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ABSTRACT Decentralized monitoring methods, which divide the process variables into several blocks
and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale
plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of
the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed
dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically
divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to
perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-
blocks using regression, it is possible to identify the most commonly associated variables for every block.
Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which
forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a
compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the
Multilayer Perceptron Network (MLP). Then, the CVAmodel is implemented for each sub-block to consider
the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision
for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed
method regarding some state-of-the-art methods.

INDEX TERMS Fault detection, canonical variate analysis, regression, decentralized process monitoring,
Bayesian inference.

I. INTRODUCTION
Industrial plants are usually characterized by large-scale,
multiple operation units and complex interactions that make
them very prone to suffering anomalies. This means that the
monitoring of such processes is an important issue, warning
of faults or unexpected behaviors of the installation. This
monitoring system must be fast enough to achieve early
detection for any issue, allowing prompt action. This can
decrease the chance of expensive breakdowns, work related
accidents and product quality losses. Nowadays, given the
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extensive use of distributed control systems, process data
have become abundant, and data-based monitoring meth-
ods, particularly multivariate statistical process monitoring
(MSPM), have received significant interest [5], [9], [24], [38].

Of the various MSPM methods, Principal Component
Analysis (PCA) and Partial Least Squares (PLS) are the
most usual techniques for monitoring processes [1], [22],
[39]. However, as industrial plants are normally non-linear
and dynamic, some extensions of these methods have been
developed to deal with these challenges, such as the Kernel
methods (KPCA, KPLS) for non-linear data [4], [29].
Dynamic methods (DPCA, DPLS) using an augmented input
matrix with time-lagged variables have been used to take
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into account the process dynamics characterized by cross and
auto-correlation [7], [14], [26], [36]. Moreover, several works
use subspace modeling to monitor such dynamic processes,
as Canonical Variate Analysis (CVA) [15], [16], where past
data and futuremeasurements are used to estimate the process
state space model and build a fault detection scheme.

In large-scale plants, these centralized monitoring methods
have to deal with a growing amount of data, as plants are
fitted with more and more sensors, all of which means serious
powerful processing needs. In addition this can usually imply
the monitoring process will be slower and very sensitive
to faults: if one variable is unavailable, the communication
channel is blocked or the central processor stops working,
then the whole monitoring system may stop functioning. So,
a multiblock method is an alternative approach to manage
these problems, as it provides an effective description for the
large-scale process, dividing the system into multiple blocks
of measured variables to reduce the complexity [10], [13].
This is a decentralized approach, where each block gathers
measurements from a reduced number of sensors, processes
them and delivers one local fault detection result. After that,
one central processor collects all the local outcomes, analyzes
them and decides whether there is a fault or not in the system.

Decentralized monitoring has been widely studied in
recent years, showing advantages in monitoring for large-
scale processes over centralized methods; especially in
the reduction of the analysis complexity, the description
of the multivariate models and the improvement of the
monitoring performance [12], [13], [18], [28], [33]. However,
the first challenge for these decentralized approaches is the
decomposition process, i.e., the way in which the plant is
divided is key. Traditional decomposition methods typically
obtain blocks of variables based on prior knowledge or
process topology [25], [28], [40]. However, in industrial
plants, accurate knowledge of the block divisions is barely
available. In these cases, data-driven process decomposition
methods, which automatically divide the variables into
overlapping or disjoint blocks,must be taken into account. So,
these data-driven methods have two main advantages: they
do not need knowledge of the process and perform the plant
division automatically.

In this way, [12] proposes a decentralized fault detection
and diagnosis method via sparse PCA-based decomposition
and maximum entropy decision making. In [10], a distributed
PCA is shown for plant-wide process monitoring through
building blocks in different principal component directions.
On the other hand, [19] uses a stochastic optimization algo-
rithm based on performance-driven distributed monitoring
for process decomposition and PCA for local monitoring;
while [37] proposes minimal redundancy and maximal
relevance (mRMR)-PCA based monitoring of plant-wide
processes, [30] and [31] propose copula-correlation analysis,
taking into account both the correlation degree and the
correlation pattern for block division, also using PCA
for local monitoring, and [13] develops a measurement
which estimates the dependence and skewness of data to

decompose the plant into blocks and also uses PCA for local
monitoring. All these methods build sub-block monitoring
models individually, but ignore the relevance of different
blocks. Taking this issue into account, [35] proposes a
modified MBPCA method that extracts block scores with
respect to both the specificity in each block and the relevance
of the different blocks.

However all these distributed approaches only consider the
static process variation, ignoring the dynamic characteristics
of the industrial processes due to changing demand or
disturbances, which hinders their wider applications. More
recently, taking into account the dynamic nature of the
processes, [34] and [33] have developed dynamic decentral-
ized PCA (DDPCA) and weighted dynamic decentralized
PCA (WDDPCA) approaches, using the correlation between
the variables in different time instants. Reference [41] has
used the mRMR method to decentralize the plant using
an augmented input matrix with time-lagged variables and
the PCA for monitoring purposes in each block (mRMR-
DDPCA), but the majority of these methods to decompose
plants are linear and based only on the correlation degree
between variables, which can lead to inaccurate partitioning
that may to affect the monitoring performance.

In this work, we use linear and non-linear regression
methods to decentralize the plant to generate models,
identifying the most strongly linked variables and/or the least
relevant ones, providing support to the sub-block division
for monitoring by the CVA based approach, a multivariate
dynamic monitoring method which takes into account the
dynamic characteristics of the processes.

