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ABSTRACT Koopman operator theory has proven to be a promising approach to nonlinear system
identification and global linearization. For nearly a century, there had been no efficient means of calculating
the Koopman operator for applied engineering purposes. The introduction of a recent computationally
efficient method in the context of fluid dynamics, which is based on the system dynamics decomposition to a
set of normal modes in descending order, has overcome this long-lasting computational obstacle. The purely
data-driven nature of Koopman operators holds the promise of capturing unknown and complex dynamics
for reduced-order model generation and system identification, through which the rich machinery of linear
control techniques can be utilized. Given the ongoing development of this research area and themany existing
open problems in the fields of smart mobility and vehicle engineering, a survey of techniques and open
challenges of applying Koopman operator theory to this vibrant area is warranted. This review focuses on the
various solutions of the Koopman operator which have emerged in recent years, particularly those focusing
on mobility applications, ranging from characterization and component-level control operations to vehicle
performance and fleet management. Moreover, this comprehensive review of over 100 research papers
highlights the breadth of ways Koopman operator theory has been applied to various vehicular applications
with a detailed categorization of the applied Koopman operator-based algorithm type. Furthermore, this
review paper discusses theoretical aspects of Koopman operator theory that have been largely neglected
by the smart mobility and vehicle engineering community and yet have large potential for contributing to
solving open problems in these areas.

INDEX TERMS Intelligent robots, nonlinear systems, system identification, vehicles.

I. INTRODUCTION
Koopman operator theory is named after Bernard Koopman,
who in the 1930s proved the premise that linear transforma-
tions of nonlinear dynamical systems exist when represented
in Hilbert [function] space [1]. Historically, determining a
Koopman-invariant subspace was accomplished by trial and
error despite being unsuccessful for most dynamical sys-
tems [2]. Accordingly, Koopman operator theory remained
a topic of pure mathematics for nearly nine decades until
2008, when analytical techniques based on singular value
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decomposition (SVD) emerged to approximate the Koopman
operator from large amounts of data without relying on the
pseudo-inversion of large non-square matrices.

As demonstrated in Figure 1, the first vehicular
applications started to emerge only six years after the com-
putational breakthrough due to the Dynamic Mode Decom-
position (DMD) technique was achieved in 2008 [3]. Among
vehicular applications alone, it is evident from Figure 1 that
the number of studies incorporating Koopman operator-based
methods has been increasing nearly exponentially over an
eight-year time span since 2014. However, with a mere max-
imum of 30 such studies published so far in a given year, the
likely trend is further exponential growth as more researchers
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FIGURE 1. Publication timeline of the surveyed literature. The number of
studies incorporating Koopman operator-based methods in smart
mobility and vehicle engineering applications has been increasing nearly
exponentially over an eight-year span thus far.

become aware of the associated algorithms, and as the appli-
cability of such algorithms simultaneously evolves.

Features of the Current Survey Paper. The purely
data-driven nature of Koopman operators holds the
promise of capturing unknown and complex dynamics for
reduced-order model generation and system identification,
throughwhich the richmachinery of linear control techniques
can be utilized. The emergent nature of the smart mobility and
vehicular-related applications, where the Koopman operator
in each particular application needs to be approximated,
implies that the development of various Koopman operator
approximation algorithms is expected to grow along with
the vehicular problems they aim to solve. Given the ongoing
development of this research area and the many existing open
problems in the fields of smart mobility and vehicle engineer-
ing, a survey of techniques and open challenges of applying
Koopman operator theory to this vibrant area is warranted.
To the best of our knowledge, this survey paper is the first
of its kind reviewing the applications of Koopman operator
theory within a focused research area, namely, smart mobility
and vehicle engineering applications. A notable feature of our
survey paper is reviewing and categorizing the results of over
100 research papers based on both application and algorithm
type (see Table 1 and Section IV) that are concerned with
the applications of Koopman operator theory to the field
of smart mobility and vehicular engineering. Such a com-
prehensive and detailed categorization will be beneficial to
the research practitioners working in the field. Furthermore,
this review paper discusses theoretical aspects of Koopman
operator theory that have been largely neglected by the smart
mobility and vehicle engineering community and yet have
large potential for contributing to solving open problems in
these areas. Additionally, our survey paper seeks to identify
gaps in the smart mobility and vehicle engineering research
where new and existing Koopman operator-based methods
have the potential to further develop and address unsolved
problems potentially benefiting from the perspectives of
nonlinear system identification, control, global linearization,
and the predictive powers that Koopman operator theory has
to offer (see, e.g., Remarks 4–9).

The rest of this paper is organized as follows. After present-
ing the relevant taxonomy in Section II, we provide a brief
overview the basic underpinnings of the Koopman operator
theory in Section III. The literature review with categorized
vehicular applications is presented in Section IV, where each
subsection concludes with a list of open research questions
for the application of Koopman operator-based methods in
terms of vehicle types not encountered in the literature. Other
relevant applications, which are not explicitly vehicular in
nature, and theoretical/algorithmic variations are reviewed in
Section V.
Remark 1: A survey paper on variants of DMD authored

by Chen et al. [95] had been published in 2012. However,
being conducted a decade ago, it was well before the emer-
gence of Koopman operator vehicular applications in the
literature. Nevertheless, a very interesting discussion on the
optimal application of DMD can be found in that paper. Over
the course of developing this paper, Schmid [11], who is the
pioneer of the original mode decomposition method, has also
published his own survey on the variants of his method found
in the literature. However, Schmid’s survey is not focused on
the specific topic of smart mobility and vehicle engineering
applications.

