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ABSTRACT The long-term and continuous streaming of big data from medical Internet of Things (IoT),
poses a great challenge for the battery-limited tiny devices. To address this challenge, we propose a novel
framework for medical IoT data sparsification, leveraging both deep learning and optimal space searching.
More specifically, the deep sparsification networks are designed to learn to extract key sparse patterns in
the medical IoT data, by projecting the original data stream to a sparsified data representation. Further,
the principles for designing deep encoding networks have been analyzed by an optimal space searching
strategy, aiming to determine the best deep sparsification architecture that meets the energy constraint or
sparsification error constraint. Comparedwith state-of-the-art approaches, our deep learning-based and space
search-optimized framework shows a dramatic capability to tackle the power hungriness problem onmedical
IoT big data. This novel study, by enabling energy-efficient medical IoT big data sparsification, is expected to
boost the continuous and long-termmedical IoT applications, such as cardiac monitoring, thereby advancing
precision medicine.

INDEX TERMS Big data, deep learning, IoT big data, space search.

I. INTRODUCTION
Medical Internet of Things (IoT) [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10] are advancing various smart health appli-
cations [11], [12], [13], [14]. The long-term and continuous
streaming of big data frommedical IoT is expected to broadly
ignite emerging big data-driven precisionmedicine.We take a
special interest in wearable Electrocardiogram (ECG)-based
cardiac health monitoring [15], [16], [17], and will demon-
strate a generalizable deep learning framework [18], [19] that
can learn and extract the critical patterns in the data, for
energy consumption minimization.

Themedical IoT devices are expected to be play an increas-
ingly important role in human or environmental health moni-
toring. Nevertheless, the challenges arises when these devices
need to continuously transmit the data wirelessly to the smart
phones, relays, or cloud. Frequent recharging the monitor is
troublesome and impacts the long-term usage of the device.
How to lower the energy need is a critical question for IoT
monitoring applications.
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Major components of an IoT device usually include the
controller, the sensing module, the communication module,
and the power management module. The former two can
now be implemented with a very low energy consumption,
nevertheless, the wireless module consumes significant, usu-
ally the majority of the energy. Therefore, one promising
strategy is to lower the energy consumption of the wireless
module with acceptable energy overhead. In this study, tar-
geting (ECG)monitoring [20], [21], we will demonstrate how
deep learning [22], [26], [25] enables efficient IoT big data
streaming. ECG is a vital sign of human health, and a critical
biomarker of heart diseases, which is the leading cause of
death in the world. There have been some previously reported
studies on lowering the energy consumption of ECG mon-
itors. Discrete Wavelet Transformation (DWT) has been a
common practice in many studies [26], [27], [28], [29], which
firstly transforms the original signal to the time-frequency
domain, and then selects out significant wavelet coefficients
for transmission. The signal can then be reconstructed on
the receiver side from the coefficient. Compressed Sensing
(CS) [29], [30], [31], [32] has also been applied and reported
in various data compression studies. The conversion matrix is
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FIGURE 1. Deep learning of sparse patterns in medical IoT for efficient
big data harnessing.

used to project the original signal to a sparse space. Discrete
Cosine Transform (DCT) [33], [34], [35] is another widely
used method for data compression. It uses the cosine waves
to decompose the original signal.

Interesting findings have been obtained in these previous
studies. At the same time, current methods like DWT, DCT,
and CS, are mainly using either predefined basis functions,
or random conversion matrices, to perform the data projec-
tion. Nevertheless, the complex and nonlinear characteris-
tics in the medical signals will benefit from more advanced
and nonlinear methods in sparse pattern extraction. Another
question that lack of comprehensive study is the overhead of
the compression algorithm, which is crucial since the energy
overhead may cancel out or even exceeds the energy saving
on the big data transmission tasks.

