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ABSTRACT In clustering the training sequence (TS), K-means algorithm tries to find empirically optimal
representative vectors that achieve the empirical minimum to inductively design optimal representative
vectors yielding the true optimum for the underlying distribution. In this paper, the convergence rates on
the clustering errors are first observed as functions of β−α , where β is the training ratio that relates the
training sequence size to the number of representative vectors, and α is a non-negative constant. From the
convergence rates, we can observe the training performance for a finite TS size. If the TS size is relatively
small, errors occur in finding the number of clusters. In order to reduce the errors from small TS sizes,
a compensation constant (1 − β−α)−1 for the empirical errors is devised based on the rate analyses and a
novel algorithm for finding the number of clusters is proposed. The compensation constant can be applied
to other clustering applications especially when the TS size is relatively small.

INDEX TERMS Clustering, K-means algorithm, number of clusters, small training sequence, training ratio,
β-compensation.

I. INTRODUCTION
The clustering of samples is a method of grouping or
segmenting samples into subsets or clusters to efficiently
represent the samples [1], [2], [3] and improve deep learn-
ing performances. Clustering samples can be a scheme for
self-organizing or unsupervised learning [4], [5]. We assume
that a sequence of samples, which is called the training
sequence (TS), is realized from a random vector with the
underlying distribution. The K-means algorithm can effi-
ciently conduct clustering by iteratively decreasing an empir-
ical error from TS [6]. The algorithm divides the TS into
a finite number of disjoint clusters, of which centroids are
the representative vectors, based on the nearest neighbor
search. Here, we call the finite set of these vectors the
codebook. The K-means algorithm can asymptotically design
optimal codebooks as the TS size increases in an inductive
approach [7], [8]. Hence, the K-means algorithm can be
an efficient approach to reduce both linear and nonlinear
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correlations [9], and combined with the conventional linear
decorrelation methods, such as the principle component anal-
ysis, Karhunen-Loeve transform, and discrete cosine trans-
form for autoregressive signals [10].

Based on the consistency property of a sequence of trained
codebooks as the TS size increases [8], [11], the K-means
algorithm tries to find empirically optimal codebooks, which
achieve the empirical minimum for the given TS, to induc-
tively design an optimal codebook for the underlying distri-
bution [12]. However, the K-means algorithm often yields
locally optimal codebooks depending on initial guesses.
Locally optimal codebooks do not guarantee a convergence
to an optimal codebook even though the TS size increases.
Hence, it is necessary to devise an algorithm, which can
achieve the global optimum. Vaisey and Gersho [13] uti-
lize the simulated annealing approach to alleviate the local
minimum problem. In inductively training codebooks, the
training ratio β, which is defined by the ratio of the TS size
to the codebook size, is a more important parameter rather
than the TS size itself [9]. Furthermore, depending on search
structures, β can be different [14], [15], [16].
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In this paper, in order to formulate the convergence rates of
the errors yielded by the trained codebooks as a function of β,
previous research regarding the effects of a finite TS size on
the clustering performance is first surveyed. For this paper,
the main contributions are as follows. (1) It is shown that the
convergence rate in clustering TS is a function of β−α , where
1/2 ≤ α ≤ 1. (2) In testing the trained codebook, a similar
rate is also observed and a convergence rate in the minimax
sense is derived; the trained codebook shows a rate of β−1 in
a minimax sense. (3) Based on the convergence rate analyses
with β, a novel algorithm to find the number of clusters is
proposed, where a compensation for the K-means algorithm
is considered especially for small training ratios of β. Note
that, as the TS size becomes relatively small, more errors
occur in finding the correct number of clusters.

This paper is organized in the following way. In Section II,
several definitions in training codebooks are shown. The
convergence rates of β in training codebooks are shown in
Section III and the rates in testing the trained codebooks are
shown in Section IV. In Section V, a novel algorithm to find
the number of clusters is proposed. The conclusion is given
in the last section.

II. PRELIMINARY
In early works on statistical learning, the Vapnik-
Chervonenkis (VC) dimension [17] has been introduced
for a set of indicator functions, which can be employed in
the pattern recognitions [2]. Cohn et al. [18] have framed
the clustering as a classification problem and proposed a
bound by adopting the VC dimension. In this section, several
definitions on trained codebooks are introduced and the con-
vergence rates with β are observed by surveying the previous
research.

