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ABSTRACT In quantile regression models, numerous penalization methods have been developed to deal
with ordinary least-squares method problems. Such methods are ridge penalized quantile regression, lasso
penalized quantile regression, and elastic net penalized quantile regression which are used for variable
selection and regularization and deals with the multicollinearity problemwhen it exists between the predictor
variables. However, the variables of interest are often represented through time series processes, in which
such time series data are often non-stationary and non-linear, which leads to poor accuracy of the resultant
regression models and hence results with less reliability. The EMD-EnetQR method is proposed to address
this issue, which consists of applying the empirical mode decomposition (EMD) algorithm to time series data
and then using the resulting components in penalized quantile regression models. This study aims to apply
the proposed EMD-QREnet method to determine the influence of the decomposition components of the
original time series predictor variables on the response variable to build a model fit and improve prediction
accuracy. Furthermore, this study addressed the multicollinearity between the decomposition components.
Simulation studies and real dataset applications were conducted. The results show that the proposed EMD-
QREnet method, in most cases, outperforms the other methods by improving prediction accuracy.

INDEX TERMS Elastic net penalty, quantile regression, empirical mode decomposition, model selection,
multicollinearity.

I. INTRODUCTION
Linear regression models are widely used in statistical
analyses and numerous fields, such as finance, economics,
environmental science, and society. The traditional ordinary
least squares (LS) regression approach was used to estimate
regression models, representing the mean function of the
response variable. However, the LS estimator is extremely
sensitive to outliers or heavy-tailed distributions. In this
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case, the estimation efficiency is naturally reduced. Quantile
regression (QR) Koenker and Bassett [16] has been used as
an alternative to least squares in the presence of outliers.
Over the past two decades, quantile regression (QR) has
become a popular method for describing the distribution of
a response variable given a collection of predictor variables.
QR describes the effects of predictor variables on the
complete conditional distributions of a response variable
instead of only the average value and provides an overall
assessment of the covariate effects at different quantile τ of
the response Das [15], Tian and Song [27].
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Empirical mode decomposition (EMD) was introduced
by Huang et al. [13] for decomposing non-linear and non-
stationary time series data into a finite set of decomposition
components called Intrinsic Mode Functions (IMFs) and
residual components via the sifting process. Unlike previous
methods, such as wavelet decomposition Chui and Heil [6]
and Fourier decomposition Titchmarsh [29], EMD does not
assume any basis system on the dataset, such as stationary or
linear. The EMD by the sifting method produces decomposi-
tion components with different wavelengths, amplitudes, and
frequencies, indicating that they are functionally significant
Huang [12]. These decomposition components can be used
as new predictor variables to study their influence on the
response variable. Al-Jawarneh and Ismail [3].

Variable selection methods have attracted considerable
attention from researchers over the past few decades. Many
penalization techniques have been proposed for simultane-
ous variable selection to produce sparse models, such as
the ridge penalty Hoerl and Kennard [11], lasso penalty
Tibshirani [28], and elastic-net penalty Zou and Hastie
[38]. Moreover, penalized regularization methods have
been conveniently used to improve the quantile regression
method by enhancing prediction accuracy and improving
variable selection. For example, Li and Zhu [17] studied a
quantile regression with an L1-norm penalty, Belloni and
Chernozhukov [4] proposed a penalized quantile regression
with the L1-penalty in high-dimensional and Zheng et al.
[37] combined quantile regression with a fully adaptive
L1-penalty. Then, Uniejewski and Weron [30] introduced
a different approach that considers regularized quantile
regression averaging (QRA), which utilizes lasso to select the
relevant regressors automatically, Liu et al. [19] studied the
generalized lasso penalty in a quantile regression with linear
constraints on the parameters and Xu et al. [31] introduced
both the sampling method and the lasso technique to QR to
develop a sampling lasso quantile regression (SLQR)method.
After that, Burgette et al. [5] presented two approaches
based on lasso and elastic-net penalties to identify potentially
essential predictors in quantile regression, and Ali et al. [1]
proposed an optimal k-NN ensemble (Ok-NN-E) based on
fitting stepwise regression for optimal model selection for
regression. Recently, Hamraz et al. [10] used a robust fisher
score approach to select discriminative genes or features, and
Younas et al. [34] proposed an optimal causal trees (OCTE)
method to select a subset of the best causal trees in terms of
their strength.