In this study, we propose a novel and systematic
AI-enabled framework, aiming to provide a data-driven,
intelligent, and comprehensive methodology towards energy-
efficient IoT applications as shown in Fig. 1. Our framework
is leveraging both deep learning and optimal space search-
ing. More specifically, the deep sparsification networks are
designed to be able to learn the critical patterns in the IoT
data, thereby projecting the original data stream to a sparsi-
fied data representation. Further, the principles for designing
deep sparsification networks have been analyzed by an opti-
mal space searching strategy, aiming to determine the best
deep sparsification architecture with the energy constraint or
sparsification error constraint.

Our major contributions include:
(a) Proposing a ‘deep learning-based’ and ‘space search-

optimized’ framework for energy-efficient IoT big data
streaming;

(b) Designing deep sparsification neural networks that can
intelligently learn complex, critical dynamics in IoT data for
effective pattern extraction;

(c) Developing optimal space search algorithms to deter-
mine optimal deep sparsification architectures under the
energy constraint or sparsification error constraint;

(d) Validating the novel data-driven framework in the
ECG-based cardiac health monitoring application, to demon-
strate the feasibility and effectiveness.

This novel study, by enabling energy-efficient IoT big data
streaming, is expected to boost the continuous and long-term
IoT monitoring practices, thereby greatly advancing the big
data-driven smart health and smart world.

II. APPROACHES
We here detail the proposed data-driven, intelligence system-
atic framework for energy-efficient IoT big data streaming.
We will firstly give the system overview, then introduce the
deep learning-based sparsification approach and the design
variabilities, afterwards give the Optimal Deep Architec-
ture Search (ODAS) algorithms with two typical kinds of
constraints, and end this section with the system evaluation
strategy.

A. SYSTEM OVERVIEW
The proposed novel system in given Fig. 2, where the top
shows the deep learning-enabled dynamics sparsification
approach, and the bottom illustrates the deep architecture
search algorithms. More specifically, in Fig. 2(a), the IoT big
data, i.e., ECG in this study, is projected to a sparsified rep-
resentation, which is then wirelessly transmitted to the smart
phone. The phone then recovers the original ECG signal from
the sparse vector received, with an acceptable error. In such a
way, the ECG data, after being sparsified, can consume much
less energy compared with the case without sparsification or
traditional approaches.

In Fig. 2(b), the ODAS algorithms search from the design
variabilities the optimal deep sparsification architecture, with
either energy constraint or error constraint. The resulted
architectures will haveminimum energy consumption ormin-
imum error, respectively.

B. DEEP SPARSIFICATION
The proposed deep sparsification approach for ECG stream-
ing is 1D Convolutional Autoencoder (CAE) [1], [2], [3].
CAE has two building blocks: the encoder and the decoder.
The former one has multiple stages of convolutional filters
to extract the key patterns in the ECG data X , as well as
max pooling layers to reduce the dimensionality of the feature
map. In such a way, the ECG signal is sparsified into a short
vector S with critical patterns. The decoding process is given
in (1), where X is the original signal with a length of N , and
S is the sparse representation with a length of M . One thing
to note is that we have designed the CAE to be 1D, meaning
that the input image is 1D and the feature map is also 1D for
temporal pattern extraction.

S = Encoder (X)

X = {xi | i = 1, . . .N } , S =
{
sj | j = 1, . . .M

}
(1)

Afterwards, on the smart phone, the sparse representation
S is decoded as the estimate of the original signal, X̂ . The
process is given in (2), where X̂ also has a length of N .

X̂ = Decoder (S) , X̂ = {x̂i| i = 1, . . .N } (2)

The promising advantage of the proposed 1D CAE is that
it can effectively learn the patterns in the ECG data through
deep neural learning and efficiently sparsify ECG with 1D
operators. But CAE design has a high degree of design free-
dom, meaning that there are many variables which are related
to sparsification error, energy reduction and energy overhead.
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FIGURE 2. The proposed novel framework for IoT big data streaming, leveraging (a) deep learning-enabled dynamics sparsification, and
(b) deep architecture search of design variables with energy or error constraint.