Let F denote the underlying distribution and ∥·∥ denote the
Euclidean norm on Rk as a dissimilarity measure. The code-
book design problem for F is to find a set C that minimizes
a distortion defined by a mean square error as

D(C) :=

∫
min
y∈C

∥x− y∥2dF(x) (1)

over all possible choices of C ⊂ Rk , in which the size of
C is less than or equal to a positive integer n. We call C the
codebook and its elements the representative vectors. Let C∗

denote an optimal codebook if D(C∗) = infC D(C). We call
D(C∗) the optimum and simply denote the optimum as D∗,
which is assumed D∗

̸= 0. From the source coding theorem,
D∗ converges to the Shannon lower bound as the vector
dimension k increases [9], [19]. To find C∗, Max [20] and
Lloyd [21] proposed algorithms for a given distribution F .

Assume that X,X1, · · · ,Xm are independent, and iden-
tically distributed random vectors taking values in Rk with
distribution F . Let X1, · · · ,Xm denote a finite TS and a
positive integer m denote the TS size. For a codebook C ,
we define the empirical distortion, which is an empirical

mean square error, as

Dm(C) :=
1
m

m∑
ℓ=1

min
y∈C

∥Xℓ − y∥2, (2)

where we suppose that E{∥X∥
2
} < ∞. Note that Dm is

a random variable defined on the underlying sample space.
There exists a codebook that achieves infC Dm(C) for a
given TS [12]. Let C∗

m denote such a codebook that min-
imizes the empirical distortion Dm. We call Dm(C∗

m) (=
minC Dm(C)) the empirical minimum. In order to find C∗

for an unknown F , an inductive method that minimizes
Dm is usually considered in the traditional codebook design
approaches; because, for a sequence of C∗

m, D(C
∗
m) and

Dm(C∗
m) converge to D∗ almost surely (a.s.) under several

conditions [8], [11]. To find an empirical optimumC∗
m, Linder

et al. [7] proposed an iterative algorithm by using TS [9,
p. 366]. This algorithm is equivalent to a clustering algorithm,
which is called the isodata or K-means algorithm in the area
of pattern recognition [22, p. 482]. K-means algorithms usu-
ally search the cluster centers of C∗

m by minimizing Dm(C).
Because the empirical minimum Dm(C∗

m) is readily avail-
able in training the codebook, Dm(C∗

m) can be employed
as a performance measure for the trained codebooks, rather
than the mean distortion D(C∗

m) [23], [24]. However, because
Dm(C∗

m) is a biased estimate ofD(C∗
m), using a relatively small

size of a separate test or validating sequence, we can effi-
ciently estimate D(C) to evaluate the performance of C [25].
Let the training ratio β be defined as β := m/n, which

is a normalized TS size by the codebook size [9, p. 364].
The distortion difference between the optimum and that of
the trained codebook is dependent on the ratio β [16], [24],
[26]. Hence, we may estimate the achievable performance
of trained codebooks by observing β. In the special case
when n = 1 and β ≥ 1, we obtain explicit relations:
D∗

− E{Dm(C∗
m)} = cβ−1 and E{D(C∗

m)} − D∗
= cβ−1,

where c = D∗ is equal to the trace of the covariance matrix
of X [24].
For a more general case, when n ≥ 2, any explicit deriva-

tion regardingDm(C∗
m) orD(C

∗
m) is not shown in the literature

except for several special cases; Dm(C∗
m) = 0 if β ≤ 1.

Instead of providing such exact values, several bounds in
some senses have been derived in order to observe the rate as
a function of m or β. By constructing a discrete distribution,
Linder [23] derived a lower bound on D∗

− E{Dm(C∗
m)}, as a

function of m−1/2. Earlier results also provide upper bounds
of the same order. From the bounds, Linder [23] showed that
D∗

−E{Dm(C∗
m)} has a rate ofβ

−1/2 by introducingworst case
bounds. Based on a theorem of [27], Chou [28] studied the
mean distortion of C∗

m, and showed that D(C∗
m) − D∗ has the

ratem−1 in a sense of distribution. Linder et al. [29] proposed
an upper bound on E{D(C∗

m)} − D∗, and Bartlett et al. [30]
suggested the rate β−1/2 in the minimax sense. In comparison
to the worst case bound of Linder [23], Kim and Bell [24]
derived a pointwise lower bound on D∗