Several penalization techniques have also been proposed
to solve the problem of multicollinearity among predictor
variables in quantile regression, such as Zaikarina et al. [35],
who used lasso and ridge penalties in quantile regression
to overcome the problem of multicollinearity. Subsequently,
Sadig and Bager [24] used ridge and quantile regression
with a parameter ridge to solve the multicollinearity problem.
Similarly, Erişoğlu and Yaman [9] used ridge and quantile
regression approaches to solve the multicollinearity problem.
In contrast, Slawski [25] studied the structured elastic net

regularized in conjugationwith two significant loss functions:
the checked loss of quantile regression and the hinge loss of
support vector classification. Later Yan and Song [32] studied
penalized quantile regression with an elastic net. Recently,
Zhang et al. [36] proposed a framework for probability
density forecasting of short-term wind speed based on
quantile regression (QR) and kernel density estimation
(KDE). They found that introducing the empirical mode
decomposition (EMD) technique reduces raw wind speed
series noise.

In several studies, such as medicine and economics, the
relationships between natural processes are assessed through
regression analyses using time series data. Such data are
often non-stationary and non-linear, and a multicollinearity
problem may exist. If these concerns are not considered,
it can lead to poor accuracy in the resulting regression models
and make the final result less accurate. To address these
issues, the EMD-EnetQRmethod is proposed, which consists
of applying the empirical mode decomposition (EMD)
algorithm to time series data and then using the resulting
components in penalized quantile regression models. The
proposed EMD-EnetQR method addresses the problems
associated with non-stationary and non-linear signals. The
EMD algorithm decomposes the original non-stationary and
non-linear signals of the data sets into a set of orthogonal
IMF components and a residual component. Second, the
decomposition components of EMD are used as orthogonal
predictor variables in elastic net penalized quantile regression
(EnetQR). This study aims to select the decomposition
components of the original time-series predictors that exhibit
the most substantial effects on the response variable to build
a best-fitted model and address multicollinearity among the
decomposition components to improve the performance of
predictions further. The proposed method (EMD-EnetQR) is
compared with traditional methods called Ridge regularized
quantile regression QRR proposed by Zaikarina et al. [35],
Lasso regularized quantile regression QRL Li and Zhu
[17], Elastic net penalized quantile regression (QREnet)
Yan and Song [32]. Mentioned also that Ridge regularized
quantile regression based on EMD (EMD-QRR), and LASSO
regularized quantile regression based on EMD (EMD-QRL)
are also the proposed methods.

The remainder of this paper is organized as follows.
Section II describes the EMD method, elastic net penalized
quantile regression, the proposed EMD-EnetQR method, and
prediction goodness measurements. Section III presents a
simulation study and a real data analysis. Furthermore, report
analysis and discussion are presented in Section III. Finally,
Section IV concludes the study with a brief discussion.

II. METHODOLOGY
This section discusses the methods used in this study. First,
the EMD method is used to decompose the original signal
(predictor variables) using the sifting process technique.
Secondly, an elastic net (Enet) penalized quantile regression
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was applied. Finally, the proposed EMD-EnetQR method is
discussed in this section.

A. EMPIRICAL MODE DECOMPOSITION
The empirical mode decomposition (EMD) method was
proposed by Huang et al. [13] and represented the first part
of the Hilbert–Huang transform. The EMD technique decom-
poses the non-stationary and non-linear original signals into
a finite set of decomposition components called Intrinsic
Mode Functions (IMFs) and residual components via the
sifting process. In EMD, the time domain of the signal is
unchanged Huang [12]. Each IMF must fulfil the following
two conditions: (1) the number of local extreme values and
the number of zero-crossings in the entire data set must be
the same or differ by one; and (2) at any time point, the mean
value of the upper envelope defined by the local maximum
and the lower envelope defined by the local minimummust be
zero. The EMD process has the following simple expression
Huang [12].

x (t) =

∑K

k=1
Ck (t) + r (t) (1)

where x (t) indicates the original signal, r(t) represents the
residue of the original signal decomposition, and Ck (t)
represents the ith intrinsic mode function (IMF).

