
Received 17 February 2023, accepted 9 March 2023, date of publication 13 March 2023, date of current version 16 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3256540

ANS: Assimilating Near Similarity at High
Accuracy for Significant Deduction of
CNN Storage and Computation
WANG WANG , (Graduate Student Member, IEEE), XIN ZHONG,
MANNI LI, ZIXU LI, AND YINYIN LIN , (Member, IEEE)
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 201203, China

Corresponding author: Yinyin Lin (yylin@fudan.edu.cn)

ABSTRACT Activation data size has been roaring with the development of convolutional neural networks,
which accounts for the boosting storage requirements. Our insight indicates that non-zero values dominate
activations, of which the patterns demonstrate near similarity. We propose ANS method to compress
activations in real time during both training and inference. High compression ratio with less accuracy loss
is achieved by our optimization strategies, including determination of selection box (SB) size according to
the amount of zero values of layer, learning and calibrating threshold dynamically, using the mean value
of similar SB as compression value. Over 49% of compression ratio is achieved with accuracy loss of less
than 0.892%, as well as reduction of multiplications by more than 60%. Comparing to three state-of-art
compressed methods under five mainstream CNN models, ANS provides compression ratio improvement
of 3.2x over RLC5, 1.9x over GRLC and 1.7x over ZVC. The ANS compressor and decompressor are
implemented inVerilog and synthesized in 28nmnode, which indicates that ANS has less cost of performance
and hardware overburden. ANSmodules could be seamlessly attached at the interface or deeply coupled into
DNN accelerator with changed data path in the MAC array, which achieve 38% and 56% reduction in energy
consumption, respectively.

INDEX TERMS Compression, convolutional neural networks, energy consumption, memory footprint of
accelerator.

I. INTRODUCTION
Among models of various deep neuron networks (DNNs),
convolutional neural networks (CNNs) have always been pre-
dominant in the fields of computer vision. Despite the rapid
development of diversified new networks, the use of CNN
still experienced approximately a 3 times increase for DNN
workloads in data centers from 2016 to 2020 [1].

During the past ten years since CNNs emerged, the demand
for memory capacity has been soaring. From AlexNet in
2012 to ResNet152 in 2015, the data size of intermedi-
ate activations increased 48x, from less than 8 MB up to
nearly 380MB [2], [3]. And the batch operations furthermake
activations increase linearly with the batch size. Compared

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

with the skyrocketing of activations size, the weights size
has even decreased instead (see Section III-A in detail). As a
result, the activation size dominates the soaring demand for
memory storage of CNNs. For training, the size of activations
is about 12 GB at 256 batch size for ResNet50, which occu-
pies more than 80% of the total memory demand [4].

From the perspective of input datasets, ImageNet datasets
have 1.34 million image and require 138 GB of storage
space [5], far exceeding any available on-chip capacity. Train-
ing datasets of many application scenarios such as auto-
driving are also continuously expanding [6].

For inference, at least one layer of activations has to be
stored for the computation of next layer. Take MobileNet_v2
as an example. Its maximum of activations with fixed point
(FXP) 8bits reaches 1.15MB [7]. Limited on-chip capacity
at the edge, e.g., hundreds of KB [8], sometimes cannot even

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 25415

https://orcid.org/0000-0002-6976-5699
https://orcid.org/0000-0002-5939-3502
https://orcid.org/0000-0001-8336-9150


W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

satisfy the activation storage of single layer. And simple reuse
of activation on chip is usually not the optimal solution of
performance and energy consumption for accelerator [9].

The surge of memory capacity for both training and infer-
ence has led to a huge challenge to the energy consumption
required by CNN tasks, of which the majority comes from
inter-chip data movement. The energy consumption due to
accessing data off-chip is two orders ofmagnitude higher than
that of on-chip computing [1].