II. GENERAL TAXONOMY AND VEHICLE TYPE
CATEGORIZATION
For the purposes of this survey, we generally consider a vehi-
cle to be any man-made instrument that can carry a payload,
including occupants, equipment, sensors or any other items.
In some contexts, the item may be its own presence. Most
generally, vehicle has also been defined as any mechanized
equipment. All these ideas have been captured in Merriam-
Webster’s formal definitions [96]. In this paper, the physical
type of vehicle according to Merriam-Webster is considered.
This physical type includes systems and processes associated
with automotive, aerospace, marine, rail, robotic, and sub-
terranean classes of vehicles, along with some interfacing or
noteworthy classes such as biolocomotion, communication,
and traffic management, amongst others.

The motivation to focus on vehicular applications stems
from the fact that many processes and subsystems are not
easily modeled to a sufficient level of fidelity and/or are sub-
ject to a significant level of noise/disturbances. Such condi-
tions pose limitations on the performance, control and overall
utilization of the processes and subsystems that transduce
energy into motion. Vehicles of different types, such as air-
craft and automobiles, may further share common subsystems
(e.g., combustion chamber or pump) or types of maneuvers
(e.g., braking or collision avoidance). Consequently, from a
dynamics and controls standpoint, it is sufficient to maintain
the scope of this study to include all major vehicle categories.

Of all the studies found in this survey, Figure 2 (the pie
chart on the left) illustrates their proportions in terms of
the type of vehicles represented. These include aerospace,
automotive, marine, mining, traffic, robotics and rail vehicles.
Also included are some studies that are theoretical only in
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TABLE 1. Summary of studies organized by the utilized Koopman operator-based algorithm.

terms of presenting a novel Koopman operator-based algo-
rithm or those of general relevance (e.g., pertaining to a
generic subsystem or component of multiple possible vehi-
cles) without substantially demonstrating it on any vehicle,
whether in simulation, in-vehicle, or on a hardware-in-the-
loop test bench.

Figure 2 (the pie chart on the right) further breaks down
the proportions of studies that pertain to specific types of

functions, rather than vehicle platforms. These include tra-
verse, maneuver, subsystem and guidance, as defined in what
follows.

• Traverse: refers to the macro-scale function of a vehicle
moving from one point to another (e.g., orbiting).

• Maneuver: refers to a specific mission, operation,
reconfiguration or change in situation a vehicle may
undertake within its journey (e.g., docking).
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• Subsystem: refers to the subject of the study focusing
on a component or set of components and their specific
operation (e.g., a battery).

• Guidance: refers to the navigational aspect of vehicle
path-finding and maintenance, correction or modifica-
tion of trajectory (e.g., obstacle avoidance).

Finally, ‘‘TrafficManagement’’ is concernedwith the coor-
dinated motion of multiple vehicles. Given the uniqueness
of certain problems arising in traffic management, we have
decided to segregate such studies into their own category.
Remark 2 (Machine Learning Community Taxonomy):

With the mainstreaming of Koopman operator-based meth-
ods, there also seems to be a linguistic generalization in that
the term ‘‘Koopman’’ or ‘‘Koopman model’’ is increasingly
used to describe any finite state transition matrix approxi-
mated for an unmodeled or nonlinear system. This is espe-
cially true in the artificial intelligence and machine learning
community (see, e.g., [92]). Such use may continue to uphold
validity since Koopman operator theory remains one of the
main formal justifications for utilizing linear state transition
matrices for closely capturing the behavior of nonlinear
dynamical systems by means of proper linearization.
Remark 3 (A Brief Note on CFD studies): The inclusion

of computational fluid dynamics (CFD) studies has generally
been avoided in this review. The only exceptions are the stud-
ies containing an explicit vehicular application or proposing
a new type of Koopman operator-based system identification
method/variant. This is because the DMD solution to the
Koopman operator was itself first derived in the very context
of CFD (see the seminal work by Schmid [97]) and has since
had the most time to mature in the CFD literature. Many
such CFD-centric studies involve a generic case study of flow
past a cylinder or airfoil, which may have relevance to, e.g.,
lifting surfaces, screw propellers, or more generically, pumps
and turbines. Thus, the inclusion of literature from the CFD
domain poses a vast grey area, often with speculative appli-
cability. For example, residual DMD (resDMD) was used in
a CFD-focused study [98] for supersonic plasma discharge
but has significant relevancy to satellite propulsion systems.
To narrow the scope of the search, all literature pertaining to
the fluid dynamics realm has been excluded, other than those
with explicit vehicular applications, or those which identify
a novel algorithm (in which case the corresponding study
was grouped into the ‘Theory’ category). This takes away a
major source of ambiguity, given that much of the pure fluid
dynamics literature is generalized (e.g., flow past a cylinder)
such that it may or may not be relevant to vehicle motion.

III. A BRIEF OVERVIEW OF KOOPMAN OPERATOR
THEORY
Koopman operator theory is founded on the premise that
linear transformations of nonlinear dynamical systems exist
when represented in Hilbert [function] space [1]. This high
dimensional space is framed upon a coordinate system con-
sisting of [up to] an infinite number of orthonormal bases (i.e.,

a linear combination of functions rather than unit vectors),
wherein the properties of spatial completeness are preserved.
The composition operator (i.e., the ‘‘Koopman’’ operator)
mapping ‘‘observables’’ between these two spaces could be
resolved explicitly as a combination of spectral modes that are
related to a dynamical system observed trajectories. Observ-
ables can be selected as the system’s state and/or some func-
tions thereof. If a set of observables could be found such that
the resultant Koopman operator is finite, then those observ-
ables form the basis of a ‘‘Koopman-invariant subspace’’.