1) SIFTING PROCESS
The sifting process decomposes the original signal x(t) into
severalCk (t) and r(t). The detailed decomposition processes
of the EMD are briefly summarized as follows:
Step 1: Insert the original signal x (t) into the sifting process

and the iteration index value was assumed to be j =
1.

Step 2: Identify all local extrema (maxima and minima).
Step 3: Connect all the minima and maxima using cubic

spline interpolation to form the lower l (t) and upper
u (t) envelopes.

Step 4: Compute the local mean of the upper and lower
envelope.

mj (t) =
u (t) + l (t)

2
(2)

Step 5: Subtract the mean mj (t) from signal x (t) to obtain
the first component IMF candidate.

hj (t) = x (t) − mj (t) (3)

Step 6: Check the component hj (t) is an IMF i (t), according
to IMFi (t) conditions. If the function hj (t) satisfies
IMF i (t) conditions, it continues to Step 7. If not,
return to step 2 and replace the value hj (t) with x (t)
and repeat Steps 2 to 4. Subsequently, the IMF i (t)
result obtained in the previous step is saved. Then,
the iteration index value is updated such that it equals
j = j + 1. Finally, using the IMFi (t) and the
signal x (t), the residue function ri (t) is obtained as
follows:

ri (t) = ri−1 (t) − IMF i (t) (4)

FIGURE 1. The EMD decomposition process.

Step 7: Check whether the residue function ri (t) acquired
from step 6 is a monotonic function or satisfies the
stopping criterion of the standard deviation (SD)
for two consecutive successive sifting of the results,
where a typical value for SD can be set between
0.2 and 0.3, as shown in the following formula:

SDj =

∑T

t=0

hj−1 (t) − hj (t)2

h2j−1 (t)
(5)

If not, replace ri (t) with x (t) and then repeat the operations
from step 2, setting j = j + 1. If yes, save the residue and
all the IMFs obtained, and stop the sifting process. Figure 1
describes a flowchart that summarizes all the sifting process
steps.

2) INTRINSIC MODE FUNCTION (IMF)
IMFs represent a simple oscillatory mode as an alternative
to a straightforward harmonic function. An IMF is defined
as any function with the same number of extrema and zero
crossings whose envelopes are symmetric concerning zero.
According to the EMD algorithm presented in the previous
section, the IMF produced by the sifting process must satisfy
the following two conditions: Huang et al. [13], Huang [12]

• In the entire data set, the number of local extreme values
(local maxima and local minima) and the number of zero
crossings must be equal or differ at most by one.

• At any point, the local mean value between the upper
and lower envelopes was zero. The first condition
is necessary for oscillation data. This indicates that
each IMF has only one local maximum or local
minimum between two consecutive zero crossings. The
second condition assumes that the IMF is stationary,
making its analysis easier. However, an IMF can exhibit
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amplitude modulation as well as changing frequency Al-
Jawarneh et al. [2], Lu [20], Raghuram et al. [23].

B. PENALIZED QUANTILE REGRESSION
Consider the following typical linear regression model:

y = Xβ + ε (6)

where

y =


y1
y2
...

yn

 ,X =


1 x11 . . . x1p
1
...

x21
...

. . .
...

x2p
...

1 xn1 . . . xnp

 ,

β =


β0
β1
...

βp

 , ε =


ε1

ε2
...

εn


y is an (n× 1) vector of observations on the response variable,
X is an (n× p) matrix of observations on the predictor
variables, β is a (p× 1) vector of unknown regression
coefficients, ε is an (n× 1) vector of random errors that
are supposed to be normally distributed with E (ε) = 0 and
E
(
εεT

)
= σ 2In.