There are various hardware-based efforts aiming at the
challenge of storage explosion. Each one has their own advan-
tages and bottlenecks, e.g., (a) Increasing on-chip memory,
which encounters fundamental limitations of on-chip SRAM
capacity, due to the reticle limit and Moore’s law stagnating
[10], [11]; (b) Processing in/near DRAM (PIM), which takes
advantage of the large capacity of DRAM, but suffers from
the interaction with manufacturers and customers, which
involves changes of the memory sub-system and application
code for non-standard PIM [12], [13]; (c) 2.5D/3D package,
which is beneficial for high bandwidth and high capacity of
DRAM, but very costly to further increase the I/O pins under
the serious physical constraints of a package, such as power,
temperature, form factor and integrity etc [14]. (d) Compu-
tation in memory (CIM) of cell-level, including early analog
CIM (ACIM) [15] and later digital CIM(DCIM) [16]. Both
decrease the energy of data movement, but can cover very
limited DNN trainings because only FXP operations can
be handled up to now. ACIM faces reliability challenges
due to unavoidable variations among cells and high cost of
area/power overburden from analog-digital converter. DCIM
has to implement digital design besides memory cells, which
leads to low area efficiency [17].

Software-based efforts usually aim to reduce the data size
of networks in order to decrease CNN energy consumption,
including data quantization, rematerialization, network prun-
ing, and sparsity compression, etc.

Data quantization is to replace the original floating-point
(FP) precision with a lower one, which brings benefits of
both a smaller memory footprint and an amount reduction of
corresponding computation [18].

Rematerialization is a method of recalculating activations
instead of storing them during training [19]. In addition, due
to operations such as ReLU and Pooling in CNN without
parameter updates during backward propagation, the activa-
tion values can be stored using binarization encoding for-
mat [20].

Fine-grained pruning weights are not valid for reducing the
data size of activations [21]. Coarse-grained pruning of some
non-significant filters can structurally clip associated activa-
tions, in which the accuracy loss caused by pruning requires
additional iterations to recover [22], [23]. Consequently, even
more energy and longer training time are consumed.

Sparsity can be used to compress the activations dur-
ing training and inference. The basic idea of mainstream
compression methods, including RLC [8], ZVC [24] and

GRLC [25], is to eliminate the storage space of zero values
(ZVs) and store only non-zero values (NZVs) and indexes.
It is obvious that the benefits of these method are dependent
on the percentage of ZVs in activations.

Actually, NZVs occupy most part of activations for CNN
models. Our insight shows that the activation patterns of
NZVs have the feature of near similarity (see Section III-C
in detail). More than that, the region with a consecutive
zero pattern can also be regarded as a special case of near
similarity.

We propose ANS method, which can be applied to
compress activations of both NZVs and ZVs. Not only the
memory footprint but also the amount of associated compu-
tation is significantly reduced. The deployment of ANS into
inference and training are discussed. And ANS compressor
(ANS_C) and decompressor (ANS_D) are implemented in
Verilog and synthesized in 28nm node. The cost of per-
formance and hardware overburden are analyzed. Based on
five wide-used networks, our evaluations indicate excellent
trade-off between compression ratio and accuracy as well
as significant reduction of energy consumption due to the
decrease in both data size and amount of computation, and
we thoroughly compare the compression results with three
state-of-art popular sparsity compression methods.

The remainder of this paper is organized as follows:
Section II provides a short survey on related work. Section III
is about insights which motivate ANS. Section IV describes
the detailed approach of ANS. In Section V, two architectures
utilizing ANS modules are presented. Section VI evaluates
the algorithm and hardware architecture. Section VII dis-
cusses the root cause why ANS can achieve both high com-
pression ratio and less accuracy loss. Finally, Section VIII
concludes the paper.

II. RELATED WORK
There are prior arts aiming at reduction of data size of acti-
vations. Jain et al. [26] observes that the ReLU outputs, that
has to be stored for the backward pass, can be encoded using
just 1-bit values, leading to 32× compression of the ReLU
outputs. Backprop [20] only stores the activations generated
by batch normalization (BN) in the computation chain, while
the unstored activations are recalculated according to the
stored activations in the backward propagation, which is also
known as rematerialization. Checkmate [19] formalizes ten-
sor rematerialization as a constrained optimization problem,
which is optimized by using off-the-shelf numerical solvers.
This type of methods doesn’t involve data compression and
still has to store massive uncompressed activation values.