− E{Dm(C∗
m)} as
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a function of any distribution F . They also derived a lower
bound, which has the rate m−1.
In experimental research, we find several observa-

tions regarding the rate, especially for image signals.
Cosman et al. [31] numerically investigated the performance
of the trained codebooks and suggested an algebraic decay
of the form m−α for a positive α. Cohn et al. [18] also
observed the trained codebook performance based on a dis-
crete source model for images. Collura and Tremain [26]
numerically observed the appropriate values of β for design-
ing a full-search codebook based on spectral data and showed
that constrained-search structures have a better training per-
formance than the full-search case. Note that β can be dif-
ferent depending on the search structures. Kim [16] observed
such training ratios for different search structures, and com-
pared their performances in terms of training. Kim and
Bell [24] also showed several numerical results for the uni-
form, Gaussian, and Laplacian densities of F with fitted
curves of the form β−α . Based on a constrained-search struc-
ture, the product quantization [14], [15] can provide good
characteristics both in terms of training performance and
search efficiency [32].

III. RATES ON THE EMPIRICAL MINIMUM
In this section, the convergence rates of the empirical min-
imum Dm(C∗

m) of (2) for the empirical optimum C∗
m is

observed.

A. EMPIRICAL MINIMUM OF RATE β−α

Let us consider n points y1, · · · , yn as a codebook {yi}, and
the corresponding partition {Si} of Rk . The corresponding
element of the region Si is yi, and the codebook size is n.
Note that the partition is a finite, disjoint class {Si} whose
union is Rk (or includes the support of a density function
of F). Let Pi denote the probability that X belongs to Si, i.e.,
Pi :=

∫
Si
dF(x), and I be an index set I = {i : Pi ̸=

0, i = 1, · · · , n}. Define the ith partial distortion δi as δi :=∫
Si

∥x − yi∥2dF(x), for i ∈ I. The summation of the partial
distortions,

∑
i∈I δi, is equal to the mean distortion of the

codebook {yi} and the partition {Si} for F . Here, we assume
that

∑
i∈I δi ̸= 0. For the underlying codebook {yi} and

partition {Si}, let us consider a random vector Yoi that is
defined as

Yoi :=


(0, · · · , 0), if mi = 0
1
mi

m∑
ℓ=1

ISi (Xℓ)Xℓ, otherwise,
(3)

wheremi is a random variable defined asmi :=
∑m
ℓ=1 ISi (Xℓ),

for each Si. Here, IS (x) = 1 if x ∈ S, and IS (x) = 0 oth-
erwise. Let Co

m denote the set of Yoi as Co
m := {Yoi }. For

the set Co
m, define an empirical distortion 3m as 3m :=

m−1 ∑
i∈I

∑m
ℓ=1 ISi (Xℓ)∥Xℓ − Yoi ∥

2. For any distribution F ,
and the underlying {yi} and {Si},

E {3m} ≤

∑
i∈I

δi

[
1 −

1 − (1 − Pi)m

mPi

]
(4)

holds [24], where k,m, n ≥ 1. If each yi is the cen-
troid of Si, i.e., yi =

∫
Si
xdF(x)/

∫
Si
dF(x), then the

equality in (4) holds and a relationship D(C) − E{3m} =

c0β−1 is obtained, where a positive c0 is defined as c0 :=∑
i∈I δi [1 − (1 − Pi)m] /nPi. Note that c0 ↑ c∞ :=∑
i∈I δi/nPi asm increases. Because limm→∞ |c0−c∞|/β =

0, the sequence (c0)m converges to c∞ at a faster rate than that
of β−1

→ 0.
Assume that {yi} and {Si} in distortion 3m are equal to

an optimal codebook C∗
:= {y∗i } and the corresponding

Voronoi partition {S∗
i }, respectively. Then, from Dm(C∗

m) ≤

Dm(Co
m) ≤ 3m and (4),

D∗
− E{Dm(C∗

m)} ≥ c∗0β
−1 (5)

holds, where k,m, n ≥ 1. In (5), c∗0 is obtained from c0 for
{S∗
i }. For a fixed n ≥ 1 and F , suppose that

D∗
− E{Dm(C∗

m)} = c1β−α1 , (6)

where c1, α1 > 0, and the sequence (c1)m is bounded.
From (5), it is clear that α1 ≤ 1. In (6), c1 can be a function
of C∗, k , m, n, and F , and can contribute to making the
difference of (6) zero asm increases. For the n = 1 case, c1 =