To sum up, themain contribution and goal of this paper is to
propose a novel data-driven dynamic and decentralized fault
detection method to monitor large-scale processes based on
regression andCVA (R-DCVA)methods, without the need for
knowledge regarding these processes. Firstly, three different
regression methods are used to divide the plant variables into
blocks: the regression based on neural networks (MLPR)
for taking into account the non-linear nature of industrial
plants, the LASSO regression (LR) method, which considers
both the precision accuracy and the interpretability to build
a model, and finally the elastic net regression (ENR) that
selects variables such as LASSO and shrinks the coefficients
according to Ridge, so it is more robust when the variables are
highly correlated. These regression methods are supervised,
so they permit the best fit and tuning for each block.

Following that decomposition, a local CVA algorithm is
established for every sub-block for fault detection, taking
into account the dynamic nature of the industrial processes.
Then, the well-known Bayesian inference strategy [3], [11] is
adopted to combine the different blocks monitoring outcomes
in a global decisionmaking. Themajority of the decentralized
methods considered in the literature [10], [13], [17], [28],
[18], [30], [31], [34], [35], and [41] use Principal Component
Analysis (PCA) for monitoring purposes. As far as we know,
there are no references using the CVA model in distributed
monitoring schemes.
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On the other hand, this scheme permits the behavior and
performance of the decomposition process to be evaluated
in terms of monitoring results, showing that the proposed
non-linear decomposition shows a better performance inmost
of the cases when a CVA model is implemented for each
obtained sub-block to analyze its local dynamic behavior.

All this is carried out under an experimental cross-
validation scheme for better robustness.

The rest of the paper is organized as follows. Section II
provides some background knowledge of CVA, explains
the different methods to perform the decentralization and
details the Bayesian inference fusion technique. Section III
elaborates the proposed R-DCVA method: a dynamic and
decentralized fault detection method. The effectiveness of
this proposal is tested on the Tennessee Eastman Plant and
the results are summarized in Section IV, followed by the
conclusions in Section V.

II. PRELIMINARIES
A. CANONICAL VARIATE ANALYSIS
Canonical Variate Analysis (CVA) is a dimensionality
reduction technique in multivariate statistical analysis which
maximizes the correlation between two selected sets of
variables. CVA has been proposed for multivariate statistical
analysis and was also developed to identify state-space
models [21]. Given time series output data y(t) ∈ ℜ

my

and input data u(t) ∈ ℜ
mu , the linear state space model is

represented by [27]:

x(t + 1) = Ax(t) + Bu(t) + e(t)

y(t) = Cx(t) + Du(t) + Ee(t) + w(t) (1)

where x(t) ∈ ℜ
d is the state vector, A, B, C, D and E are

matrices of coefficients and e(t) and w(t) are independent
white noise processes.

The vector p(t) represents the past information:

p(t) = [yT (t − 1), yT (t − 2), . . . , yT (t − l),

uT (t − 1),uT (t − 2), . . . ,uT (t − l)]T (2)

and the vector f (t) includes the present and future information
about the output of the plant:

f (t) = [yT (t), yT (t + 1), . . . , yT (t + h)]T (3)

For an assumed state order k , the CVA algorithm computes
a constant matrix Jk that linearly relates the past vector p(t)
to the reduced state vector xk (t)ϵℜk . The optimal matrix Jk
is calculated via the singular value decomposition as:(

6pp
)−1/2

6pf
(
6ff

)−1/2
= U6VT (4)

where 6pp, 6ff and 6pf are the covariances of p(t), f (t)
and the cross-covariance of p(t) and f (t), respectively. 6

is the diagonal matrix of non-negative singular values with
descending order, while U and V are matrices of the right
and left singular vectors. The matrix Jk is obtained by

Jk D UT
k
(
6pp

)−1/2
(5)

where Uk contains the first k columns of U . The value k is
selected to be greater than or equal to the order of the minimal
state-space realization of the plant, so the state vector xk (t) is
obtained as:

xk (t) = Jkp(t) = UT
k (6̂pp)−1/2p(t) (6)

Finding the values for l and h, i.e., the lags to include in
the input vectors, is not a trivial task. One option to solve
this consists of fitting autoregressive models using different
numbers of lags and selecting the values for l and h that
minimize the Akaike Information Criterion (AIC) [21].

To use the CVA algorithm for statistical monitoring, there
are two types of statistics: T 2

s , for the variations in the
canonical subspace, and T 2

r , for the variations inside the
residual subspace [27]:

T 2
s = xTk (t)xk (t)

T 2
r = xTr (t)xr (t) (7)

where xTr (t) = Jrp(t) = UT
r (6̂pp)−1/2p(t) and Ur are the

remaining l(mu +my)− k columns of U after extracting Uk .
The state of the process is determined using the thresholds
of these statistics [27]. If T 2

s is over its limit, the states of
the system are under abnormal conditions. Conversely, if T 2

r
passes its threshold, this indicates that the noise pattern has
changed or new states have appeared.
Another possibility to detect faults is using the residual

vector of the state space model:

r(t) = (I − JTk Jk )p(t) (8)

which allows the statistic Q to be obtained:

Q(t) = rT r (9)

which measures the variation in the residual subspace.
As before, if Q passes its threshold [27], a fault is detected

and that indicates the existence of new states or a different
noise pattern.