The τ th conditional quantile function can then be estimated
by solving the following optimization problem:

β̂τ = min
β

∑n

i=1
ρτ

(
yi − xTi β

)
(7)

where xTi is ith row of X and ρτ (u) = τ (u − I (u< 0)) for
u ∈ R is the check loss function with I (.) being the indicator
function and quantile level τ∈ (0, 1). Under the regularization
framework and to improve quantile regression Koenker [14]
suggested penalized version, wherewe consider the following
penalized optimization problem:

β̂τ = min
β

∑n

i=1
ρτ

(
yi − xTi β

)
+ λP (β) (8)

where λ> 0 is the penalization parameter and P (β) is the
penalty function.

C. ELASTIC NET PENALIZED QUANTILE REGRESSION
Zou and Hastie [38] introduced the elastic net penalty
technique, which was a convex combination of the L1-norm
penalty (lasso) by Tibshirani [28] and the L2-norm penalty
(ridge) by Hoerl and Kennard [11]. The L1-norm part of the
elastic net penalty reduces the number of predictor variables
by shrinking some regression coefficients to zero. The
L2-norm part of the elastic net penalty deal with the high
correlation between the predictor variables Al-Jawarneh [2],
Liu and Li [18]. The formula for the elastic net penalty is as
follows:

Pλ (β) = λ1
∑p

j=1

∣∣βj∣∣+ λ2
∑p

j=1
β2
j (9)

where Pλ (β) is the Elastic Net (Enet) convex penalty
function; ∥β∥

2
2 =

∑p
j=1 β2

j is the L2-norm of vector

β and ∥β∥1 =
∑p

j=1

∣∣βj∣∣ is the L1-norm of vector β.
Moreover, λ1 and λ2 are tuning parameters that control the
amount of shrinkage for regression parameters and non-
negative parameters (λ1, λ2 ≥ 0), which are automatically
selected by cross-validation (CV) Al-Jawarneh et al. [2],
Masselot et al. [21], Zou and Hastie [38].

D. PROPOSED EMD-EnetQR METHOD
In this section, the elastic net penalized quantile regression
model based on Empirical Mode Decomposition (EMD-
EnetQR) is presented to select decomposition components
that have the most significant effect on the response
variable and deal with the multicollinearity between the
decomposition components. The proposed method can be
summarized as follows:

Step 1: The original signals xj (t) are decomposed by EMD
into several components named Cjk (t) and residual
component rj (t). These decomposed components
can be expressed by Equation (11) Qin et al. [22]

xj (t) =

∑K

k=1
Cjk (t) + rj (t) (10)

Step 2: All the decomposition components and residuals
obtained in Step 1 are used as predictor variables
to predict the behaviour of the response variable
y(t) as in Equation (11) Al-Jawarneh et al. [2],
Masselot et al. [21].

y (t) =

∑p

j=1

[∑K

k=1
Cjkβjk + rjk (t) βjk

]
+ ε (t)

(11)

Step 3: Using the correlation coefficient and the variance
inflation factor (VIF) test to check whether there is a
multicollinearity problem among the decomposition
components.

Step 4: The Elastic Net penalized quantile regression is
used between the response variable y (t) and
all decomposed components obtained from the
predictor variable x (t) via EMD to select the
subset of components that exhibited the most
impact. The EnetQR method was then used in
the following formula: Al-Jawarneh and Ismail [3],
Sadig and Bager [24]

β̂EnetQR

= argmin
β

1
2n

∑n

i=1
ρτ (yi (t)

−

∑p

j=1

(∑K

k=1
Cjk (t)βjk−rj(t)βjk+1

))2

+ λP (β)

λP (β)

= λ

(
α
∑p

k=1

[∑K

k=1
β2
jk

]
+

(1 − α)

2

∑p

k=1

[∑K+1

k=1
β2
jk

])
(12)
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FIGURE 2. Schematic representation of the proposed EMD-QREnet
method.

Step 5: Finally, the performance of the proposed EMD-
EnetQR models was compared with that of the
existing methods, namely, EMD-RQR, EMD-LQR,
RQR, LQR, and EnetQR. Themain steps in applying
the proposed EMD-QREnet method are summarized
in Figure 2.