D∗ and α1 = 1 hold. However, for the case of n ≥ 2, we can
only guess the constant c1 from c∗0 in (5). From an upper
bound on (6), which is derived by Linder [23], we notice
that the minimum of α1 is 1/2 for the distributions supported
by a given bounded region. Here, we add a condition that
lim infm c1 > 0 to the constant c1. Hence, for the empirical
minimum case of (6), we can obtain a range of α1 as

Empirical Minimum:
1
2

≤ α1 ≤ 1, (7)

for the distributions supported by a given bounded region.
The fastest rate β−1 of (7) is usually achieved when n = 1,

independently of the distribution type and the vector dimen-
sion. Note that fast rates are attractive because we can obtain
a good codebook using a relatively small TS [26]. However,
for the case of n ≥ 2, the rate can be different depending on
the distribution as illustrated in the numerical results of [24].
In fact, the codebook size n also affects the rate.
Linder [23] constructed a discrete distribution as a function

of the codebook size, and showed the minimum rate β−1/2.
In the worst case of distributions, Linder [23] also derived
both upper and lower bounds, and showed that the difference
is proportional to β−1/2. From (5), we can also derive a worst
case bound, but as a function of β−1,

sup
F

[
D∗

− E{Dm(C∗
m)}

]
≥ c∗0β

−1, (8)

where the supremum is taken for all distributions over a ball
in Rk . As Kim and Bell [24] showed, even though the rate
is faster than β−1/2, a worst case bound obtained from (8)
can be better than that of Linder for practically small training
ratios.
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IV. RATES ON THE MEAN DISTORTION
In this section, the convergence rates of the mean distortion
D(C∗

m) of (1) for the empirical optimum C∗
m is first observed.

A lower bound in a minimax sense is next derived.

A. MEAN DISTORTION OF RATE β−α

In a manner similar to (6), we assume an relationship as

E{D(C∗
m)} − D∗

= c2β−α2 , (9)

where c2, α2 > 0, and the sequence (c2)m is bounded and
lim infm c2 > 0. Linder et al. [29] proposed an upper bound
on E{D(C∗

m)} − D∗ as a function of (m/ logm)−1/2, for any
distribution F . Bartlett et al. [30] sharpened the upper bound
as a function of m−1/2. Hence, the minimum of α2 is given
by 1/2 for a fixed codebook size n.

Bartlett et al. [30] constructed a distribution, and derived
a lower bound of the constructed distribution as a func-
tion of β−1/2. However, we can obtain a lower bound
based on the result of Chou [28] for a more general class
of distributions [27]. If C∗ is unique for the distribution,
then from [28], m[D(C∗

m) − D∗] → w in distribution,
where w is the sum of squares of normal random vari-
ables with zero-mean and a covariance matrix. Hence,
we have lim infm→∞ m[E{D(C∗

m)} − D∗] ≥ E{w}

[33, Theorem 25.11]. BecauseE{D(C∗
m)}−D

∗ > 0 ifD∗
̸= 0,

and E{w} > 0, there is a positive constant c′2 such that
β[E{D(C∗

m)} − D∗] ≥ c′2, for a fixed n. Therefore, we can
obtain a lower bound as

E{D(C∗
m)} − D∗

≥ c′2β
−1. (10)

If we confine the input distributions within those of [27], then,
from (10), the maximum rate is given by β−1. In other words,
for a class of distributions, we can obtain a range of α2 for (9)
as

Mean Distortion:
1
2

≤ α2 ≤ 1. (11)

It is clear that the distribution constructed by
Bartlett et al. [30] has the rate β−1/2. The rate β−1 is always
achieved when n = 1. Therefore from (7) and (11), we notice
that both distortion differences have a range of rates from
β−1/2 to β−1. In the following section, it will be shown that
β−1 can be a rate for the mean distortion case in the minimax
sense.

B. RATE β−1 IN THE MINIMAX SENSE
In order to investigate the rate of the distortion difference
E{D(C∗

m)}−D∗, Bartlett et al. [30] introduced a notion of the
minimax expected distortion redundancy, which expresses
the minimal worst case excess distortion that an empirical
codebook can have. The main result of [30] is that the differ-
ence E{D(C∗

m)}−D∗ is not a function of β−1 in the minimax
sense, contrary to the conjecture of Chou’s rate β−1 [28].
They also proposed the rate β−1/2 for the difference in the
minimax sense, instead of β−1. In this section, however, it is

shown that the difference E{D(C∗
m)} − D∗ can have the rate

β−1 even in the minimax sense.
Deriving the rate β−1 in the minimax sense is performed

by obtaining an upper bound of the mean distortion of Co
m,

which is introduced in (3). In a manner similar to 3m, define
a mean distortion 3 as

3 :=

∑
i∈I

∫
Si

∥x− Yoi ∥
2dF(x), (12)

for the underlying codebook {yi} and partition {Si}. Note that
we have a relationship: D∗

≤ D(Co
m) ≤ 3. However, any

relationship between the distortions D(C∗
m) and D(C

o
m) is not

known. Hence, it is difficult to derive a pointwise bound on
the mean distortion D(C∗

m) as a function of Co
m.