B. MODEL DECOMPOSITION BASED ON REGRESSION
In this paper, three regression based methods to perform
the model decomposition, i.e., to divide the plant variables
into blocks, are considered: one non-linear (MLP network)
and two linear (LASSO and Elastic net). All of them are
experimented under a k-cross validation scheme for better
robustness and significance of their results.

1) ARTIFICIAL NEURAL NETWORKS
Most industrial plants are non-linear and, for these cases,
some non-linear modeling techniques, such as the Multilayer
Perceptron (MLP) neural network [20], are the most suitable.
This is a very popular supervised technique, which is capable
of approximating any continuous function as accurately as
necessary. The computing units of this network (neurons) are
connected to each other by connections (weights) conforming
the network which is able to learn patterns provided by
the data over the training stage, updating the connection
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strength. These weights, which connect each input with the
output through various neurons, perform the feature selection
task [6].

2) LASSO METHOD
The LASSO (Least Absolute Shrinkage and Selection
Operator) method was introduced by Tibshirani in 1996 [32]
as an improvement for linear regressions. It penalizes some
coefficients of the regression, making some of them zero.
This makes the model simpler and more interpretable. This
technique can also be used to perform feature selection,
using only the most relevant regressors, which have non-zero
coefficients [23]. Our proposal considers the LASSOmethod
for performing variable selection.

A linearmodel withm predictors:X (t) = (x1(t), . . . , xm(t))
and one response variable y(t) can be expressed as follows:

y(t) = β0 + β1x1(t) + β2x2(t) + . . . + βmxm(t) + ε(t)
(10)

where βi (i = 1, . . . ,m) are the regression coefficients and
ε(t) is the model error at time t . Using matrix notation:

Y = Xβ + E (11)

The LASSO method solves the problem:

β̂(λ) = argmin
β

(
∥ y− Xβ ∥

2
2

n
+ λ ∥ β ∥1

)
(12)

where λ ≥ 0. This λ controls the process: as its value
increases, more coefficients are forced to be zero.

3) ELASTIC NET METHOD
The elastic net regression was introduced by [42] and can be
seen as a compromise between Ridge and LASSO regression,
i.e., it selects variables such as LASSO and shrinks the
coefficients according to Ridge. So, the elastic net regression
solves the β̂(λ, δ) optimization problem as:

argmin
β

(
∥ y− Xβ ∥

2
2

n
+ λ

(
1 − δ

2
∥ β ∥

2
2 +δ ∥ β ∥1

))
(13)

The elastic net is more flexible, and for δ = 1, it gives
the LASSO solution and for δ = 0 the Ridge regression
is obtained. A combination of penalizing both, i.e., when
the value of δ is in the interval of [0, 1], gives good
results. A frequent strategy is to assign a big value to the
l1 penalization in order to get a lower number of predictors,
i.e., to put a value of δ near to 1, and gives a little weight
to the l2 regularization to give some stability if some of the
predictors are highly correlated.

C. BAYESIAN INFERENCE (BI)
While the fault detection method in a centralized approach
returns one fault index for each statistic; in a decentralized
method, each block returns its own fault indexes. In most
cases of decentralized monitoring, a fault can be declared if it

is observed at any location. However, it is important to stress
that the fusion of multiple monitoring results would greatly
influence the global monitoring performance. So, in order
to obtain a global and outperformed result, a method which
collects local results and fuses them to get a unique and global
result per statistic is carried out. Various decision fusion
strategies can be used, though the Bayesian Inference is the
most popular one to fuse fault indexes [19], [30], [34], giving
a single result for the whole plant.

For the statistic ST (ST can be T 2
s , T

2
r or Q) in block i

(i = 1, 2, . . . ,B), B being the number of blocks, the posterior
fault probability is calculated as:

P(F |xi) = P(xi|F)P(F)/P(xi) (14)

where

P(xi) = P(xi|N )P(N ) + P(xi|F)P(F) (15)

Here, N and F are the normal and abnormal conditions of
the plant, respectively. P(N ) and P(F) are prior probabilities
for the non-faulty and faulty system. P(N ) is adjusted to an α

value, which goes from 0 to 1, and P(F) is set to 1− α. Also:

P(xi|N ) = exp(−ST/STi,lim)

P(xi|F) = exp(−STi,lim/ST ) (16)

where STi,lim is the corresponding threshold for ST in block
i.

The final statistic for ST in the whole plant can be
determined to combine monitoring results from different
blocks as follows [11] and [3]:

BIIST =

B∑
i=1

{
P(xi|F)P(F |xi)
B∑
i=1

P(xi|F)

} (17)

If the BII value for the statistic ST is over (1 − α), a fault
is detected with this statistic.

III. REGRESSION-BASED DCVA SCHEME (R-DCVA)
In large-scale processes, the number of measured variables
is usually very large, which usually means that the results of
monitoring all these data is quite difficult to interpret, and
the local behaviors of the system would not be sufficiently
reflected. The aim of a decentralized method is to divide the
process variables into several blocks, overlapped or not. Thus,
the local system behavior can be better explainedwhen a local
monitoring method is carried out. The final decision depends
on the local results for every block and a decision-making
method is used to obtain a global decision about the state of
the whole plant.