Mao et al. [21] analyze that the model size deployed in
inference can be reduced by pruning the network at various
granularity during the training stage. There are three major
pruning methods: (a) Irregularly fine-grained pruning (FGP)
of some individual small weight values. This method has
no effect on activation reduction [23]. (b) Coarse-grained
pruning (CGP) of some weight filters, as well as the relevant

25416 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

activation channels. Luo and Wu [22] prune 25%-50% of
filters and activations within the network, which reduces
by half the loading of data storage and computation in
each iteration. (c) Block-grained pruning (BGP) [27] divides
weight into 1 × 4 block, in which 50% of the minimum
value and multiply-and-accumulate (MAC) operations are
trimmed. Vooturi et al. [28] propose HBsNN to combine
boxes of various sizes to segment the sparse matrix to achieve
a higher cutting ratio. Since the above method is lossy to
crop off some values, ‘‘Retraining’’ operations are required
to restore the lost precision, which results in an 60% increase
of iteration number, and brings additional burden of not only
cycles but also energy consumption in training [22].

Sparsity compression (SCP) has been explored to reduce
ZVs of activation during training or real-time inference sce-
narios. In Eyeriss [8], RLC method encodes consecutive ZVs
into a single run, which compresses and decompresses the
NZVs at the interface of the accelerator, thereby reducing the
DRAM accesses. Based on spatial correlation of activation
values, GRLC [25] exploits RLC on the 2 × 2 grid of activa-
tions, and further distinguishes outliers and non-outliers for
NZVs, which achieves a 1.73x compression ratio improve-
ment over RLC. ZVC [24] stores non-zero activations with
mask bits to indicate whether the activation is zero after
encoding a window of 32 elements. CSR [29] compresses a
matrix by processing each row as a sparse vector, by which
compression enables random accesses to any row. CSC [30]
is similar to CSR, except that NZVs are stored columnwise.
The SCP methods mainly focus on ZVs, so the compression
ratio depends on the proportion of ZVs in the activations.

Along with the deduction of the activation size, the mul-
tiplications by zero are skipped too, which further opti-
mize energy consumption and performance in Snapea [31].
However, the control logic is so complicated that sparse pro-
cessing can only be applied to some special layers, e.g. minor-
ity of convolutional layers in SCNN [32] or fully connected
layers in EIE [30], even though direct computation with
encoded indices is implemented by dedicated MAC array in
order to avoid decompressing of weight and activation [33].

Values are generally quantified as FXP format in inference,
which provides an opportunity to explore the sparsity within
independent elements. Alameldeen and Wood [34] divide
FXP16 activation values into four patterns according to the
position of ZVs. Four patterns with different bit widths are a
challenge to the accelerator implementation. Song et al. [35]
propose

DRQ to judge the local area sensitivity of activations,
which divides the activations into regions with large or small
influence on the task results. Then activations are quanti-
fied as high bit width for sensitive areas and low bit width
for insensitive areas. Huang et al. [36] split activations by
structured dynamic block. L1-norm of values in the block is
used to compare with the learnable threshold to determine
whether the low bits needs to be calculated. These methods
use a block-grained approach to save energy of data access
and multiplication, but are limited to quantized models.

FIGURE 1. Trends of data size for CNN models.

There are prior arts which involves local similarity of input
image. Miguel et al. [37] proposes a cache for tasks with
close pixel data, of which the multiplication results are reused
to reduce the amount of computation. In COREx [38], the
calculation results of adjacent frames with similar pixels are
reused, which is further applied to DNN tasks to reduce
multiplication operations [39], [40], [41], [42]. However, this
type of prior arts is only for eliminating the amount of multi-
plications within Euclidean metric without the consideration
of data compression.

III. INSIGHTS WHICH MOTIVATE ANS
In this section we discuss three insights which motivate and
guide ANS. The related experiments are implemented on
the PyTorch framework with ImageNet verification dataset,
and the pre-training models used in inference are from the
PyTorch website [48].