Assume that each yi is the centroid of Si for any given F
and {Si}. Then

E{3} − D(C) = c3β−1 (13)

holds, where k,m, n ≥ 1. Here the positive c3 is given by

c3 := β

[∑
i∈I

δiE{ξi} +

∑
i∈I

Pi∥yi∥
2(1 − Pi)m

]
, (14)

where the random variable ξi is defined as ξi := 1/mi if mi ̸=

0, and ξi = 0 otherwise, and c3 converges to c∞ asm → ∞ at
a rate, which is equal to or can be faster than that of β−1

→ 0.
The proof of (13) is shown in Appendix.
Assume that {yi} and {Si} in error 3 are equal to an opti-

mal codebook C∗
:= {y∗i } and the corresponding Voronoi

partition {S∗
i }, respectively. We then obtain the following

relationship:

E{3} − D∗
= c∗3β

−1, (15)

where k,m, n ≥ 1. Here, the positive constant c∗3 can be
obtained from (14). From (15) and E{D(Co

m)} ≤ E{3},
E{D(Co

m)} − D∗
≤ c∗3β

−1 holds for any F . Hence, we have
an upper bound in the minimax sense as

inf
Cm

sup
F

[
E{D(Cm)} − D∗

]
≤ c∗3β

−1, (16)

where the infimum is taken over all k-dimensional n-point
codebooks trained on m samples, and the supremum is taken
for all distributions over a ball in Rk . Bartlett et al. [30]
derived a lower bound of rate β−1. Therefore, from (16),
in the minimax sense, the difference E{D(C∗

m)} − D∗ has a
rate of β−1.

V. NUMBER OF CLUSTERS
In this section, a distortion compensation in clustering rela-
tively small TS is first introduced based on the convergence
rate analysis with the training ratio β. As an example of the
compensation, a novel algorithm to find the number of clus-
ters especially for relatively small TS sizes is next proposed.
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FIGURE 1. Gaussian mixture distribution with 4 clusters and variance of
1 for clustering examples. In the K-means algorithm, a split method for
the initial guess was employed (k = 2 and n = 4) [9]. (a) TS of
100 samples per center (β = 100). (b) TS of 5 samples per center (β = 5).

A. β-COMPENSATIONS FOR SMALL TRAINING RATIOS
In order to find better clusters for relatively small TS, a data-
driven dissimilarity measure can be used [34]. Instead of such
a special measure, a simple compensation of the Euclidean
norm is introduced to deal with the problem caused by small
training ratios based on the convergence rate analyses of the
previous sections.

We consider an empirical optimum assumption that the
empirically optimal codebook C∗

m is obtained from the
K-means clustering for a TS. If the TS size is relatively small,
then the empirical minimum Dm(C∗

m) can have considerable
biases due to small β as mentioned in (6). It seems that the
distances between the centers and samples are reduced as
the training ratio β decreases. If β ≤ 1, then all distances
eventually become zero as Dm(C∗

m) = 0. In other words,
the clustering region is shrinking as β decreases. Hence, it is
required to compensate the empirical distortions for the finite
TS size. We call this compensation with the training ratio β
the β-compensation.

Based on the relationship of (6), assume that the
empirical minimum satisfies the following approximation:
Dm(C∗

m)ψ(β) ≈ D∗, where ψ denotes the β-compensation
constant defined as

β-Compensation Constant: ψ(β) := (1 − β−α)−1, (17)

for a finite training ratio β, where 1/2 ≤ α ≤ 1 from (7).
As mentioned in (7), the coefficient for β−α is dependent
on k and F . However, to simplify the compensation, we set
the coefficient c1 ≈ D∗ and thus can obtain ψ of (17). For
the n = 1 case, we use α = 1 for the β-compensation. If the
clusters are well separated as the fixed bins in 3m [35], then
α ≈ 1 from E{3m} in (4). For a strong compensation, we can
set α = 1/2.
A β-compensation to obtain D∗ can be conducted from