A critical step for decentralized methods is the division of
the plant variables into blocks. If these blocks are obtained
unreasonably, the monitoring results will be more difficult to
interpret. So, a main contribution of this work is the division
of the large-scale plant into fair blocks of variables using
regression methods, which are supervised and permit the best
variables for each one to be tuned. The monitoring method
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implemented for each block is based on CVA models, paying
attention to the dynamic behavior of the industrial processes.

Suppose that a set of training data,X ∈ ℜ
n×m, are collected

from the large-scale plant in normal conditions, where n is the
number of observations and m the number of variables. Now,
these data are used to calculate a LASSO, an Elastic net and
an MLP model per measured variable Y = xi, i = 1, . . .m,
while the other variables xj, j = 1, . . . ,m and j ̸= i are used
as predictors.

The three regression techniques: LASSO, Elastic net and
MLP, need to tune hyperparameters, and a k-cross validation
scheme has been used for this target. The LASSO regression
technique requires a penalty value (λ) to be set for the
regression process (see eq. 12). A range of different values
must be tested to obtain different regression models for each
variable using k-cross validation, then the best model, i.e.,
the λ value generating the model with the lowest average
Root Mean Squared Error (rMSE), is selected. The Elastic
net regression technique requires two penalty values (δ and
λ) to perform the regression model (see eq. 13). So, a grid
search for different values for those parameters is carried out
for each variable, also using the k-cross validation; after that,
the best regression model is selected. On the other hand, the
regression models using MLP networks must be similarly
tested by different values for the ordinary parameters of the
MLP (number of hidden layers, number of neurons in each
layer, etc.), choosing for the plant division the parametrized
model that best fits the data (minimum average rMSE)
through k-cross validation.

As a CVA method is used for monitoring purposes, i.e.,
a state space model is applied for every block to monitor the
process, then the variables considered for each of these blocks
must be the least correlated variables. So:

• In the LASSO method, a block is created for each
measured variable xi, i = 1, . . . ,m, including this
variable and those others with zero coefficient in the
respective LASSO regression model.

• In the Elastic net method, a block is created for each
measured variable xi, i = 1, . . . ,m, including this
variable and those others that have obtained coefficients
below a certain threshold in its respective Elastic-net
regression model, i.e., the variables xj with a coefficient
βj < li (see eq. 10) have to be in the same block with
xi. This threshold li must be defined for each i-th model
experimentally, in this case, the mean value of all the
coefficients in the respective model.

• In the MLP model, the group for each variable xi,
i = 1, . . . ,m is made up of this variable and those
that have obtained the smallest score in their respective
model. This score is calculated as the product of the
synaptic weights that connect each input with the output
through the neurons in the neural network [6], i.e.,

Rij =

H∑
k=1

WjkWki (18)

whereRij is the relative importance, or score, of the input
variable xj, j = 1, . . . ,m and j ̸= i with respect to
the output neuron, i.e., for the variable xi that we are
modeling, H is the number of neurons in the hidden
layer, Wjk is the synaptic connection weight between
the input neuron j and the hidden neuron k , and Wki is
the synaptic weight between the hidden neuron k and the
output neuron.
The variables xj with a coefficient Rij < Nli must be
in the same block with xi. This threshold Nli must be
defined for each variable xi experimentally, and, in this
case, it is the mean value of all the coefficients Rij in the
respective model.

The plant division can be written as:

X = [X1X2 . . .XB] (19)

where B is the number of blocks and X i ∈ ℜ
n×mi

(i = 1, 2, . . . ,B), where n is the number of observations and
mi the number of variables for every block.
Once the system has been divided into B blocks, a local

fault detection method based on CVA is implemented for
every block. In this algorithm, the user defines the number of
lags used, l and h, i.e., the lags to include in the input vectors
(eqs. 2 and 3). This can be done by testing with different
values and choosing those that perform the best in terms of
fault detection, false alarms, fault detection delay, etc., or by
fitting auto-regressive models using different numbers of lags
and selecting the values for l and h so as to minimize the
Akaike Information Criterion (AIC).

A CVA method is implemented for each block and three
statistics (T 2

s,i, T
2
r,i andQi) are obtained for each one. To detect

a fault in a block means that some of these statistics have
to exceed their own threshold, so it is also necessary to
calculate thresholds for every statistic and every block: {T 2

s,α,i,
T 2
r,α,i and Qα,i} with (i = 1, . . . ,B).
Then, when a new observation, x, is acquired, this is

turned into B blocks in accordance with the selection
results provided by the previous stage, i.e., using the
variables indicated by the MLP, the Elastic net or the
LASSO regression models. Subsequently, a local CVAmodel
calculates the corresponding values for the statistics T 2

s,i,
T 2
r,i andQi. To simplify the final decision of triggering a fault

alarm, a global outcome for each statistic is obtained, fusing
the local monitoring results using the Bayesian inference
strategy, see Section II-C, to transfer them to a definitive
probabilistic one. Finally, the process is considered faulty if
any BII index (BIIT 2

s
, BIIT 2

r
or BIIQ) is over its respective

threshold for an α confidence level.
The monitoring procedure is schematically shown in

Algorithm 1 and the details are also provided as follows:
Off-line Modeling Phase:
1) Acquire normal operating data-set X .
2) Implement a process decomposition method based on

data:
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a) Using the LASSO method to divide the plant.
Normalize the data set X to zero mean and unit
variance and for each variable xi (i = 1, . . . ,m):
• Build a LASSO model using different λ

parameters and the other variables xj, j =

1, . . . ,m and j ̸= i as predictors using k-cross
validation.