E. PREDICTION GOODNESS MEASUREMENTS
The performance of the proposed predictive method was
evaluated and compared using five test criteria. The test
criteria include the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Scaled Error
(MASE), Mean Absolute Percentage Error (MAPE) and
Residual Sum of Squares (RSS), which are used to evaluate
the performance of the predictive models and are computed
as follow:

• Mean Absolute Error (MAE)

MAE =
1
n

∑n

i=1

∣∣yi − ŷi
∣∣ (13)

• The root mean square error (RMSE)

RMSE =

√
1
n

∑n

i=1

(
yi − ŷi

)2 (14)

• mean absolute scaled error (MASE)

MASE =
1
n

∑n

i=1

( ∣∣yi − ŷi
∣∣

1
n−1

∑n
i=2 |yi − yi−1|

)
(15)

• Mean Absolute Percentage Error (MAPE)

MAPE =
100%
n

∑n

i=1

yi − ŷi
yi

(16)

• The residual sum of squares (RSS)

RSS =

∑n

i=1

(
yi − ŷi

)2 (17)

F. MULTICOLLINEARITY
Multicollinearity occurs when strong correlations exist
between two or more predictor variables Yang and Wen [33].
The variance inflation factor test and Interpredictor Cor-
relations Matrix test methods were used to check for
the presence of multicollinearity among the predictor
variables.

1) INTERPREDICTOR CORRELATION MATRIX
The interpredictor correlation matrix will be used to
examine bivariate correlations among the decomposi-
tion components to check the correlation among the
decomposition components. If the correlation coeffi-
cient between each two decomposition components is
large, it indicates a multicollinearity problem among the
decomposition components. The correlation coefficient is
calculated as follows:

ρij =
cov(Ci,Cj)√

var (Ci) × var
(
Cj
) (18)

where −1 ≤ρij ≤ 1 is the inter-predictor correlation between
two decomposition components

(
Ci,Cj

)
, cov

(
Ci,Cj

)
is the

covariance between two the decomposition components(
Ci,Cj

)
, var (Ci) is the variance of Ci and var

(
Cj
)
is the

variance of Cj Thompson et al. [26].

2) VARIANCE INFLATION FACTOR (VIF)
The variance inflation factor (VIF) test is used to detect
multicollinearity between the predictor variables. The VIF is
computed using the following formula Thompson et al. [26]:

VIF j =
1

1 − R2j
, (19)

where VIF j is the variance inflation factor for the jth predictor
R2j is the multiple correlation coefficient. When VIF j of 10 or
above indicates that high multicollinearity exists among the
predictor variables, whereas ifVIF j is less than 10, it indicates
that no multicollinearity exists Davino et al. [7].
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TABLE 1. ADF test for original variables.

III. NUMERICAL STUDIES
In this section, we implement a simulation study to evaluate
the finite sample performance of EMD-EnetQR, illustrate
it with an empirical analysis of real dataset application
and compare it with its competitors such as EMD-RQR,
EMD-LQR, RQR, LQR and EnetQR.

A. SIMULATION STUDY
In this section, we describe simulations conducted using the
sine function to investigate the performance of the proposed
method. The datasets are created for non-stationary and non-
linear predictor variables and the response variable. The
datasets for the predictor variables and response variable
were simulated from signals selected from Al-Jawarneh and
Ismail [3] andQin et al. [22].We carried out the analysis using
R software, and the simulation experiments were replicated
5000 times with a sample size of n = 300 and the time
domain was (0 ≤ t ≤ 9).
The tuning parameters were selected based on 10-fold

cross-validation using the statistical computing environment
R 4.1.3 and its freely accessible packages. The simulation
study considered three different quantile levels: τ = 0.25,
τ = 0.5 and τ = 0.75. We are using the three quartiles
because they represent the three locations of the data: the
lower tail, the median, and the upper tail. The datasets were
split into 70% for training the model and 30% for testing and
assessing performance criteria. The formula for the function
test of the response variable and the predictor variables are
presented as follows:

y (t) = 0.5t + sin (π t)

+ sin (2π t) + cos (6π t)

x1(t) = 0.8t + sin (0.3π t) + sin (2π t)

+ sin (7π t) + sin(9π t)

x2 (t) = 0.4t + sin (0.2π t)

+ sin (6π t) + sin(5π t) + sin(12π t)

To test for stationarity of the original signals time series,
we performed the Augmented Dickey-Fuller (ADF) Dickey
and Fuller [8] unit root test. The results reported in Table 1
above showed the p-value is greater than 0.05 for all
predictor variables, which implies that the time series are
non-stationary.