Consider a nonlinear system where the state x is propa-
gated in time according to

xk+1 = Fxk , (1)

where xk = x(tk ) is the state at time k and F is a proper
dynamical mapping. The premise of the theory is that there
exists a Koopman operator, K, which has the property of
linearly propagating the observables, y ∈ Rm, of any system
(including nonlinear and chaotic systems) through Hilbert
space [1]. In other words, the operator K acts according to

yk+1 = Kyk , (2)

where yk = y(tk ) is a vector of observables (the state and/or
functions thereof) at time k , and can be decomposed to a set of
observables, g, which may or may not be finite, such that (for
brevity of exposition, let us work with the finite presentation)

yk = g(xk ) = [g1(xk ), g2(xk ), . . . , gp(xk )]⊤. (3)

Additionally, under the property of function composition
given by

K (g) = g ◦ F , (4)

ensures that the state transition rule

xk+1 = K(g(xk )) = A(xk ), (5)

whereA := K◦g governs the state propagation through time.
Historically, determining a Koopman-invariant subspace

and computing the matrix A given by (5) was accomplished
by trial and error despite being unsuccessful for most dynam-
ical systems [2]. Alas, Koopman operator theory remained a
topic of pure mathematics for nearly nine decades until 2008,
when analytical SVD-based techniques emerged for approx-
imation of the Koopman operator using large amounts of
data without relying on pseudo-inversion of large non-square
matrices. In what follows, we provide a brief exposition of
the main DMD technique that has been the main driving force
behind the proliferation of various applications of Koopman
operator theory to a plethora of disciplines including geology,
epidemiology, finance, and neurology, to name a few (see,
e.g., [99] and the references therein). Additionally, Figure 3
provides an intuitive overview of the explained DMD process
for the generation of a linearized and reduced-order model
of an example nonlinear dynamical system (i.e., a tethered
satellite system subject to unknown disturbances [30]).

From a practical perspective, the matrix A in (5) is the
approximation of the Koopman operator acting upon the
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FIGURE 2. Vehicle categories (left) and function categories (right) of the surveyed smart mobility and
vehicular engineering literature. The area of each piece in the pie charts is proportional to the ratio
of the number of the conducted studies within each particular area to the number of total studies.

function space. Since A is constant in a Koopman-invariant
subspace, it may be applied to an entire collection of m mea-
surements, propagating the data matrix X to the time-shifted
data matrix X′, in which the set of observables are arranged
column-wise. Specifically, these data matrices are repre-
sented as

X = [x0, · · · , xm−1],

X′
= [x1, · · · , xm] . (6)

A straightforward and yet computationally inefficient
method for computing an approximation of the Koopman
operator can be achieved by multiplying both sides of Equa-
tion 5 by the inverse of the data matrix, inv(X). However,
this matrix may be too large to invert or non-square. Rather,
a more practical solution relies on solving the following
optimization problem

A = argminA∥X′
− AX∥F , (7)

where ∥ · ∥F denotes the Frobenius norm.
To solve the optimization given by (7), regression yields

the best-fit fixed Koopman operator, which propagates
the selected observables, even if not precisely Koopman-
invariant, between any two corresponding columns of the
original and time-shifted data matrices. Another way of
finding an approximate solution to the minimization prob-
lem in Equation (7) is to compute proper pseudo-inverses.
For instance, SVD-based methods rely on computing the
Moore-Penrose left pseudo-inverse. If the data matrix is
coincidentally square and invertable, yet the observables are
not perfectly Koopman-invariant, then attained solution will
not act as a reliable Koopman operator between all sets of
corresponding observables. Moreover, a computational road-
block exists in that observable data over any practical length
of time or collected with a reasonably small sampling time
quickly accumulates to a data matrix too large to invert using
a desktop computer.

Methods such as DMD [97] therefore use SVD to obtain
a factorization of the transition matrix that is organized by
order of modes of decreasing magnitude (see, also, Figure 3).
This implies that the major components of the dynamics are
captured in a manner that dynamical modes of higher ranks
have higher noise-to-signal ratios. Thus, although the dynam-
ics are decomposed into a linear combination of a large set of
bases, a reasonable truncation can still be made, which results
in a reasonable approximation for engineering purposes. One
example of this process is illustrated in Figure 3, where DMD
is used to obtain a linear, reduced-order model of a tethered
subsatellite undergoing deployment [30] while subjected to
multiple environmental disturbances which are too compli-
cated to accurately model, yet whose effects are captured in
the observed data. The model truncation capability afforded
by the DMD technique and its variants allows for tuning to
achieve a tolerable signal-to-noise ratio.

In the DMD method [97], the dynamics are decomposed
into a linear combination of a large set of bases. Nevertheless,
a reasonable truncation, which is suitable for engineering
purposes, can be achieved. Essentially, the system dynamics,
which are represented by a finite set of nonlinear equations,
is approximated with an up to infinite set of linear state
equations. The order of the obtained linear system can be
tuned using a proper reduced-order truncation method as
described later. Therefore, in the DMD method, we are using
the approximated linear system

xk+1 = Axk . (8)

To obtain the operator A for a general nonlinear system
using the SVD-based approach, the snapshots of measurable
quantities are obtained from Equation (6). For the data matrix
X, the following SVD factorization holds

X = U666V. (9)

In the decomposition given by (9), U and V are unitary
matrices and (·)∗ is the complex conjugate transpose operator.
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FIGURE 3. DMD process for linearized, reduced-order model generation of nonlinear Tethered Satellite System
subject to unknown disturbances [30].

Moreover, 666 is a square matrix of singular values arranged
by order of decreasing magnitude, with those in the lower
rows corresponding to negligible dynamic modes (i.e., lower
signal-to-noise ratio). Thus, the three matrices of the right-
hand-side in (9) can be truncated to rank r−1whichmaintains
the best fit to data. Indeed, r is the optimal hard threshold
attained through proper techniques such as the Gavish &
Donoho method (see pp. 31 in [100]), to comply with a
required truncation size.

