existing methods with
only a few annotated data (e.g., even when training with
only 10 annotation labels). More importantly, HybridMatch
achieves comparable performance, 2.99/5.04/3.40 (common,
challenging and full testing set in 300-W) to the fully-
supervised facial landmark detector (2.87/5.03/3.29) even
using 20% labeled data.
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