Dm(C∗
m)ψ(β). We can also consider a β-compensated ∥ ·

∥
2ψ(β). This compensation is important especially when the
training ratio β is too small to accurately estimate D∗. For
simulation examples, two cases of TS generated from under
a Gaussian mixture distribution with 4 clusters are illustrated
in Fig. 1. The TS of Fig. 2(a) has an enough size to be

FIGURE 2. Mean of the empirical minima E{Dm(C∗
m)} with respect to the

training ratio β and the β-compensation for the TS of Fig 1 (n = 4 and
α = 1). The mean distances are reduced to zero as the training ratio β
approaches 1; the clustering region is shrinking.

clustered as β = 100. However, the TS of Fig. 1(b) has a
relatively small TS size of β = 5. A β-compensation example
for the Gaussian mixture distribution of Fig. 1 is shown in
Fig. 2. We can observe that the distortions obtained from the
β-compensation is nearly constant even for small training
ratios.

B. FINDING THE NUMBER OF CLUSTERS
We now consider an algorithm to find the number of clusters
based on the K-means algorithm for a given finite TS. Let us
consider a distribution F having several separate clusters as
Fig. 1. In order to find the separate clusters, we introduce the
underlying assumption: if the number of clusters is equal to
the codebook size n, then a normalized optimum n2/kD∗ is
lower than the other codebook size case. Here, the optimum
should be normalized by multiplying n2/k to alleviate any
influence from the codebook size [36]. Hence, for a set of
candidates of the number of clusters, we can test n2/kD∗ or
n2/kDm(C∗

m) if β is large enough. However, for small training
ratios, the β-compensation as n2/kDm(C∗

m)ψ(β) is required.
In order to find the number of clusters, a novel algorithm,

which employs the β-compensation constant ψ , is proposed
and summarized as follows.

1) NUMBER OF CLUSTERS WITH THE β-COMPENSATION
0) Consider a set N for the possible number of clusters.
1) Calculate the β-compensation constant ψ(β) from (17)

for n ∈ N .
2) Conduct K-means clustering to obtain empirical minima

Dm(C∗
m), for n ∈ N .

3) Select the codebook size such that

min
n∈N

n2/kDm(C∗
m)ψ(β) (18)

as the number of clusters in F .
Examples of the proposed algorithm are demonstrated in

Fig. 3. If the training ratio is large enough as β = 100
(n = 4) of Fig. 1(a), then the compensated empirical minima

25936 VOLUME 11, 2023
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FIGURE 3. Example of the proposed algorithm to find the number of
clusters for Fig 1 based on the normalized and β-compensated empirical
minima. The β-compensation constants ψ of (17) are also depicted with
α = 1/2. The sizes that minimize the normalized and β-compensated
empirical minima in the proposed algorithm of (18) were 4.
(a) 100 samples per center of Fig 1(a) (β = 100 for n = 4). (b) 5 samples
per center of Fig 1(b) (β = 5 for n = 4).

n2/kDm(C∗
m)ψ(β) (‘‘β-comp. n2/kDmψ(β)’’) with respect to

several n are very close to the mean distortions n2/kD(C∗
m)

(‘‘Testing’’) as shown in Fig. 3(a). Because the minimum
of the compensated distortions are achieved at n = 4 in
Fig. 3(a), we can conclude that the number of clusters is 4 and
the clustering result is also depicted in Fig. 1(a). It is clear
that, if the TS size is large enough, we can find the correct
number of clusters. On the other hand, if the TS size is
relatively small as shown in Fig. 1(b), then simply checking
the empirical minimum n2/kDm(C∗

m) can lead to a wrong
result as ‘‘n2/kDm’’ of Fig. 3(b). Note that the training ratio β
of Fig. 3(b) varies from 20 to 20/9 ≈ 2.22, for n = 1, . . . , 9.
Hence, we can observe that the empirical minimum decreases
and the test distortion increases as n increases in Fig. 3(b). For
this relatively small TS size case, compensating the empirical
minimum is important in finding the number of clusters as
demonstrated in ‘‘β-comp. n2/kDmψ(β)’’ of Fig. 3(b). Hence,
the proposed algorithm can correctly find the number of clus-
ters from the β-compensation especially for small training
ratios. In the example of Fig. 3, α = 1/2 was set for the
β-compensation. However, for the n = 4 case, the

FIGURE 4. β-compensation of the elbow curve [37] for the TS of Fig 1(b)
(β = 5 for n = 4).