Furthermore, it is possible to obtain the eigendecomposi-
tion

XX∗
= U diag(6662, 0)U∗

X∗X = U6662V∗, (10)

from (9). In this eigendecomposition, U contains the eigen-
vectors of XX∗ and its columns are ordered according to
how much correlation they capture in the columns of X.
A geometric interpretation of the SVD given by (10) is that
it is a product of rotation matrices scaled by the singular
values, which is necessary to project data,X, from the original
coordinate system onto a frame wherein the bases of the
column-space are defined byU and the bases of the row-space
are defined by V.
Once the data matrixX from Equation (6) has been decom-

posed, the full state transition matrix can be reconstructed
according to

A = X′Ṽ6̃66
−1Ũ∗ (11)

where Ũ is also interpreted as the modes of principal orthog-
onal decomposition and the relationship

K̃ = Ũ∗KŨ (12)

holds for the unitary matrix Ũ. Finally, the truncated Koop-
man matrix can be computed according to

K̃ = Ũ∗X′Ṽ6̃66
−1

, (13)

where (˜) denotes the truncated quantities. See the text-
book [100] for further details on reverting the obtained trun-
cated states back to the original state space.
Equation 3 provides the most general form for choosing

the observables. Alternatively, if a catalog of functions (of
the states) were included therein, the algorithm would then
be referred to as Extended DMD (EDMD). Similarly, in the

Sparse Identification of Nonlinear Dynamics (SINDy) algo-
rithm, the time-shifted data matrix (or time derivative of the
state, in the continuous time case) is equated to a matrix of
possible coefficients projected onto a candidate library of
functions to reproduce a structurally linear equivalent system
representation of the nonlinear dynamics.
The Hankel Alternative View of Koopman (HAVOK) is

yet another adaptation of DMD which has a characteristi-
cally predictive quality, especially for chaotic systems. This
approach relies on Takens embedding theorem, which states
that the full dynamics of a chaotic attractor can be recon-
structed from the time series of a single measurement diffeo-
morphic to the original dynamics. This forms a relationship
between the Hankel matrix interpretation of all elements
propagating through a constant linear transformation of the
initial state, and a chaotic system quality of being sensitive
to initial conditions. Others have found alternative methods
of approximating the Koopman operator (e.g., by use of
artificial neural networks), while some have adapted DMD in
further creative ways (e.g., Multi-resolution DMD) suited for
increased robustness in specific applications. The goal of this
paper is to present the application of the Koopman operator
(through DMD and its evolved and alternative forms) on
applications in the domain of vehicle engineering and smart
mobility. The reader is referred to the textbook [100] for
more information on Koopman operator theory, SVD, DMD,
optimal truncation and other fundamental methods.

IV. LITERATURE REVIEW: VEHICULAR APPLICATIONS
In this section we present our review of the literature and
categorize the results of over 100 research papers based on
both application and algorithm type that are concerned with
the applications of Koopman operator theory to the field of
smart mobility and vehicular engineering. Table 1 details
the specific Koopman operator-based system identification
method/algorithm used by the studies referenced hereafter.
Given the vast number of algorithms and variants thereof, the
reader is encouraged to refer to the respective studies to obtain
their technical details. The following presents the surveyed
literature organized by vehicle category. Additionally, Fig-
ure 4 provides a timeline of utilization of Koopman operator
theory in various vehicular applications. The timeline pre-
sented in Figure 4 also demonstrates in which year a given
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Koopman operator-based algorithm has first emerged (i.e.,
the first emergence of the algorithms provided in Table 1) in
the reviewed literature.

A. AEROSPACE
1) DRONES/QUADROTORS
Many of the aerospace applications falling under this review
are concerned with unmanned aerial vehicles (UAVs), usu-
ally of the quadcopter variety. Specific studies also focus
on particular maneuvers, for example, Koopman Eigenfunc-
tion Dynamic Mode Decomposition (KEEDMD) has been
used for general quadrotor model generation [62] and, more
specifically, to learn the nonlinear ground-effect to improve
the speed and quality with which a multi-rotor aircraft may
land [61].

Optimization of UAV flight has been explored using
Dynamic Mode Decomposition (DMD) [25] and DMD with
Control (DMDc) [58] in optimal control, and by the adjoint
Koopman operator [13] for expected state propagation, with
demonstrated advantages over stochastic control schemes.
The adjoint Koopman operator in this literature refers to the
left adjoint of the Frobenius-Perron operator.

Several methods including DMD, Extended DMD
(EDMD), bilinear EDMD (biEDMD) and Koopman Canon-
ical Transform have been compared against each other on
a planar quadrotor flight testbed, where the superiority of
the Koopman Canonical Transform has been demonstrated
in handling affine dynamics for nonlinear model predictive
control (NMPC).

Path planning using Robust Koopman Model Predictive
Control (RK-MPC) has also been demonstrated in a quadro-
tor simulation [59]. Optimal control for quadcopter stabi-
lization has been demonstrated with models identified using
EDMD [35]. Finally, an artificial neural network (ANN)-
based approach called Split Koopman Autoencoder has been
used in the context of remote state monitoring of UAVs [88],
where the communication aspect of flight pertaining to radio
frequency signal processing has been addressed.

2) MISSILES/HYPERSONIC REGIME
A few other studies pertaining to the aeronautical domain
have also been found to utilize Koopman operator-based
methods. This includes the application of ballistic airdrop,
where the adjoint Koopman operator is used to determine
the optimal air release point for ariel delivery to a specified
ground target under parametric uncertainty [10]. Modeling of
missile dynamics from noisy data for model predictive control
has also been undertaken using Sparse Identification of Non-
linear Dynamics (SINDy) and Stepwise Akaike Information
Criteria (SAIC), where it has been shown to be superior in
comparison with state-feedback control [89].