Figure 3 shows the results of the EMD decomposition
of the original predictor variables. It can be seen that the
predictor x1(t) decomposes into seven IMFs components
and one residual component, while the predictor x1(t)
decomposes into eight IMFs components and one residual
component.

FIGURE 3. The decomposition process of the original signal of x1(t) and
x2(t) via EMD.

TABLE 2. Descriptive statistics simulation data.

TABLE 3. Comparison of different methods for simulation study.

Table 2 presents the descriptive statistics of the response
variable y(t) and the original predictor variables x1(t) and
x2(t). The results showed that the mean of Y(t), x1(t), and
x2(t) are 2.3205, 3.8439, and 1.8689, respectively. Moreover,
the skewnesses have a positive sign, which indicates that the
distribution of variables is skewed to the right.
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TABLE 4. Simulation results: Quantile: Mean performance criteria.

TABLE 5. Descriptive statistics for daily exchange rates.

Table 3 shows the results of evaluating the performance
of the methods that depended on the lambda values, which
were selected by averaging the cross-validation (CV) error
using a 10-fold CV. It was evident that EMD-EnetQR has
the best performance because it has the smallest SSR when
quantile levels are 0.25 and 0.75. However, when the quantile
level is 0.50, EMD-LQR has the smallest value. FromTable 3,
for variable selection, EMD-EnetQR and EMD-LQR perform
well by shrinking the regression coefficients of partially
redundant variables to zero and selecting only 14 important
variables. These variables had the greatest effect on the
response variable to build the regression model when the
quantile level was 0.25, whereas 13 important variables
are selected at 0.50 and 0.75, by the EMD-EnetQR and
EMD-LQR methods.

Table 4 demonstrates the mean of the performance criteria
in terms of the MAE, RMSE, MASE and MAPE used in
this study for all regression methods. Table 4 shows that the
proposed EMD-EnetQR method outperforms the other four
methods because it has the smallest values in MAE, RMSE,
MASE, and MAPE for quantile levels of 0.25, 0.75, and
0.50; the smallest values are investigated by the EMD-LQR
method.

B. REAL DATA ANALYSIS
In this section, to illustrate the application of the proposed
method, we consider the three countries’ daily close exchange
rates from 03/10/2016 to 29/10/2021 against the US dollar
(USD). All datasets were collected from the Wall Street Jour-
nal Database (https://www.wsj.com/). The dataset contains
two of the original predictor variables for daily exchange

FIGURE 4. The daily close exchange rates index are plotted over time.

rates: Sri Lanka and Japan, whereas the response variable is
the daily exchange rate of China. These datasets were split
into 70% for the training model and 30% for testing and
assessing their performance criteria.

Figure 4 illustrates a graphical depiction of the original
daily close exchange rates for Japan and Sri Lanka as
predictor variables and China as the response variable. The
predictor variables and the response variable neither show
any constant value over time nor fluctuate around the zero
lines. which indicates that the signals are non-stationary and
non-linear. Figure 5 shows the decomposition results of the
original predictors in Sri Lanka and Japan via EMD. The
Japan signal was decomposed into eight IMFs and one residue
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TABLE 6. Comparison of different methods for simulation study.

FIGURE 5. EMD decomposition results of Sri Lanka and Japan signals.

component. The Sri Lanka signal was decomposed into eight
IMFs and one residual component.

Table 5 presents the descriptive statistics of the response
variable is the daily exchange rate of China and the original
predictor variables for the daily exchange rates of Sri Lanka
and Japan. The results revealed that the mean daily exchange
rate of China, Sri Lanka, and Japan are 6.742283, 109.4827,
and 173.1182, respectively. Furthermore, the skewnesses
have a negative sign, which indicates that the distribution of
variables is skewed to the left.