C. DEEP ARCHITECTURE VARIABILITIES
To further investigate how design factors of 1D CAE impact
the sparsification error, energy reduction and energy over-
head, we here select four critical design variabilities for the
CAE architecture α, which is a function of input dimension
I , feature map F , convolutional filter size C , and the depthD,
as given in (3).

The sparsification ratio is determined by the depth D, i.e.,
the number of stages, since here we have fixed the max-
pooling size of each stage to be two for convenient compar-
ison. The sparsification error is related to all four variables.
The total energy is related to the transmission energy reduc-
tion, the energy overhead of sparsification, and other system
energy consumptions. Therefore, it is a nonlinear problem
and thus the ODAS algorithms are proposed to solve this
problem for determining the optimal architecture.

α = ψ (I ,F,C,D) (3)

D. OPTIMAL DEEP ARCHITECTURE SEARCH (ODAS)
The ODAS algorithms are proposed to solve the nonlinear
problem of searching an optimal CAE architecture, given the
complex design variables and their relationships to both error
and total energy.

Two strategies are considered here: ODAS with energy
constraint (ODAS-energy), and ODAS with sparsification
error constraint (ODAS-error), given in (4) and (5), respec-
tively. The former one, as shown in (4), searches an optimal
CAE architecture αε

∗

with minimum error Z , while making
sure the total energy ε is no more than a threshold εth.

αε
∗

= argmin
α

Z (α), s.t.ε ≤ εth (4)

The second algorithm, i.e., ODAS-error as shown in (5),
searches an optimal CAE architecture αϵ

∗

with minimum

energy E , while making sure the sparsification error ϵ is no
more than a threshold ϵth.

αϵ
∗

= argmin
α

E(α), s.t.ϵ ≤ ϵth (5)

We will then detail two ODAS algorithms, which can
be used for different application scenarios, i.e., energy-
constrained or error-constrained applications.

E. ODAS WITH SPARSIFICATION ENERGY CONSTRAINT
ODAS-energy handles the scenario which has an energy
constraint, meaning that the total energy should not exceed
a threshold.

ODAS-energy is detailed in Algorithm 1, which reads in
the architecture variables and constraint, searches through
the solution space, and returns the optimal CAE architecture.
More specifically, the algorithm will first search through
different CAE depths, since the depth directly determines
the sparsification ratio and thus has major contributions
to the energy reduction. However, when increasing the depth,
the error usually increases. Therefore, the optimal architec-
ture should correspond to appropriate depth that can meet
the energy constraint while resulting in a small error. This
will be further demonstrated in the results section, which will
indicate that depth is the first degree of freedom where the
ODAS-energy algorithm needs to explore.

Then, the ODAS-energy algorithm will search through the
input dimension, i.e., the second degree of freedom, followed
by the feature map and then the convolutional filter size.
Considering the ECG database that we will use contains lots
of arrythmia heartbeats, the signal is highly diverse, which
makes long-signal-segment sparsification challenging. So the
algorithm searches the input dimension from low to high.
Further, more feature maps and greater filter sizes usually
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Algorithm 1 ODAS-Energy
Input:
input dimension ΦI

= {I |I = 1, . . . , Imax}
feature map ΦF

= {F |F = 1, . . . ,Fmax}
convolutional filter size ΦC

= {C|C = 1, . . . ,Cmax}
depth ΦD

= {D|D = 1, . . . ,Dmax}
energy threshold εth
Output:
optimal architecture αε

∗

error for the optimal architecture ϵε
∗

energy for the optimal architecture ε∗

Procedure:
αε
∗

= NULL //initialization
ϵε
∗

= INFINITY //initialization
for D = 1, . . .Dmax do //low to high
for I = 1, . . . , Imax do //low to high
for F = Fmax, . . . , 1 do //high to low

for C = Cmax, . . . , 1 do //high to low
ε = ETr+EDl+ESys //energy from wireless

transmission, CAE overhead, and other system compo-
nents

if ε ≤ εth //energy threshold
if Z (α) ≤ ϵε

∗

//minimize error
αε
∗

← ψ (I ,F,C,D)
ϵε
∗

← Z (α)
ε∗← ε

end if
end if

end for
end for

end for
if αε

∗

is not NULL //stop searching depth
break

end if
end for
return αε

∗

, ϵε
∗

, ε∗ //optimal architecture

yield lower reconstruction errors, we will search them from
high to low.