• Select the best λ for LASSO regression mod-
eling with the lowest average rMSE value for
each variable.

• Generate B blocks. One for each variable,
including the corresponding variable xi in that
block, together with the variables that have zero
coefficients in the respective LASSO model
choose in the previous step.

b) Using the Elastic net method to divide the plant.
Normalize the data set X between 0 and 1, and for
each variable xi (i = 1, . . . ,m):
• Build an Elastic net model using different δ and

λ parameters and the other variables xj, j =

1, . . . ,m and j ̸= i as predictors using k-cross
validation.

• Select the best δ and λ for Elastic net regression
modeling with the lowest average rMSE value
for each variable.

• Generate B blocks. One for each variable,
including the corresponding variable xi in that
block, together with the variables that have
coefficients below the threshold, li, in its
respective Elastic net model.

c) Using the MLP method to divide the plant.
Normalize the data set X between 0 and 1, and
for each variable xi (i = 1, . . . ,m):
• Build an MLP model using different param-
eters (number of hidden layers, number
of neurons in each layer, etc.) through k
cross-validations, with the other variables xj,
j = 1, . . . ,m and j ̸= i as predictors.

• Select, for each variable, the parametrized
MLP model with the lowest average rMSE
value through cross validation.

• Generate B blocks. One for each variable,
including the corresponding variable xi in that
block, together with the variables with lower
scores, i.e., the variables with scores Rij below
the thresholdNli, in the respective MLPmodel.

3) Normalize the data setX to zeromean and unit variance
and construct a CVA-based monitoring model for each
block. Calculate the thresholds for each statistic and
each block: {T 2

s,α,i, T
2
r,α,i and Qα,i} for i = 1, . . . ,B

The on-line monitoring phase:
1) Get a new sample data set x and divide it into different

blocks, as done in the training phase.
2) Calculate the three monitoring statistics, i.e., T 2

s,i, T
2
r,i,

Q2
i , for every block, i = 1, . . . ,B, according to

equations 7 and 9.

3) Implement the Bayesian inference based decision
fusion strategy to get just the three final monitoring
indexes: BIIT 2

s
, BIIT 2

r
or BIIQ.

4) When the values of BIIT 2
s
, BIIT 2

r
and BIIQ are below

the control limit (1 − α), the system is operating in
normal conditions. Otherwise, the monitored sample
is abnormal and a fault triggered alarm is sent to the
operator.

IV. CASE STUDY
This section introduces the main results from applying
the proposed R-DCVA methodology to a well-known
benchmark: the Tennessee Eastman Process [2], [8]. The
performance of the R-CVAmethod has been evaluated by the
following indexes:

• False Alarms Rate (FAR): percentage of non-faulty
samples classified as faulty; i.e., this index takes
into account the robustness of each statistic and it is
determined by calculating the false alarm rate during
normal operating conditions and comparing it against
the level of significance upon which the threshold is
based.

• Missed Detection Rate (MDR): percentage of faulty
measures classified as faultless data, thus quantifying
the sensitivity to possible faults.

• Fault Detection Delay (FDD): how many samples are
needed to detect a fault after its occurrence.

• Number of Faults Detected (NFD): the success rate.

A. TENNESSEE EASTMAN PROCESS (TEP)
The Tennessee Eastman Process [8] and revisited by [2] is a
well-known benchmark used to test the proposal; it is widely
used to test fault diagnosis techniques [1], [7], [10], [13], [19],
[30], [31], [33], [34], [41]. This benchmark is a model of
a chemical plant which includes five major unit operations:
a reactor, a condenser, a vapor-liquid separator, a recycle
compressor and a stripper. A set of 52 variables can be
measured, including 22 continuous variables, 12 manipulated
variables, and 19 composition measurements. The schematic
of this plan can be seen in Fig. 1. The available data, which
can be downloaded from http://web.mit.edu/braatzgroup, are
formed by faultless training and testing data, as well as faulty
data, with 21 data-sets representing 21 different faults, where
real faults and also disturbances that are important to detect
are taken into account. The cited 21 faults are included in
Table 1. Here, the faultless data used for tuning LASSO,
Elastic net and MLP models are organized over a scheme of
3-cross validation, using 2/3 for training and 1/3 for testing.

B. EXPERIMENTAL SETUP
The proposed R-DCVA has been tested on this plant.
According to the three different methods to divide the plant
and to obtain the blocks for the CVA based monitoring, three
monitoring approaches were set up: one based on LASSO
regression (LR-DCVA), another on Elastic net regression
(ENR-DCVA) and, finally, the last based on MLP modeling
(MLPR-DCVA).
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Algorithm 1 Decentralized Monitoring With CVA Fault
Detection R-DCVA
1: Off-line steps:
2: Normalize data
3: Look for Blocks of Variables:
4: LASSO, Elastic net or MLP modeling using faultless

data:
5: Generate B blocks using LASSO decentralization:
6: for i=1 to NumberOfVariables do
7: Tuning LASSO models through 3-cross validation
8: Select λ for LASSO modeling with lowest average

rMSE
9: Generate Bi through the variables from LASSO

model obtained by 3-cross validation.
10: end for
11: OR
12: Generate B blocks using Elastic net decentralization:
13: for i=1 to NumberOfVariables do
14: Tuning Elastic net models through 3-cross validation
15: Select δ and λ for Elastic net modeling with lowest

average rMSE
16: Generate Bi through the variables from the best

Elastic net model obtained.
17: end for
18: OR
19: Generate B blocks usingMLP decentralization:
20: for i=1 to NumberOfVariables do
21: Create MLP models with different parameters

through 3-cross validation
22: Select MLP model with lowest rMSE
23: Generate Bi blocks using MLP decentralization
24: end for
25: CVA model for every Bi Block & its statistics:
26: for i=1 to B do
27: Develop local CVAi models tuning over different lags