A. ACTIVATIONS DOMINATE THE STORAGE
REQUIREMENTS
The soaring requirement of CNN model for storage comes
from the pursuit of high accuracy. The rapid growth in both
depth and width of network leads to a rocketing rise in model
parameters and intermediate activations. We summarize the
trend of CNN models in Fig. 1 [2], [3], [43], [44]. At an
early stage of CNN emergency, weights occupy the majority
of total data size. Afterwards, the activations increase much
more rapidly than weights.

There are 8 layers for AlexNet in 2012 with 238 MB of
weights in FP32, which accounts for most part of total data.
In comparison with AlexNet, the weight size of Vgg16 [43]
in 2014 increased by 2.3x, while activation size increased
by 7.3x. The difference in growth rate originates from two
aspects. Firstly, the layers of Vgg16 go up to 16 in order
to improve accuracy. Secondly, the network becomes wider.
The inception modules of GoogleNet [44] in 2014 utilized
1 × 1 filters to reduce the dimensions of activation, enabling
a few 3 × 3 filters to extract features, while only one fully
connected layer with large parameters is retained. Conse-
quently, the weight size is only 21% of that of AlexNet.

VOLUME 11, 2023 25417



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 2. ZVs and NZVs percentage in activations and input image for (a) five typical CNN networks, (b) AlexNet and (c) ResNet18.

But the introduction of additional intermediate layers leads
to the growth of network depth. Thus, the activation size
increased by 3.25x in comparison with AlexNet. As for
ResNet152 [3] in 2015, the error rate decreased to 5.9%,
nearly 3.6x smaller than that of AlexNet in 2012. But the
depth increases to 152-layer, and the residual modules make
previous activations to be stored for shortcut connection with
the current layer, both of which lead to nearly 48x increase
of activation size from 8 MB to 380 MB. The percentage
of activation in total data size increases from 3% to 62%.
On the contrary, weight size changes slightly from 238 MB
with AlexNet to 229 MB with ResNet152 due to introduction
of residual module.

The batch operators, which are used to improve the pro-
cessing efficiency and training accuracy, are another impor-
tant reason for surge of activations which increase linearly
with batch size. For ResNet50, the perfect batch size for
training reaches up to 8192 [45]. Thus, the activation size is
usually over 10x greater than weight size [1].

B. NZVS DOMINATE ACTIVATIONS
We evaluate the NZVs/ZVs percentage of activations for the
popular CNN networks, as shown in Fig. 2. Actually, not all
activations need to be stored. At early stage of CNN emer-
gency, Conv-ReLU-Pooling chain is usually used in AlexNet
and Vgg16. ReLU and pooling do not update parameters in
the training, so the input activations do not have to be stored.
Only the the intermediate activations, which are the inputs
and outputs of the chain, need to be stored. We named this
type as ‘‘CA’’ in Fig. 2. For later GoogleNet and othermodels,
BN is added to the chain, that is, Conv-BN-ReLU-Pooling
chain. Since BN needs to update parameters in training,
activations after Conv and before BN need to be stored during
training. We named this type as ‘‘BA’’. Both CA and BA need
to be stored during training for these later models. But only
CA has to be stored during edge inference for them. That is
because fuse operation is employed for the data package pro-
cessing of Conv-BN-ReLU-Pooling chain in order to handle
the limited capacity of on-chip memory [46].

Fig. 2(a) shows that NZVs occupy most part of acti-
vations for all five popular CNN models. MobileNet_v2
achieves a NZV of 68% for CA (for inference scenario),

FIGURE 3. Visual activations of layer1 and layer9 for ResNet18. (a) Raw
activation pattern, (b) The pattern is divided by 2 × 2 SB, and SBs with
similar values inside are marked as white, (c) ZVs in the channel are
visualized as white pixels and NZVs as black pixels.

while GoogleNet achieves a NZV of 87% for CA and BA
(for training scenario).