Remaining the theme of supersonic flight, model genera-
tion for aerodynamic flutter has been performed using Higher
Order DMD (HODMD) to extract frequencies and damping
from tests with reduced manual interaction and more robust
aeroelastic analysis [83]. Further, in this flow regime, super-

sonic combustion ramjet (ScramJet) engines are susceptible
to an ‘‘unstart condition’’, which is when the airflow in a
duct violently breaks down. This phenomenon occurs when
the pre-combustion shock train (PSCT) location translates
upstream beyond the front of the inlet, causing flow separa-
tion within the engine and resultant shear layer oscillations.
The detection and characterization of this condition relies
on accurate modeling of flow characteristics which has been
the objective of a study through the use of multi-resolution
DMD (mrDMD), demonstrating the inadequacy of the regu-
lar DMD approach [75].

For autonomous aircraft and for rocket combustion insta-
bility control, principle orthogonal decomposition-based
DMD (POD-DMD) was used to simplify equations of motion
with a reduced number of variables and selective sensitiv-
ity [9]. POD-DMD is also found to have been used in the com-
putational fluid dynamics (CFD) analysis of flow around an
airfoil in the sub/transonic regime, with the method increas-
ing computational efficiency by three orders of magnitude
while accuracy remained within 5% as compared to other
methods [8].

Transitioning between air and space flight, upper and
trans-atmospheric dynamics have posed a challenge due to
the many environmental factors involved as well as vehicle
controllability in what is usually the hypersonic flight regime.
For this situation, EDMD has been employed to identify a
system model for optimal attitude control [38]. Similarly,
the adjoint Koopman operator has also been used [101] to
identify equations of motion through a linearly-constrained
quadratic program to model atmospheric reentry.

3) SPACE SYSTEMS
In terms of space system applications, the categories can
again be divided into dynamics-related (including traversing
and maneuvering) and subsystem-related (including propul-
sion).We have found themost application to be theminimum-
fuel orbital rendezvous. One approach employed Koopman
Map Inversion to obtain a linearized model for optimal
control [66], while another approach demonstrated Neural
Koopman Lyapunov Control for linearizing a generalized
affine system [76]. Minimization of the Frobenius norm was
performed on a similarly affine thrust-vectoring application
using the pseudo-inverse to directly solve for the Koopman
operator [32].

In the study [17], a linear model for zonal harmonics
around the moon was derived using Schur decomposition,
rather than a singular value decomposition (SVD) approach
to approximate solutions to perturbed ordinary differen-
tial equations. A related problem is lunar station-keeping,
namely for Lyapunov andHalo orbits in the circular-restricted
three-body problem (CR3BP). One study creatively obtained
the Koopman operator approximation of the system matrix
through direct computation using Legendre polynomials,
which are already by their nature a complete and finite set of
orthonormal basis in Hilbert space [15]. See [102] for more
information on the CR3BP.
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Low thrust trajectory optimization in underactuated
orbital flight was addressed by a projection method onto vec-
tor fields defined by the input matrix [6]. The authors of [30]
demonstrated the extraction of system equations for a tethered
subsatellite deployment maneuver subjected to unmodelled
dynamics and disturbances usingDMDandDMDc. The same
objective was achieved by directly using Koopman-invariant
observables [4], but is not always possible or practical for
most problems. Further, system equations of a lander mod-
eled as an inverted pendulum with stabilization thrusters
below its center of gravity were derived using EDMD [43].
EDMD was also used for a lunar lander in the dynamic allo-
cation of control between a human driver and robot [52], [53],
referred to as model-based shared control (MbSC).

On the subsystem side of space applications, DMD was
used to find resonant frequencies, damping coefficient and
mode shapes in a CFD simulation of a rocket engine’s cryo-
genic swirl injector [27], the critical flow rate at which vibra-
tion occurs, or ‘‘garden hose instability’’ (commonly encoun-
tered in rocket engines), was investigated using Arnoldi iter-
ation to attain Koopman modes [65].
Remark 4 (Identified Gap in the Literature): Although the

objective of the aforementioned aerospace-related studies
has been limited to system identification, the ultimate goal
of almost 37% of the studies within this vehicle category
(which is almost 46% above all vehicle categories combined
together) was to obtain equations of motion in a linear form
for the purposes of control using model predictive control
(MPC) or other state-space methods. As it can be seen
from Fig. 2, Aerospace has been the largest vehicle class
employing emerging Koopman operator-based methods as
compared to any other vehicle class. Despite this, the variety
of aerospace vehicle types was found to be quite limited,
mostly being small multi-rotor type UAVs. For this vehicle
class, we have not been able to find from the surveyed
literature studies pertaining to helicopters and balloons.

B. AUTOMOTIVE
1) AUTOMOBILE ENGINES
In terms of vehicle subsystems for combustion instability
in internal combustion engines (ICE), the Hankel Alterna-
tive View of Koopman (HAVOK) method was employed
for the prediction of pre-ignition and super-knock from
real-time peak-pressure data [80], while the authors of [79]
employed a portion of the same method (although not by
name) to describe the thermoacoustic oscillation character-
izing the transition between chaotic states and limit cycles.
Also for ICE engines, turbine dynamics were investigated
(e.g., in superchargers) using EDMD to model and predict
turbulent and steady-state behavior [40].

2) EV APPLICATIONS
In terms of electric vehicles (EVs), a linear model for motor
control was extracted using DMD to actuate a permanent
magnet synchronous motor through switching insulated-gate

bipolar transistors (IGBTs) [23]. IGBTs are a commonmeans
to convert direct current (DC) from a battery to the appro-
priate coils within a motor to control speed in modern EVs.
Similarly, an artificial neural network approach has been
used to linearize a DC-DC converter model for switch-
ing control [74]. Furthermore, linear data-driven predictors
afforded by Koopman operator formalism have been uti-
lized to formulate the eco-driving problem for electric vehi-
cles in a constrained quadratic program setting [103], [104].
Additionally, data-driven design methods based on Koopman
operator theory have been utilized to design X-in-the-loop
environments for electrical vehicles [105]. Finally, there is
a recent body of literature on Koopman operator-based state
estimation/prediction and fault diagnosis for batteries that are
widely used in electric vehicles [106], [107].