Figure 6 shows the plots of the 10-fold CV of the EMD-
EnetQRmethod to select the optimal k at quantile (0.25, 0.50,
0.75). The y-axis represents the mean square error (MSE),
whereas the x-axis represents the log The upper horizontal

FIGURE 6. 10-fold cross-validation estimation of the MSE as the Log
(k) for the proposed method at τ = (0.25, 0.50, 0.75).

line represents the number of non-zero coefficients chosen at
the log() value. The location of the point chosen at minimum
MSE (minM) is indicated by the first vertical dotted line from
the left, while the location of the point chosen at minimum
MSE using the one-standard-error (1se) criterion is indicated
by the second vertical line. The CV plot shows that increasing
leads to a reduction in the number of non-zero coefficients
entering the final model.

Table 6 presents the optimal values of the tuning parameter
λ in the models obtained via 10-fold cross-validation.
In addition, as shown in Table 6, the EMD-EnetQR method
selects the number of variables that are not equal to zero
closer to the real number than other methods, while the EMD-
RQR methods are invalid for variable selection. Overall, the
EMD-EnetQRmethod outperforms the other models in terms
of SSR error, which has the smallest residual sum of squares
(RSS) of the other methods used.

Table 7 displays the prediction accuracy performance
criteria using RMSE, MAE, MASE, and MAPE to compare
the proposed method with the existing methods. The results
show that the proposed EMD-EnetQR method has the
smallest value in terms of RMSE, MAE, and MASE at the
quantile level (0.25, 0.50). At the same time, the EMD-LQR
method has the smallest value in terms of MASE, MAE, and
MAPE for 0.75 quartiles. Nevertheless, our proposed method
outperformed its competitors in terms of prediction accuracy
and robustness.

The introduction of EMD significantly improved the
prediction accuracy of the EnetQR model. This can be seen
in Table 7, where without EMD, the lowest MAE, RMSE,
MASE, and MAPE of the daily close exchange rates were all
obtained by the EnetQR method is 0.8430, 1.0083, 9.1642,
and 1.211876% respectively. With EMD, the lowest MAE,
RMSE, MASE and MAPE of the daily close exchange rates
obtained by the EMD-EnetQR method are 0.7217, 0.9194,
7.9967 and 1.0326%, respectively. The prediction accuracy
increased after EMD was considered.
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TABLE 7. Simulation results: Quantile: Mean performance criteria.

TABLE 8. Correlation Matrix between the decomposition components.

Table 8 presents the VIF test and correlation matrix to
check for multicollinearity among all decomposition (IMFs
and residual) components. From Table 8, the correlation
matrix of the predictor variables shows a significant cor-
relation between decomposition components. The results
indicate the presence of high correlations among some
decomposition components, such as (C18/C27, C18/C28,
R1/R2, C27/C27). In addition, The VIF test in Table 8
reveals the presence of multicollinearity among all the
decomposition components, where the VIF values of some
of the decomposition components are more extensive than

10 (VIF>10), which indicates that multicollinearity exists
among the decomposition components.

IV. CONCLUSION
In this study, we employed the elastic net penalized quantile
regression based on the EMD method to determine the influ-
ence of the decomposition components of the original time
series predictor variables on the response variable and robust
parameter estimation to enhance the prediction accuracy of
the model selection. The EMD method decomposes non-
stationary and non-linear time-series data into a finite set
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of decomposition components and a residual component.
EnetQR was used to study the effect of the decomposi-
tion components on the response variable and tackle the
multicollinearity problem among the decomposition compo-
nents to ensure the accuracy and reliability of the fitting
model.

To illustrate its strength, we discuss the techniques of
EMD-EnetQR modelling and conduct simulations and real
applications for daily close exchange rates. The simula-
tion and numerical results show that the EMD-EnetQR
method outperforms EMD-RQR, EMD-LQR, RQR, LQR,
and EnetQR methods, where the proposed EMD-EnetQR
method provided high prediction accuracy and produced
a consistent model by selecting the decomposition com-
ponents that exhibit the strongest effect on the response
variable.
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