For AlexNet without BN layers and ResNet18 with BN
layers, we further analyze the NZVs/ZVs percentage in input
image and activations of each layer, as shown in Fig. 2(b)
and 2(c), respectively. For AlexNet, the geometric mean
(GM) of NZVs for images and total activations reaches up
to 65%, which is attributed to two reasons: (a) Pooling layers
shrink the shapes of output activation layers. Consequently,
the activation size in shallow layers is larger than that in
deeper layers, e.g. the output activation size of AlexNet layer1
(55 × 55 × 96) is 6.7x greater than that of layer5
(13 × 13 × 256). (b) The ZVs are heavily accumulated in the
deeper layers (e.g. 88% for layer5) due to ReLU, but occupy
very tiny percentage in the input image (0.5%) and shallow
layers (e.g. 20% for layer1). For ResNet18, since the value
distribution is uniform after BN layers, the proportion of ZV

25418 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 4. An overview of ANS algorithm.

of CA is 32%-56%. After ReLU, the ZV of about 50% is
obtained. However, BA have almost no ZVs due to no use
of ReLU before it. Therefore, 82% of the total activations is
NZV.

C. NEAR SIMILARITY IN ACTIVATION PATTERNS
It is well known that the pixel values corresponding to a sim-
ilar local region of an image are close [37], [38]. We further
observe the similar feature in the intermediate activation pat-
terns of CNNs. Take ResNet18 as an example, we visualize
the activation channels of layer1 (a representative of shallow
layer) and layer9 (a representative of deep layer), as shown in
Fig. 3(a). 2×2 selection boxes (SBs) are used to segment the
channels in Fig. 3(b). White pixels indicate a SB with similar
values inside, such as SB_0 with values range from 44 to 46.
And black pixels indicate a SB with dis-similar values inside,
such as SB_1 with values range from 0 to 30. It can be seen
that the white SBs scatter all over the activation pattern, but
generally occupy a large part of area.

In Fig. 3(c), ZVs in the channel are further visualized as
white pixels and NZVs as black pixels. It can be seen that the
general white area in Fig. 3(b) is bigger than that in Fig. 3(c).
That is because the SBs with similar values inside exist not
only in the region of ZVs, but also in the region of NZVs.
The motivation of ANS is to compress the similar SBs in both
regions.

IV. PROPOSED ANS METHOD
We elaborate the ANS method in this section. Firstly,
an overview of ANS framework is given, then the crucial
points for trade-off between accuracy and compression ratio
are addressed one by one. Finally, the inherent method of
reducing multiplication operations of ANS is presented.

In this section, ANS are implemented by extending
PyTorch framework. The pre-training models for inference
are all from the PyTorch website [48]. ImageNet verification
dataset is used as input unless special instruction is given.
It is assumed that more than 1% drop in top-1 accuracy is
unacceptable.

FIGURE 5. ANS_C and ANS_D embedded into data flow of hardware
including (a) inference and (b) training. The image is compressed with
ANS offline in advance.

A. ANS OVERVIEW
ANS could be applied to compress not only input image but
also activations, only if the local region has the feature of
similarity, including non-zero similar data and consecutive-
zero ones. The compressed algorithm includes three key steps
illustrated in Fig. 4 (①, ② and ③), and decompressed is
shown in ④. In order to obtain both high accuracy and strong
compression, there are key points for each step as follows:

Step ① Dividing: The image and activation patterns are
divided into continuous local regions by using SB. The key
problem in this step is how the SB size impacts the compres-
sion ratio, which is discussed in detail in Section IV-B.

Step ② Judging: The threshold (Th) is used as criteria to
judge the similarity of SB. Compare Th with difference of
the maximum and the minimum in the SB. If the Th is bigger,
SB is a similar SB (SSB). Otherwise, SB is a dissimilar SB
(DSSB). The key problem in this step is how the Th impacts
the accuracy after compression. The details are discussed in
Section IV-C.
Step ③ Compressing: The SSB is compressed into a single

value ‘‘x’’ with index ‘‘1’’, while the values in the DSSB
would be totally reserved with index ‘‘0’’. The key problem
in this step is how the ‘‘x’’ value is chosen, which is discussed
in detail in Section IV-D.
ANS could be seamlessly embedded in the data flow during

hardware running CNNs, so images and activations enable
to be compressed in real time. Fig. 5 shows the typical
data flow with ANS for inference and training. For training
phase, the activations generated during forward propagation
are compressed by ANS_C and utilized during backward
propagation. ANS can also compress the CA stored off-chip
memory due to capacity limitation of on-chip memory. See
Section VI-A for details on ANS deployment in inference and
training.