By leveraging the proposed ODAS-energy algorithm we
expect that the optimal CAE architecture can be effectively
determined. The optimal architecture will not only meet
the energy constraint but also own minimum sparsification
error.

F. ODAS WITH ERROR CONSTRAINT
The ODAS-error algorithm aims to determine the optimal
architecture that meets the sparsification error constraint
while owns minimum energy. Here we mainly introduce the
strategy of ODAS-error algorithm, which firstly search depth
from high to low, i.e., the error is from high to low. Then the
algorithm searches the input width, the feature map, and the
convolutional filter size. More demonstrations will be given
in the results section.

FIGURE 3. Sparsification (compression) Ratio versus Sparsification Error.
Notes. CAE: convolutional autoencoder; DWT: discrete wavelet transform;
ORI: original data without sparsification; CR: compression ratio; root
mean square error.

G. SYSTEM EVALUATION
To evaluate the proposed novel framework, we will study
different CAE design parameters. The set of depth values ΦD

includes 2, 4 and 6 (sparsification ratio = 4/16/64, respec-
tively); the set of input dimension values ΦI includes 128,
256 and 512; the set of feature map values ΦF includes 2,
4 and 6; the set of convolutional filter sizes ΦC includes 2,
4, 8 and 12. Through this through evaluation, we aims to
demonstrate the design principles of effective CAE and the
ODAS algorithms proposed.

III. RESULTS
A. EXPERIMENTAL SETUP
To evaluate the proposed framework, we here use the popular
MIT-BIH Arrythmia ECG Database [4], [5], [6] and select
ten subjects without severe motion artifacts. This database
include not only arrhythmia but also other kinds of heart
diseases, making the data sparsification very challenging. The
sampling rate of ECG is 360Hz, and the signal is preprocessed
by a band-pass filter (0.5 to 49.5 Hz) to remove the base-
line wander and powerline interference. The ECG stream is
segmented with a window size equal to the input width of
CAE, depending on the simulation requirements. To mini-
mize the engineering effort and maximize the generalization
ability of the algorithm, the ECG heartbeat locations are not
identified, meaning that the segmentation is random.We have
conducted subject-wise evaluation, to investigate whether a
subject’s own data is sufficient for training the deep learning
framework. In future, we will further consider other evalua-
tion method like leave-one/more-subject out cross validation.
75% of each ECG stream is used for training and 25% for
testing.

B. SPARSIFICATION RATIO VERSUS SPARSIFICATION
ERROR
With different CAE depths, we can achieve various spar-
sification ratios, or compression ratios. Meanwhile, the

VOLUME 11, 2023 25859



J. Wong, Q. Zhang: Deep Learning of Sparse Patterns in Medical IoT for Efficient Big Data Harnessing

FIGURE 4. Changes of Sparsification Error, under different input
dimensions (128, 256, 512). Notes. The top left dot 2, 2: #feature map,
filter size; horizontal axis: scenario index; InWidth: input dimension.

FIGURE 5. Changes of Sparsification Error, under different #feature map
(2, 4, 6). Notes. The top left dot 128, 2: input dimension, filter size;
horizontal axis: scenario index; FM: feature map.

corresponding sparsification errors also differ. Fig. 3 illus-
trates sparsification ratio versus sparsification Error, where
CAE, DWT, ORI, CR and RMSE stand for convolutional
autoencoder, discrete wavelet transform, original data with-
out sparsification, compression ratio and root mean square
error, respectively.

When increasing CR, for both CAE and DWT, RMSE
increases since more non-critical patterns are filtered out for
sparsification purpose. Under low CR, say 16, DWT show
better performance, but when increasing CR to 32 or 64, CAE
shows much better performance, thanks to CAE’s intelligent
removal of non-critical information in the ECG signal. This
will be further illustrated later by the waveforms of the recon-
structed signals.