3) AUTOMOTIVE MODEL IDENTIFICATION AND CONTROL
Model identification for nonlinear tire dynamics using
EDMD is investigated in both [36] and [37], with the for-
mer utilizing a single-track model (making it applicable to
motorcycles), while the latter further applies MPC control.
Similarly, [5] develops an MPC controller with a single-track
model obtained by learning Koopman-invariant observables
directly from data to recover the vehicle from a nonlinear state
(e.g., skidding), when present. MPC is also used to minimize
bounce by means of adjusting propulsive force in [41] while
using EDMD for their model generation, thus becoming an
alternative method for suspension control. Finally, handling
and stability control (with linear time-varying MPC, or LTV-
MPC) using torque vectoring is explored by [39] using
EDMD for model identification.

4) AUTONOMOUS VEHICLE MOTION CONTROL/ADAS
SYSTEMS
The remaining studies in this vehicle category pertain to
motion control in autonomous or advanced driver-assist sys-
tems (ADAS). In this group, artificial neural networkmethods
were most prevalent. Control for vehicle motion planning
was enabled using Deep Direct Koopman (DDK) or vari-
ants in [67], [68], and [69], with the latter-most specifi-
cally applied to a case study dealing with optimal trajec-
tory prediction in racing. Deep learning-based EDMD was
employed in [68], also for system identification in path track-
ing. For vehicle-to-vehicle related optimized management
of traffic comprised of autonomous vehicles, data-driven
MPC (DMPC) was employed for coordinated movement [73]
(e.g., through a controlled intersection) which they term as
‘‘autonomous vehicle platooning’’; here their focus is also
on the comparison between centralized versus distributed
controllers. The final studies in this category all aim to
also obtain a linear model for MPC design and have to
do with lane-keeping employing Bilinear Koopman Real-
ization [57], Koopman Tracking MPC (KTMPC) [71], and
WOEDMD [56] for Operator-AV shared control.
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FIGURE 4. Timeline of utilization of Koopman operator theory in various vehicular applications. The timeline also demonstrates in
which year a given Koopman operator-based algorithm has first emerged (i.e., the first emergence of the algorithms provided in
Table 1) in the reviewed literature.

Remark 5 (Identified Gap in the Literature): For this vehi-
cle class, we have not been able to find from the surveyed
literature studies pertaining to tracked (including tanks)
and screw-propelled vehicles, vehicles otherwise specialized
for travel over multiple terrains (e.g., snow, sand, grass,
or semi-aquatic environments), as well as tractors, emerging
e-mobility devices and other specialized vehicles. Relevant
information for applications concerning rovers may be found
in the robotics literature, presented in an upcoming section.

C. MARINE
1) AUTONOMOUS MARINE VEHICLES
This vehicle category included some items which could
have been categorized instead in the section for robotics,
however, where the application dealt specifically with guid-
ance, navigation or propulsion in water, it was considered
to be a marine vehicle. This includes a robotic fish, where
an EDMD-like algorithm was employed using high-order
derivatives of physics-based functions of the state to linearize
affine dynamics [14]. Similarly, the adjoint Koopman opera-
tor was used to improve the efficiency of a swimming robot
in a flow-like environment [16], where it could learn the
dynamics of its environment. Finally, a robot was shown to
follow a simulated river while avoiding probable locations of
unsafe areas (navigation with probabilistic safety constraints)

using Naturally Structured DMD (NSDMD) [54], which is
actually a modified EDMD algorithm.

2) OCEANIC APPLICATIONS
The next common theme relates to oceanic applications.
In the context of an oil spill, oceanic flow was modeled
using the adjoint Koopman operator to determine the optimal
location for ships to release dispersant to control contami-
nants in a double-gyre fluid flow field [14]. Prediction of
wind and oceanic flow patterns was also included in a review
that surveyed the use of DMD and its variants [11], includ-
ing EDMD, Exact DMD, Debiased DMD (also known as
forward- and backward-DMD,multiresolution DMD, Hankel
DMD (also known as HAVOK), higher-order DMD (which
includes derivatives of observable functions) and the adjoint
Koopman operator. However, there are not all applied to
vehicular applications, yet is a valuable resource for one who
seeks to find an appropriate Koopman operator-based method
for a potential vehicular application. Finally, a dissertation
by [54] presents Time-delay DMD (TD-DMD), EDMD, Ker-
nel DMD (KDMD) and Sparsity Promoting DMD (spDMD),
and includes the application of model identification for the
3D turbulent air-wake of a ship.

A unique study has also been found relating to the mea-
surement of sea ice concentration, which aims to detect
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exponentially decaying spatial modes in the Arctic and
Antarctic oceans [64]. This study is an example of one
explicitly relating to satellite data processing, however, there
may be many others using Koopman operator-based methods
extending into the area of remote sensing and geographic
information systems (GIS) which are not within the scope of
this survey.
Remark 6 (Identified Gap in the Literature): For this vehi-

cle class, we have not been able to find from the sur-
veyed literature studies pertaining to hovercraft, submarines
(including autonomous or remotely piloted underwater vehi-
cles) and offshore platforms. Relevant information for appli-
cations concerning hydrofoils may be found in the CFD
literature.