B. OPTIMIZATION OF SB SIZE
The first step of ANS is to divide activation patterns
into consecutive local regions of SB size (height ∗ width

VOLUME 11, 2023 25419



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 6. SSB ratio ((a), (d)), compression ratio ((b), (e)) and accuracy
((c), (f)) vs. Th under different SB size for AlexNet layer1 ((a), (b), (c)) and
layer5 ((d), (e), (f)).

in Fig 6). Before exploring how SB Size affects the accu-
racy and compression ratio, we define the three concepts as
follows:

SSB_ratio =
SSB_number
SB_number

(1)

Compression_efficiency =
SB_size − 1
SB_size

(2)

Compression_ratio =
Compressed_activations

Total_activations
(3)

The compression efficiency is positively associated with SB
size. For example, 2×2 SB has a 75% (3/4) compression effi-
ciency. And 4×4 SB has a maximum compression efficiency
of 94% (15/16). There is the following correlation among the
3 concepts:

Compression_ratio = SSB_ratio × Compression_efficiency
(4)

Nowwe give the statistical analysis results for AlexNet layer1
(about 20% ZVs, representing a layer with few ZVs) and
layer5 (about 88% ZVs, representing a layer with rich ZVs),
as shown in Fig. 6. Three Th of 0, 1.8 and 2.4 were selected
in the experiment (see Section IV-C for the detail of Th).
For layer1 and layer5, the SSB ratio is the largest at 1 × 2

FIGURE 7. The numerical distribution of images and activations of
AlexNet layers, including maximum, mean and standard deviation.

SB and decreases with the increase of SB size. For layer1,
however, the maximum compression ratio is at 2 × 2 SB
instead of 1× 2. This is because SB with 1× 2 or 2× 1, has
a compression efficiency as small as 50%. For SB size larger
than 2 × 2, although with more than 75%(83% for 2 × 3 or
3×2 SB) compression efficiency, it also results in small SSB
ratio due to the big percentage of NZVs of layer1, which leads
to decrease of compression ratio.

For layer5, when SB is 3×3, the compression ratio reaches
the maximum. This is because it has a large number of ZVs,
so a large SSB ratio can be achieved under a large SB size.
Due to the high compression efficiency of 3 × 3 SB (89%),
the compression ratio of layer5 is larger than that of layer1
under the same Th. In addition, the accuracy and compression
ratio are the same when the height and width dimensions
are reversed in Fig. 6. Therefore, in order to achieve a large
compression ratio, we use 2×2 SB for layers with rich NZVs,
and 3 × 3 SB for layers with zero-rich values (over 80%).
For layer1, initially, the accuracy loss increases with the

increase of SB size, 0.97% at 2 × 2 but 1.4% at 3 × 3
(Th = 1.8), which is because compression value in a small
SSB effectively represents the uncompressed value, while a
large SSB will cause more numerical variation for the local
activations. With the further increase of SB size, the accuracy
loss becomes small, 0.99% at 4 × 4 SB, which is caused by
the limited SSB ratio, that is, it is more difficult for large SB
to be determine as a SSB under a constant Th. For layer5,
the accuracy loss decreases to less than 1% with the increase
of SB size. For example, when the Th is 2.4, the maximum
compression ratio can reach 77%, and the accuracy loss is less
than 0.46%. This is because there are rich ZVs in layers, and
ZV compression is lossless.