(l and h)
28: Select the best CVAi model
29: Calculate statistics thresholds: ST jα,i = {T 2

s,α,i, T
2
r,α,i,

Qα,i}

30: end for
31: On-line steps:
32: Fault detection:
33: for New observation x do
34: Divide the observation x in B blocks
35: for i=1 to B do
36: Obtain Local statistics: STi = {T 2

s,i, T
2
r,i, Qi}

37: end for
38: Global Decision
39: for s={T 2

s,i, T
2
r,i, Qi} do

40: BIIs = f (ST1, ST2, . . . , STB)
41: if BIIs ≥ (1 − α) then
42: Fault detected with statistic s
43: else
44: Normal condition with statistic s
45: end if
46: end for
47: end for

FIGURE 1. Tennessee eastman process diagram.

TABLE 1. Tennessee Eastman process faults.

These three alternatives were tested with different param-
eters for the CVA order (l and h), the number of consecutive
anomalous observations to detect a fault and, also, the specific
parameters of each method used to decompose the plant into
blocks. Other parameters are similar for all the methods: such
as the local thresholds used for the statistics of each block,
adjusted to obtain a level of significance of 99%, as well as the
threshold for the global decision, i.e., the threshold for the BII
index that was adjusted to obtain a significance level of 95%,
resulting in a value of α = 0.9. For the rest of the parameters,
after many tests, the best setup in terms of absence of false
alarms, number of faults detected and best detection times
was:

• LASSO regression: A LASSO based model was tuned
for each variable of the system using 3-cross validation,
looking for the minimum average rMSE. The parameter
λ of eq. 12 was individually tuned for every variable.
The order for the CVA models in each block, i.e., the
parameters l and h in equations 2 and 3, were such
that 4 and 5 consecutive anomalous observations are
necessary to detect a fault.
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• Elastic net regression: An Elastic net based model was
tuned for every variable of the system using 3-cross
validation, looking for the minimum average rMSE. The
parameters δ and λ of eq. 13 were individually tuned for
every variable in a grid search for both parameters. The
block for a certain variable was made up of that variable
and those others with coefficients of the respective
model below a certain threshold calculated as the mean
value of the coefficients in each model. The order for the
CVA models in each block, i.e., the parameters l and h
in equations 2 and 3, were such that 2 and 6 consecutive
anomalous observations are necessary to detect a fault.

• Multilayer Perceptron network (MLP). A model was
built for each variable using theMLP network. TheMLP
models were tuned (number of hidden layers, number
of neurons in each layer, etc.) using 3-cross validation,
selecting the tuning with the best average rMSE. The
blocks were created using these models: the group for a
certain variable was made up of that variable and those
which obtained the smallest scores in the respective
model, i.e., the variables with a score below a certain
threshold. This threshold was calculated as the mean
value of the relevance values of the variables in each
model. For the remaining parameters: the order for the
CVA models of each block were 5, and 5 consecutive
anomalous observations are necessary to detect a fault.

C. RESULTS AND DISCUSSION
The proposed methods: LR-DCVA, ENR-DCVA andMLPR-
DCVA have been tested to monitor this dynamic and complex
plant. A comparison regarding other methods and approaches
found in the literature ( [13], [27], [31], [34], [41]) and
applied over this benchmark and with the same dataset, has
been carried out to illustrate the advantageous effectiveness
and performance of the LR-DCVA, ENR-DCVA and MLPR-
DCVA methods.

Two of the methods for comparison are centralized:
the original dynamic PCA model (DPCA) and the CVA
method [27], and four are decentralized ones: the DDPCA
(Distributed DPCA) with a cut-off parameter of δ =

1.5 proposed by [34]; the weighted copula-correlation-based
multiblock PCA (WCMBPCA) proposed by [31]; a more
recently proposed monitoring method that uses the minimal
redundancymaximal relevancemethod to divide the plant and
a dynamic PCA for local monitoring (mRMR-DDPCA) [41],
and theWeighted dependence and skewness basedmultiblock
PCA (WDSMBPCA) proposed by [13].

1) ALARM RATES
First of all, the false alarm rates are examined by monitoring
a different normal dataset. The false alarm rate for the
considered methods and the number of faults detected are
shown in Table 2. It can be seen that LR-DCVA and MLPR-
DCVAwere able to detect more faults than the other methods,
both centralized (DPCA and CVA) and decentralized ones.

In particular, the LR-CVA, which found every one of the
21 faults with the T 2

s statistic.
The fault alarm rate (FAR) for the test data, shown in the

same Table, takes values from 0 to 0.4 for LR-DCVA and
MLPR-DCVA, clearly outperforming the rest of the methods
in the comparative. However the results for the ENR-DCVA
are worse. This points to the fact that it is necessary to
be careful to determine the control limits for the statistics.
In the cases of LR-DCVA, ENR-DCVA and MLPR-DCVA,
the control limit of each monitoring index is adjusted to
obtain a significance level of 99%, and to avoid these false
alarms in engineering practice, a fault alarm is triggered
after detecting consecutively 5 abnormal samples. So, for the
methods considered in this paper, taking this into account, the
false alarm rate is always 0. Due to the high value of the FAR
for the CVA and DPCA methods, the control limits of these
statistics were modified experimentally in order to obtain the
missing detection rate (MDR), as is explained in [27].