FIGURE 5. β-compensation of the information-theoretic method [40] for
the TS of Fig 1(b) (β = 5 for n = 4), where Y = k/2.

convergence rate is more close to β−1, i.e., α ≈ 1. Hence,
setting α = 1 for further possible sizes of n can be recom-
mended.

In order to find the number of clusters, various methods
have been developed [2], [22], [37], [38], [39], [40], [41],
[42]. Among the methods, we can apply the β-compensation
if the methods utilize the empirical distortion Dm or the
Euclidean norm. Observing the elbow curve of Dm can pro-
vide an appropriate number of clusters as shown in Fig. 4
for the TS of Fig. 1(b) [43], [44]. From n = 5, the changes
of Dm are not significant. Hence, we can guess the num-
ber of clusters is 4. Applying the β-compensation to Dm
can help us find the elbow point more clearly especially
when the TS size is relatively small. Sugar [40] proposed
an information-theoretic method to find the clusters. The
β-compensation can also be applied to the empirical min-
ima and an example is shown in Fig. 5 for the TS of
Fig. 1(b). Without the compensation, the distortion change
curve yielded a wrong result of 8. However, applying the
β-compensation provided the correct value in a similar man-
ner to the proposed algorithm case.

In Fig. 6, the silhouette [38] and gap statistic [2], [39]
methods are now discussed regarding the β-compensation.
For the silhouette values, if the squared Euclidean norm
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FIGURE 6. Silhouette means [38] and the gap statistic values [39] to find
the number of clusters for the TS of Fig 1(b) (β = 5 for n = 4).

is used to calculate distances, the β-compensation constant
can also be considered. However, the silhouette values are
calculated based on a distance normalization and thus the
β-compensation is not required intrinsically compared to the
methods in [22]. As we can observe in Fig. 6, the silhouette
method can find the correct number of clusters even for the
relatively small TS of Fig. 1(b). However, the gap statistic
method shows an incorrect optimal value of 1, where the
β-correction cannot be applied. Note that, as β increases, the
gap statistic method can yield the correct number of clusters.

VI. CONCLUSION
In this paper, the clustering performance of the K-means
algorithm was analyzed in both theoretical and numerical
observations under the empirical optimum assumption. If this
assumption holds, then the analysis can be applied to other
clustering algorithms. The clustering performance is

• dominantly dependent on the training ratio β := m/n,
• less sensitive to the vector dimension k , and
• different depending on the source distribution F .

The convergence rate has a form of cβ−α , where α is depen-
dent on F and 1/2 ≤ α ≤ 1. Positive constant c is a function
of k and F , and infβ,k c > 0. When clustering TS while min-
imizing the empirical distortion, using the β-compensation
constant ψ(β) = (1 − β−α)−1 is proposed especially for the
small TS or β case. By applying this β-compensation to a
clustering algorithm, the number of clusters can be correctly
found even for small values of β.

APPENDIX: PROOF OF (13)
In order to prove (13), the expectation of 3 is first derived.
In 3 =

∑
i∈I

∫
Si

∥x − Yoi ∥
2dF(x), replacing (x − Yoi ) by

(x− yi) + (yi − Yoi ) yields

3 =

∑
i∈I

∫
Si

(
∥x− yi∥

2
+ ∥yi − Yoi ∥

2

+ xT yi − xTYoi − yTi yi + yTi Y
o
i

)
dF(x).

Because yi =
∫
Si
xdF(x)/

∫
Si
dF(x) for all i from the assump-

tion, 3 can be rewritten by

3 = D(C) +

∑
i∈I

Pi∥Yoi − yi∥
2. (A1)

We now derive the mean of 3, E{3}. In order to simplify
the derivation, let |I| = n. The proof in the case of |I| < n
is similar. Let Bν ⊂ Rkm be the m-fold Cartesian product of
Si’s, i.e., Bν = Siν,1 × · · · × Siν,m , where ν = (iν,1 − 1) +

(iν,2 − 1)n + · · · + (iν,m − 1)nm−1 and iν,j ∈ {1, 2, · · · , n}.
Let us consider a product measure of order m as F ×· · ·×F .
Then the second term of the right-hand side of (A1) satisfies