C. TH OPTIMIZED BY LEARNING AND
DYNAMIC CALIBRATION
Th is the key parameter to judge if one SB is SSB, which
has significant impact on the trade-off between compression
ratio and accuracy. As described in Section IV-A, we compare
Th with the difference between maximum and minimum in
a SB to determine if it is a SSB. The bigger the difference
is, the more dissimilar the data in the SB is. The opposite
conclusion would be got for one single SB under different Th
values. This can explain why the accuracy decrease with the
increase of Th in Fig. 6. An inappropriate big Thwould lead to

25420 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

TABLE 1. The learning results from ten images respectively.

FIGURE 8. The flow diagram of learning for Th.

unacceptable accuracy loss even if the big compression ratio
could be achieved.

1) FEASIBILITY FOR USING ONE CERTAIN TH ACROSS THE
TOTAL NETWORK
First of all, we need to analyze whether it is feasible using
specific Th value to judge local similarity of SB across the
total network. Ten images are randomly selected as the input
of AlexNet to obtain statistical results of output activations of
each layer, including the maximum value, mean and standard
deviation, as shown in Fig. 7. The activations of ten images
have similar mean and standard deviation. The feature would
be more obvious if there are BN layers in the network.
Therefore, the distributions of activations, including mean
value and standard deviation, are very close instead of being
scattered in the following three levels: (a) among different
images in the same one network; (b) among different lay-
ers in the same one network, (c) among activations in the
same one layer. Therefore, it is feasible to use one certain
Th to judge the local similarity of activations across the
network.

FIGURE 9. Compression ratio vs. layers of AlexNet under different Th and
the impact on accuracy.

2) LEARNING FOR TH
Here we propose to obtain appropriate Th by learning and
dynamic calibration. Our experimental analysis shows that
this method can realize a good trade-off between high com-
pression ratio and less accuracy loss.

As shown in Fig. 8, two stages are included: the first stage
is learning. A group of samples are randomly extracted from
the dataset. And Th would finally be obtained after a series
of iterations. The second stage is calibration, which includes:
(a) Th is utilized in the training and inference. (b) The accu-
racy is detected in real time, (c) Th is calibrated dynamically.

Now we further discuss the learning stage in more detail.
As shown in Fig. 8(a), a certain amount of image is randomly
chosen from the data set as samples. Each sample is input into
network to obtain the parameters, including Mean (the mean
value of activations), andOut_init (the inference result). Th0,
the initial threshold, is set to Mean. Then ANS with Th0 is
applied to CNN. AndOut, the output result, is compared with
Out_init so as to dynamically tune Th under the increment
1Th, which is set to one tenth of Th0 in our experiment.
A smaller 1Th enables to obtain a more accurate Th at the
cost of more hardware resources. The iterations continue
until the Out does not decrease compared with Out_init, and
optimized Th is determined finally. The preferred region of
Th is highlighted in green in Fig. 8(c), which is a schematic
diagram of Fig. 6. According to different tolerance of accu-
racy loss for various tasks, Th has to be chosen in the
green region in order to get as high compression ratio as
possible.

VOLUME 11, 2023 25421



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 10. Accuracy vs. Th with different compression values.

FIGURE 11. The amount reduction of multiplication with ANS.
(a) A schematic of Conv. (b) Conv formula. There are total
36 multiplications, of which 7 marked with a red cross are skipped or
gated by reuse. (c) Conv formula with the associative law.
12 multiplications are skipped.

Table 1 shows the results learned from ten images respec-
tively. The value of Th varies between −21.6% and +14.6%,
and the corresponding accuracy varies between −0.5% and
+0.1%. The values among images are close, which is con-
sistent with the analysis in Section IV-C1. And we use the
average value of Th learned from the ten images as the
final Th.

During the second stage of calibration, Th is utilized to
inference or training. Then the accuracy with ANS is detected
on field regularly. Th could decrease in real time in case of
accuracy decline.

It is noticeable that no label corresponding to dataset is
required during both stages of learning and deployment. The
outputs with and without ANS are compared directly to
achieve the accuracy change.