2) MISSING DETECTION RATES
The missing detection rates (MDR) for the 21 faults are listed
in Table 3, as well as the mean of the MDR (MMDR) for
18 faults, as faults 3, 9 and 15 are not detected by nearly any
method. The same Table shows the mean for the different
statistics, T 2

s , T
2
r and Q for the CVA-based methods, and

T 2 and Q for the PCA-based models. This MDR index
measures the percentage of faulty observations not detected
as faults, indicating the fault sensitivity of the methods.

The proposed LR-DCVA method achieves the best mon-
itoring results, generating the minimum missing detection
rates for most of the cases and their three statistics. Further-
more, the performance of the other proposed methods, ENR-
DCVA and MLPR-DCVA, are very high, showing similar
results for the BIIT 2

s
and BIIT 2

r
statistics, but they are worse

considering the BIIQ statistic. However, the performance of
the centralized CVA method is also very good, but only
regarding the T 2

r statistic.
Table 3 clearly shows that the missed detection rates for

faults 1, 2, 6, 8, 12, 13 and 14 are close to 0% for all the
methods and for the three statistics, except for the centralized
DPCA and the Q statistic for fault 13, and also for the
centralized CVA with the statistic Q for fault 8. In contrast,
faults 3, 9 and 15 are very difficult to detect and the missed
alarm rate is very high for all the methods. However, in these
faults for most of the statistics, the MDR value for LR-DCVA
is usually the lowest. For the other faults, the results for
the proposed methods and, in particular, for LR-DCVA and
ENR-DCVA are better than the rest ones, especially for faults
5, 10, 11, 16, 17, 19 and 20, but better for LR-DCVA than for
ENR-DCVA.

In order to obtain a more intuitive comparison, the average
missing detection rates for the 18 faults produced by the
different approaches (i.e, excluding faults, 3, 9 and 15 which
are very difficult to detect by the listed approaches) are shown
in Fig. 2 and Table 3. The last two rows of this table show
the average of all the statistics for each method.

26618 VOLUME 11, 2023



M. J. De La Fuente et al.: Dynamic Decentralized Monitoring for Large-Scale Industrial Processes

TABLE 2. Faults Alarm Rates (FAR) and faults detected.

TABLE 3. Missed Detection Rate (MDR) in % for the 21 faults.

TABLE 4. Detection delay (samples) for the 21 faults.

These MMDR values show that, for the BIIQ statistic,
the lowest value is for the LR-DCVA method (7.5), outper-
forming the other approaches. In addition, the BIIT 2

r
statistic

shows the best result for the LR-DCVA method (4.78), but
its performance for MLPR-DCVA, central CVA and ENR-
DCVA is worse, although still very similar, i.e., values 5.1,
5.6 and 8.1 respectively. Finally, the best method for BIIT 2

s
is MLPR-DCVA (4.4), but with a very slight difference
regarding the LR-DCVA and ENR-DCVA methods with a
value of 5.4 and 6.8 respectively.

Furthermore, it is possible to see that although the
centralized CVA method with the BIIT 2

r
statistics, and

some of the decentralized methods (mRMR-DDPCA and
WDSMBPCA) with the statistic BIIQ, win in some of the
faults, such as faults 4, 5, 6, 7 and 14 withMDR=0 (however,
very similar to the LR-DCVA with MDR=0.13); the mean
value, taking into account all the faults, is 5.6 for centralized
CVA with the statistic BIIT 2

r
, and the proposed LR-DCVA

has a better value, 4.78, with the same statistic. However,

the mean values for the statistic BIIQ of the mRMR-DDPCA
method is 11.1, and 10.47 for the WDSMBPCA method,
however the value of the same statistic for LR-DCVA is better
at 7.5.

On the other hand, if we consider the mean value for all
the faults and statistics (the last row of Table 3), then the
result for LR-DCVA is 5.89 while the rest of the methods
show a bigger value: for ENR-DCVA, it is 9.87, this being the
second best method, followed by MLPR-DCVA with 10.05,
WDSMBPCA with 15.81, DDPCA with 16.31, mRMR-
DDPCAwith 17.1,WCMBPCAwith 19.25, centralized CVA
with 19.7 and, finally, the worst result is for the centralized
DPCA with a mean value of 31.6.

3) DETECTION DELAY
Another important index to consider is the detection delay,
which is required by the monitoring scheme to detect faults
as soon as possible. Generally, a fault can be indicated only
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FIGURE 2. Comparison of average MDR (MMDR) for the different monitoring methods.

when several consecutive values of the statistics exceed their
thresholds [27], [33].

In this paper, as mentioned above, 5 consecutive samples
are needed to detect the fault, and the detection delay is
recorded at the first time instance when the control limit is
exceeded. Table 4 contains the results for detection delay.
In this case, the comparison with the WCMBPCA, mRMR-
DDPCA and WDSMBPCA methods are not shown because
this index is not considered in [13], [31], and [41].