D. MINING
1) HYDRAULIC FRACTURING
For this category, the most common studies employing Koop-
man operator-based methods were found for the application
of hydraulic fracturing, which included [108], [109], [110],
and [111]. However, these studies were deemed to fall outside
the scope of this review due to their non-vehicular nature.
This is due to the fact that they focused largely on the
detection of shale deposits with fixed drilling infrastructure.
On the other hand, from a subsystem perspective, it may be
somewhat appropriate to include processes enabling natural
resource extraction through pipelines. In that sense, Hankel-
based DMD (HDMD) was used to model the multiphase
flow dynamics of an oil-gas slug and forecast hold-up time
profiles [77]. At the very least, this could have relevance to
the operation of inspection/health-monitoring and cleaning
vehicles that are typically used in pipelines.

2) AUTONOMOUS EXCAVATION
Amongst other studies within this category, an autonomous
excavation application was found where Koopman operator-
based system identification was performed using Duel
Faceted Linearization for the selection of Koopman invariant
observable variables [55], whereafter an MPC control strat-
egy was applied. Koopman Mode Decomposition (KMD)
was used for identifying growing or decaying modes from
traffic data and was shown to be superior in performance as
compared to artificial intelligence methods [63]. Finally, the
aforementioned study on autonomous vehicle platooning [73]
can arguably also belong in this category.
Remark 7 (Identified Gap in the Literature): For this vehi-

cle class, we have not been able to find from the surveyed
literature studies pertaining to subterraneanmachines, such as
those used for tunnel boring or directional drilling, landships,
and elevators.

E. TRAFFIC
Traffic management was found to be an area of research
where Koopman operator-based system identification tech-
niques are being used. Given its distinctness from physical

road vehicles, it has been assigned its own category. The
majority of applications in this class of vehicle pertained to
traffic signal phase timing. In the studies by [20] and [21],
DMD was utilized for early identification of unstable queue
growth, with the latter further proposing an adaptive traffic
control system. The same objective was sought by [42], but
instead using EDMD to predict pedestrian traffic and anMPC
controller for vehicle signaling in response to it.

F. ROBOTICS
1) ROBOTIC ARMS
The operation of robotic arms was found to be the most
common application in this category and has been treated as a
‘‘vehicle’’ for the purposes of this survey as such devices are
usually employed to spatially transport a payload from one
point to another. For this purpose, EDMD was used (which
they refer to as Koopman-MPC) to actuate the arm under
voltage disturbance [34]. An aforementioned study from the
Aerospace category [58] also demonstrates DMDc and other
approaches including ANN and Reinforcement Learning on
a robotic arm.

2) HUMAN-ROBOT COLLABORATION
Amodified form of EDMDusingAutodidact Stiffness Learn-
ing was used for detection and adaptivity in applied torque
for the human-machine interface of a manipulator (i.e., yoke
controller) [90]. Similarly, end-effector motion of industrial
robotic arms around humans requires environmental state
prediction for safe path planning. This was done in one
study where the Koopman operator was directly solved for
by taking the pseudo-inverse involved in minimization of
the Frobenius norm (a computationally expensive opera-
tion) [33]. The same objective of safe path planning was
also achieved in [12] with the use of the adjoint Koopman
operator and in [94] using the Stochastic Koopman Operator.
The latter study also cited an interesting application of their
method for automated air traffic management but was not
selected for inclusion in the Aerospace category given the
lack of demonstration (i.e., simulation, physical experiment
or substantive formulation).

3) SOFT ROBOTICS
Other robotics-related applications found in the literature
included a pneumatically actuated soft manipulator which
used EDMD for pick & place operations for objects of
unknown mass [47]. Underactuated control of the same
type of robot was explored in [78] using Hankel DMD
(HDMD). An aforementioned study from the Aerospace cat-
egory [35] also involved control of a robotic ball (called
‘‘Sphero SPRK’’) rolling in level sand to follow a prede-
termined trajectory, EDMD was used here. Similarly, [62]
from the same category also included an example of a
wheeled robot using a modified KEEDMD algorithm for
mode unknown dynamics and improving computational
efficiency.
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4) WHEELED/LEGGED/SWIMMING ROBOTS
A unique study involving a wheeled robot utilized EDMD
for increased computational efficiency and real-time imple-
mentation [48]. Using jointed legs to locomote is another
means by which a robot may traverse; the authors of [19]
investigated such crawling and used DMD to expose the
method’s limitations. Marine robotic applications, as previ-
ously mentioned, include the robotic fish [31] and obstacle-
avoiding river-traversing robot using NSDMD [51]. The for-
mer used an MPC controller to make the fish swim in a line
or circle, with the linearized model obtained directly from
an adaptive error minimization approach using Taylor series
error bounds.
Remark 8 (Identified Gap in the Literature): For this vehi-

cle class, we have not been able to find from the surveyed
literature studies pertaining to climbing or jumping vehicles,
vehicles relying on peristaltic locomotion (see, e.g., [112] for
such a robot prototype), attack or surveillance platforms, and
robot swarms. Although, a unique biolocomotion study was
indeed found to employ DMD to enable mapping between an
upper limb and its contra-lateral lower limb while walking
forward at constant speed [22]. This may arguably qualify
as a mode of transportation (i.e., walking), and may very
well apply to bipedal robots which are designed to walk like
humans.

G. RAIL
Only one single study was found pertaining to this vehicle
category, which was for an MPC application of a high-speed
train whose linearized model was obtained via EDMD [49].
Remark 9 (Identified Gap in the Literature): For this vehi-

cle class, we have not been able to find from the surveyed
literature studies pertaining to trams, cable cars and roller
coasters. It is important to note that factors surrounding the
operation of vehicles or their subsystems were not discounted
in the literature search. For example, the HAVOK algo-
rithm’s predictive qualities may have potential in the areas
of environmental forecasting (e.g., passenger load, wind and
earthquake) and health monitoring (e.g., component mean
time between failures), such that vehicles could be operated
with appropriate constraints during times of expected adverse
conditions.