E

{
n∑
i=1

Pi∥Yoi − yi∥
2

}

=

nm−1∑
ν=0

∫
Bν

n∑
i=1

Pi∥yoi − yi∥
2dF(x1) · · · dF(xm),

=:

nm−1∑
ν=0

n∑
i=1

Piψi,ν,

where ψi,ν :=
∫
Bν

∥yoi − yi∥
2dF(x1) · · · dF(xm), and yoi is the

function of xℓ’s as in (3). Let mi,ν denote the number of i
in {iν,j}mj=1. In the case when mi,ν ̸= 0, by rearranging the
parameters xℓ, ψi,ν can be expanded as

ψi,ν =

n∏
j=1
j̸=i

P
mj,ν
j

∫
(Si)

mi,ν
∥yoi − yi∥

2dF(x1) · · · dF(xmi,ν ),

(A2)

and ψi,ν =
∏n

j=1 P
mj,ν
j ∥yi∥

2 otherwise. Here, yoi :=

(1/mi,ν)
∑mi,ν
ℓ=1 xℓ. Let ξi,ν be defined as ξi,ν := 1/mi,ν if

mi,ν ̸= 0, and 0 otherwise, and let γi,ν be defined as γi,ν :=

1 if mi,ν ̸= 0, and 0 otherwise. ψi,ν can then be rewritten by

ψi,ν =
ξi,ν

Pi

n∏
j=1

P
mj,ν
j

∫
Si

∥x− yi∥
2dF(x)

+(1 − γi,ν)
n∏
j=1

P
mj,ν
j ∥yi∥

2. (A3)

Because
∑
ν

∏
j P

mj,ν
j γi,ν = 1 − (1 − Pi)m [24], we obtain

E{3} =

∑
i∈I

δi(1 + E{ξi}) +

∑
i∈I

Pi∥yi∥
2m(1 − Pi)m, (A4)

where the random variable ξi is defined as ξi := 1/mi if mi ̸=

0, and 0 otherwise. From (A4), we can obtain a relationship:
E{3} − D(C) = c3β−1, where c3 is given by

c3 :=
1
n

∑
i∈I

δimE{ξi} +
1
n

∑
i∈I

Pi∥yi∥
2m(1 − Pi)m. (A5)

It is clear that the second term in the right-hand side of (A5)
goes to 0 as m → ∞ because m(1 − Pi)m → 0.

We now consider the term mE{ξi} in (A5). A lower bound
of ξi is given by γi/(mi+1) ≤ ξi, where γi = 1 ifmi ̸= 0, and

25938 VOLUME 11, 2023



D. S. Kim: Finding the Number of Clusters Using a Small Training Sequence

0 otherwise. Hence, E {γi/(mi + 1)} ≤ E{ξi} holds. Because
γi/(mi + 1) has a multinomial distribution,

E
{

γi

mi + 1

}
=

m∑
ℓ=1

1
ℓ+ 1

m!

ℓ!(m− ℓ)!
(Pi)ℓ(1 − Pi)m−ℓ

=
1 − (1 − Pi)m+1

− (m+ 1)Pi(1 − Pi)m

(m+ 1)Pi

holds. Hence, we have

lim inf
m→∞

mE{ξi} ≥
1
Pi
. (A6)

An upper bound on ξi is given by ξi ≤ γi/(mi + 1) +

3γi/(mi + 1)(mi + 2) [45]. Hence,

E{ξi} ≤ E
{

γi

mi + 1

}
+ E

{
3γi

(mi + 1)(mi + 2)

}
. (A7)

The second term of the right-hand side in (A7) can be
expanded as

E
{

3γi
(mi + 1)(mi + 2)

}
=

m∑
ℓ=1

1
(ℓ+ 1)(ℓ+ 2)

m!

ℓ!(m− ℓ)!
(Pi)ℓ(1 − Pi)m−ℓ

=
1

(m+ 1)(m+ 2)(Pi)2

[
1 − (1 − Pi)m+2

−(m+ 2)Pi(1 − Pi)m+1

−(m+ 1)(m+ 2)(Pi)2(1 − Pi)m/2
]
.

Hence, limm→∞ mE {3γi/(mi + 1)(mi + 2)} = 0, which
yields

lim sup
m→∞

mE{ξi} ≤
1
Pi
. (A8)

Consequently, from (A6) and (A8), mE{ξi} → 1/Pi for i ∈

I. Therefore, c3 →
∑

i∈I δi/nPi, which is equal to c∞ =

limm→∞ c0. □
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