Table 4 shows that the four decentralized methods,
DDPCA, LR-DCVA, ENR-DVCA and MLPR-DCVA, out-
perform the centralized DPCA and CVA methods regarding
the detection delay for all of three statistics. The results
are very similar for all the decentralized methods: MLPR-
DCVA with the BIIT 2

s
statistic is the best approach for most

of the faults. However, MLPR-DCVA with the BIIQ statistic
is the worst one among the decentralized methods. The other
threemethods, DDPCA, LR-DCVAandENR-DCVAare very
similar, but LR-DCVA is a slightly better, specially for faults
3,9,10, 15, 16, 19 and 20.

Therefore, the conclusion drawn by all the indexes
considered (faults detected, FAR (Table 2), MDR (Table 3)
and detection delay (Table 4)) is that the proposed LR-
DCVA method achieves the best monitoring results of all
those considered. ENR-DCVA also gives good results for the
three statistics, but worse than LR-DCVA. Finally, the third
proposed method, MLPR-DCVA, also achieves very good
results with the BIIT 2

s
and BIIT 2

r
statistics for both the MDR

index and the detection delay index, but the results with the
BIIQ statistic are worse than those for the LR-DCVAmethod.
This may be due to the ability of neural networks to obtain
a non-linear model of the processes, in addition to extracting
the non-linear characteristics of the plant to build the blocks.
The BIIT 2

s
statistic monitors the behavior of the model, while

the BIIQ statistic monitors the residual space [27]. If the

FIGURE 3. Monitoring results of TEP for fault 19 for DPCA: (a) T 2 (b) Q.

model is better, it is to be expected that the BIIT 2
s
will be more

effective than the BIIQ.
Fault 19 is a good example of these results. It is an

unknown fault for the TEP process, which is difficult
to detect for such centralized methods as PCA, DPCA,
KPCA, not to mention other methods as shown in [1],
and for some decentralized methods as those considered
in the comparative, i.e., DDPCA, WCMBPCA, mRMR-
DDPCA and WDSMBPCA, as shown in Table 3. The
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FIGURE 4. Monitoring results of TEP for fault 19 for CVA.

FIGURE 5. Monitoring results of TEP for fault 19 for LR-DCVA.

FIGURE 6. Monitoring results of TEP for fault 19 for ENR-DCVA.

FIGURE 7. Monitoring results of TEP for fault 19 for MLPR-DCVA.

monitoring results for this fault using DPCA, CVA,
LR-DCVA, ENR-DCVA and MLPR-DCVA are shown
in Figs. 3-7.

Fig. 3 sets out the results of the centralized DPCA model,
which is unable to detect this fault for either of the two
statistics. The same for the CVA method with the T 2

s and Q
statistics, as shown in Fig. 4, but CVA with T 2

r can detect
the fault. However, LR-DCVA can detect this fault by any the
three statistics (BIIT 2

s
, BIIT 2

r
and BIIQ (see Fig. 5)). ENR-

DCVA detects the fault by any of three statistics, but the
BIIQ statistic has a worse result (see Fig. 6). Finally, MLPR-
DCVA detects the fault by BIIT 2

s
and BIIT 2

r
statistics and,

as commented previously, the results for BIIQ are worse,
while the percentage of missed alarms increases, as it is
possible to see in Fig. 7.

V. CONCLUSION
This paper proposes a new dynamic and decentralized
process monitoring framework for large-scale processes
based on regression and canonical variate analysis
(R-DCVA). This new approach uses regression methods to
divide the plant-wide processes into blocks, obtaining the
most defining variables for each block and its CVA based
monitoring.

Three regression methods are considered: LASSO regres-
sion (LR-DCVA), Elastic net regression (ENR-DCVA) and
Multilayer Perceptron Network (MLPR-DCVA). MLPR-
DCVA, in comparison, the other two methods, gives a non-
linear regression model to capture the non-linear relationship
of the process variables. After the division, a local fault
detection method based on the Canonical Variate Analysis
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(CVA) approach is performed for every block to take into
account the dynamical nature of the industrial processes.

The regression methods, as supervised approaches, permit
the best tuning for capturing the best relationship between
the variables as they can divide the plant variables into blocks
more reasonably, so the R-CVA reflects better local behaviors
of the process: the faults can be more easily detected and the
monitoring results can be explained better. Finally, the fault
detection results of each block are managed by the Bayesian
Inference Criterion to obtain a global fault detection outcome.

In order to check the proposed decentralized approaches
and to test the performance of the R-DCVA fault detection
method, the proposals were compared to other published
works on a well-known benchmark plant: the Tennessee
Eastman Plant. The results show that the LR-DCVA method
proposed in this work outperforms the rest of the comparison
methods for most of the considered indexes (number of
detected faults, false alarm rate, detection delay and missing
detection rates considering the BIIT 2

s
, BIIT 2

r
and BIIQ

statistics), all of which show its effectiveness.
However, the results for the other proposed methods,

ENR-DCVA and MLPR-DCVA are also very good with the
statistics BIIT 2

s
and BIIT 2

r
, and better than the other methods

over the comparison except for LR-DCVA, but their results
with the BIIQ statistic are worse.

Finally, it should also be said that these methods consider
a very large number of blocks, one for each variable, which
implies that the number of blocks increases greatly when the
dimensions of the plant are high. So, in future work, two
solutions can be studied to deal with this kind of problems:
first, to study another kind of plant decomposition using
fewer blocks, or to use a reduction of the dimensionality of
the plant and regression-based analysis to divide the plant in
that lower dimensionality space. This is the work in progress.
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