Further, for CAE, there are multiple dots since there are
combinations of different design variables. Take CR=64 as

FIGURE 6. Changes of Sparsification Error, under different filter sizes
(2, 4, 8, 12). Notes. The top left dot 128, 2: input dimension, #feature
map; horizontal axis: scenario index; COV: convolutional filter size.

an example, the design variables, if chosen appropriately, can
reduce RMSE dramatically.

Overall, the CAE approaches provide many solution candi-
dates that have a less RMSE, given high compression ratios.

Next, we will analyze the contribution of different design
variables to RMSE in detail.

C. DESIGN PRINCIPLE – INPUT DIMENSION
Fig. 4 shows the changes of sparsification error, under differ-
ent input dimensions (128, 256, 512). The top left dot (2, 2)
corresponds to (#feature map, filter size), and the horizontal
axis gives the scenario indices. CR64 is selected to illustrate
the details.

We can observe that the input dimension has a positive cor-
relation with RMSE. It is because the disease ECG database
is highly diverse, and if the input dimension is too high, it is
much more challenging to reconstruct the diverse signals.

The complexity when considering the feature map and the
convolutional figure size is further given below.

D. DESIGN PRINCIPLE – FEATURE MAP
Fig. 5 gives the changes of sparsification error, under different
#feature map (2, 4, 6). The top left dot (128, 2) corresponds
to (input dimension, filter size).

The #feature map, relatively speaking, has a negative
correlation with RMSE, meaning that more feature maps
can capture richer patterns from the original signal, thereby
decreasing the error. Meanwhile, other design variables are
also related to RMSE, resulting in a complex distribution of
solution space.

E. DESIGN PRINCIPLE – CONVOLUTIONAL FILTER SIZE
Fig. 6 gives the sparsification error, under different filter sizes
(2, 4, 8, 12). The top left dot (128, 2) corresponds to (input
dimension, #feature map).
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FIGURE 7. Total Energy versus Sparsification Error. Notes. CAE:
convolutional autoencoder; DWT: discrete wavelet transform; ORI:
original data without sparsification; CR: compression ratio.

FIGURE 8. Total Energy versus Sparsification Error, under different input
dimensions (128, 256, 512). Notes. The top left dot 6, 12: #feature map,
filter size; horizontal axis: scenario index; InWidth: input dimension.

When increasing the convolutional filter size, RMSE basi-
cally decreases, indicating that a stronger ability to capture
more spatial information contributes to signal reconstruction.
Again, the complex distribution of solution space is related
to all design variables. Besides, the design variables also
generate different energy overhead.

F. TOTAL ENERGY VERS US SPARSIFICATION ERROR
Different CAE architectures make various contributions to
the reconstruction error, however, for a specific sparsifcation
ratio, we should not simply select the CAE architecture with
the smallest error. This is because CAE also generated energy
consumption and we need to consider the overhead induced
by CAE to the total energy.

In Fig. 7, total energy versus sparsification error is given.
Encouragingly, for CAE-CR16 and CAE-CR-64, there are
many CAE options that are better than the DWT options.
These CAE solutions are under the DWT curve, indicating

FIGURE 9. Total Energy versus Sparsification Error, under different
#feature map (2, 4, 6). Notes. The top left dot 128, 2: input dimension,
filter size; horizontal axis: scenario index; FM: feature map.

FIGURE 10. Total Energy versus Sparsification Error, under different filter
sizes (2, 4, 8, 12). Notes. The top left dot 128, 2: input dimension, #feature
map; horizontal axis: scenario index; COV: convolutional filter size.

these solutions can offer lower RMSE with the same
energy constraint, or offer lower energy with the same error
constraint.