V. LITERATURE REVIEW: VEHICLE-RELATED & OTHER
RELEVANT STUDIES
In this section we provide an overview of other relevant
applications, which are not explicitly vehicular in nature, and
theoretical/algorithmic variations of the Koopman operator
framework that might be beneficial for future applications in
the area of smart mobility and vehicular engineering.

A. GENERAL STUDIES APPLICABLE TO VEHICLES
Studies focused on fluid flow are among the most common
vehicle-related research topics where Koopman operator the-
ory has played an integral role. Using DMD, the modeling of
nonlinear oscillations due to vortex sheddingwas investigated

in [24] and is highly relevant for aeronautical applications.
Also relevant to aeronautical engines that operate in the
transonic regime is the use of DMD to model separated and
turbulent flow within a convergent-divergent nozzle [82],
which manifests as the gas path of gas turbine engines. Most
internal and external combustion engines also rely on liquid
[fuel] injection, for which [82] is highly relevant as it demon-
strates the modeling, prediction and control of nonlinear
flow associated with atomization dynamics, enables by SMS
and deep convolutional Koopman network (CKN). Similarly,
MPC control of nonlinear fluid flowwas demonstrated in [84]
using a deep learning approach.

The second most common research area found applica-
ble to this category were studies pertaining to motor con-
trol, which is especially relevant to UAVs and robots, but
potentially also to other types of vehicles when examin-
ing them from a subsystem perspective. This was achieved
in [93] using Gaussian process-based Koopman operator
in robust controller design, and in [46] using EDMD for
current control for the synchronous operation of motors.
Finally, a power management study used Stochastic Adver-
sarial Koopman Operator with Auxillary Neural Network for
the quick learning of reduced order models that measure the
state of charge of Lithium-ion batteries. Potentially appli-
cable to some aircraft and specialized ground vehicles, one
study used DMD in the diagnostics of natural gas rotating
detonation engines [26].

B. THEORETICAL ISSUES WITH POTENTIAL APPLICATIONS
TO SMART MOBILITY AND VEHICULAR ENGINEERING
This section introduces some studies which are theoretically
focused on the derivation of unique Koopman operator-based
techniques but have not been utilized in the application-
focused literature. They are included in this review due
to their potential for any future applications the reader
may be motivated towards. Firstly, [18] uses DMD and
rescaled DMD (rDMD) for image processing. Also relat-
ing to images, [81] used Deterministic and Convolutional
Koopman Networks (DCKNet and CKNet, respectively) to
predict a suitable trajectory from a provided topography to
solve the standard Mountain Car Problem. This may have
relevance to energy-limited adaptive cruise control applica-
tions in the automotive category. Linearized, reduced order
models in [113] are identified using Physics-informed DMD
(piDMD), while [7] similarly makes a case for physics
preservation but utilizes a projection-based model reduc-
tion approach. Examples in the former include channel flow
and flow past a cylinder, which may be relevant to Marine
vehicles, but does not explicitly specify such. The inverted
pendulum model is generated in [70] using Deep Neural
Network-based Koopman (Koopman DNN), with [72] also
employing an ANN approach, and [86] combining ANN
with accelerated learning using Deep Koopman Reinforce-
ment Learning (DKRL). Finally, an ANN-based Exact DMD
approach is also presented in [44] in comparison with EDMD
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and LIR-DMD for the development of multi-scale models
from coarse data with long-range prediction.

EDMD and Stochastic Koopman Operator (SKO) are used
in [50], while [45] presents a modified EDMD. It has been
noted that throughout this survey, EDMD was the most used
method in a modified form. Sparse Identification of Nonlin-
ear Dynamics with Control (SINDYc) has been developed
in [50], and can potentially be applied anywhere DMDc
has been used (e.g., in [30] for tethered subsatellite deploy-
ment), although the paper demonstrates its application on
a predator-prey model and the Lorenz system. An example
in [60] applies Robust Tube-based MPC with Koopman (r-
KMPC) on the Van der Pol Oscillator, which may have
relevance to applications in wireless communication, among
other areas. Finally, an interesting application of auto-tuning
(i.e., model evaluation) using DMD was presented in [29]
in the context of a zero-sum game. This may have potential
applications in the balancing of parameters and fuzzy criteria
in the realm of AV aggressiveness and wargaming.

VI. CONCLUSION
Since its advent in 1931, Koopman operator theory [1] has
only recently been actively utilized for solving practical prob-
lems, thanks to the introduction of the DMD algorithm in
2008 [3]. Since then, a multitude of DMD algorithm varia-
tions have risen to prominence and found utility across vari-
ous fields. A notable feature of our survey paper was review-
ing and categorizing the results of over 100 research papers
based on both application and algorithm type in smart mobil-
ity and vehicle engineering (see Table 1 and Section IV).
Additionally, this survey paper identified potential research
gaps in smart mobility and vehicular engineering applications
(Remarks 4–9). Finally, this review paper discussed theoreti-
cal aspects of Koopman operator theory that have been largely
neglected by the smart mobility and vehicle engineering com-
munity and yet have large potential for contributing to solving
open problems in these areas (see Section V-B).
Future Research Directions. Given the emergence of

cyber-threats against connected and autonomous vehi-
cles as well as robotic systems (see, e.g., [114], [115]),
a future research direction might include utilizing Koop-
man operator-based algorithms for designing cyber-resilient
vehicular and smart mobility applications (see, e.g., [116]
for a related line of research). Another potential research
direction is using Koopman operator-based algorithms for
predicting the motion of vulnerable road users (VRUs), e.g.,
pedestrians and cyclists (see, e.g., [117], [118]). Finally,
rehabilitation robotics and robotic exoskeletons can be
the benefactors of the predictive capabilities of Koop-
man operator-based algorithms for detecting tripping events
and/or system identification in various modes of locomotion
(see, e.g., [119], [120]).
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