G. DESIGN PRINCIPLES WHEN CONSIDERING OVERHEAD
The zoomed in versions of these better CAE solutions are
given in Fig. 8, 9 and 10, which illustrate the distribution
of the solutions under different input dimensions, different
#feature map, and different filter sizes, respectively. One
thing to note is that these three figures show the same mea-
surement distribution but with different annotation methods
to highlight the contribution of different design parameters.
In Fig. 8, we want to compare three input dimensions labeled
with different colors, in Fig. 9, different #feature map is high-
lighted with different colors, and Fig. 10 highlights different
filter sizes. These visualizations further show that the solution
space is highly complex. But at the same time, some princi
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FIGURE 11. The recovered signals for different subjects and different approaches (CAE and DWT), suggesting that CAE significantly
outperforms DTW. FM2/4/6 corresponds to CR4/16/64, respectively.

ples still hold: the smaller input dimensions, more feature
maps, and larger filter sizes relatively give better solutions.

Therefore, we will later demonstrate that, by leveraging
these principles, the proposed ODAS algorithm can effec-
tively select the optimal CAE architectures.

To further demonstrate the performance of CAE and DTW,
in Fig. 11, the recovered signals for different subjects and
different approaches (CAE and DWT) are given. FM2/4/6
corresponds to CR4/16/64, respectively. We can observer that
CAE significantly outperforms DWT.

H. ODAS WITH SPARSIFICATION ENERGY CONSTRAINT
The ODAS-energy algorithm searches the solution space to
determine the optimal CAE architecture that meets the energy
constraint and owns the smallest sparsification error.

The comparison on the optimal CAE architecture with
DWT is given in Fig. 12(a), which the energy constrain is
set as 1.90 mJ. The sparsification error (RMSE) for DWT and
CAE is 0.13 mV and 0.09 mV, respectively. The optimal CAE
architecture is (128, 2, 8, 6), corresponds to (input dimension,
#feature map, filter size, depth). So the sparsification ratio
is 64. The optimal DWT architecture is CR64. This is in
align with the solution space shown in Fig. 7, and detailed
in Fig. 8, 9, and 10.

The algorithm first searches the CAE depth from low to
high until the depth meets the requirements of the energy con-
straint. The algorithm then searches the in put dimension from
low to high, the #feature map from high to low, and the filter

FIGURE 12. The energy and error for the selected optimal architectures,
under energy constraint (a) and error constriction, respectively.

size from high to low, respectively. Overall, ODAS-energy
searches better solutions first based on the design principles,
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and if the current CAE depth provides at least one solution,
it stops. For each depth, before search termination.

In such a way, the ODA-energy algorithm can determine an
optimal solution that, not only meets the energy budget, but
also has best combination of the design variables for error
minimization.

I. ODAS WITH ERROR CONSTRAINT
The ODAS-error algorithm, similar to ODAS-energy, also
searches the solution space to determine the CAE architec-
ture. But different constraints usually yield different optimal
solutions.

Fig. 12(b), where the error (RMSE) constraint is set as
0.08 mV, the optimal architecture for DWT and CAE has an
energy consumption of 2.03 mJ and 1.91 mJ, respectively.
The optimal CAE architecture is (128, 4, 8, 6), corresponds
to (input dimension, #feature map, filter size, depth). So the
sparsification ratio is 64. The optimal DWT architecture is
CR16, indicating that DWT, to meet the error constraint,
can only decreases the sparsification ratio and increases the
energy.

IV. CONCLUSION
IoT big data streaming is essential for data-driven smart
health and smart world applications. Targeting the challenges
induced by the power hungriness of IoT long-term streaming,
we have proposed a deep learning-enabled big data sparsifica-
tion framework. The novel framework can, not only sparsify
the IoT data using intelligent autoencoder neural networks,
but also determines the optimal deep learning architecture
under the constraint. Compared with the traditional DWT
data sparsification, the deep learning architecture determined
by our framework provides better solutions, meaning that
our framework can either offer the smallest error under the
energy constraint, or offer the lowest energy under the error
constraint. This research, validated on the ECG-based cardiac
monitoring application, is expected to greatly advance IoT big
data applications.
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