3) HOW ABOUT FINE-GRAINED LEARNING FOR
TH LAYER BY LAYER?
Actually, Th has different impact on accuracy of the rich
and poor zero-value layers, as has been indicated in Fig. 6(c)
and 6(f). Taking a 2 × 2 SB as an example, under the same
accuracy drop of 1%, Th for layer1 is 1.8, while that for

FIGURE 12. Multiplication reduction ratio vs. similarity ratio with 2 × 2,
3 × 3, 4 × 4 SB sizes and 1 × 1, 3 × 3, 5 × 5 filter sizes. In ‘‘B_∗_F_∗’’,
‘‘B’’ means the size of SB and ‘‘F’’ means the size of filter.

FIGURE 13. ANS vs. average pooling. (a) raw activation pattern,
(b) pattern after ANS, (c) pattern after average pooing.

layer5 reaches 2.4. The latter can get bigger compression
ratio. Then, will fine-grained learning Th layer by layer lead
to better trade-offs between accuracy and compression ratio?

The compression ratio and accuracy between the entire
AlexNet with a uniform Th (uniTh) and each layer with
an independent Th (indTh) are compared. And the indTh
is learned when the original accuracy is reduced by 1%.
The experimental results are shown in Fig. 9. The GM of
compression ratio for the indTh scenario only increased by
0.8% compared with that of the uniTh scenario, while the
accuracy decreased by 0.39%. As a result, the learning of
indTh, as an optimization problem with layer-dimensions
complexity, consumes much more time and resources than
that of uniTh across the network, but nearly no additional
benefit of compression ratio is acquired.

D. SELECTION OF COMPRESSION VALUE
In ANS method, the data in SSB would be compressed into
one single value ‘‘x’’ with an index ‘‘1’’. It is optimal that
‘‘x’’ selection can reflect the value distribution of the entire
SSB, and minimizes the activation changes before and after
ANS, so as to decrease accuracy loss due to compression.

We achieve the accuracy of AlexNet with ANS by using the
minimum, maximum, mode, median and mean values as ‘‘x’’
respectively, as shown in Fig. 10. It is indicated that mean
value of ‘‘x’’ has the minimum of accuracy loss. Now we
discuss the reasons case by case. (a) It is obvious that the
maximum andminimum lead to the greatest accuracy loss due

25422 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 14. Three cases of accelerator: (a) Acc-A, w/o ANS. (b) Acc-B w/ ANS_C and ANS_D at the interface of the chip. (c) Acc-C w/ ANS_C and a
special-designed MAC array to compute compressed data with multiplication reduction method. (d) MAC subarray implementation with the
multiplication reduction method for 2 × 2 SB.

to numerical deviation. (b) When values in SB are clustered
around themaximumorminimum, themedianwould bemore
on the side of the maximum or minimum. (c) Mode cannot
represent the entire region when the data in SSB has wide
distribution with less duplicate values. (d) In comparison, the
mean value can better balance the distribution across entire
local region. That is why the mean value of SSB is chosen as
compression value ‘‘x’’.

E. REDUCTION OF MULTIPLICATIONS
ANS reduces not only the data size, but also the amount of
multiplications. Fig. 11 illustrates an example of 4 × 4 acti-
vation pattern, in which a 2×2 SSB is included. A 2×2 output
is obtained after the convolution by a 3 × 3 filter. As shown
in Fig. 11(b), 36 multiplications are needed, in which there
are many same operations due to duplicate ‘‘x’’ in SSB, e.g.,
four ‘‘5∗x’’. By reusing the result of the first multiplication,
the latter same ones can be skipped or gated. In this case,
19% (7/36) multiplications is reduced.

When the associative law is further used for multiplications
with ‘‘x’’ in the same formula, more amount of multiplication
can be reduced, as shown in Fig. 11(c). 33% (12/36) of the
multiplications are skipped under the 25% (4/16) SSB ratio.
It is noticeable that neither approximation is taken for the
amount reduction of multiplication, nor additional addition
operation is introduced.

We further analyze the trend of the amount reduction of
multiplications under three sizes of filter (1 × 1, 3 × 3,
5 × 5) and three sizes of SB (2 × 2, 3 × 3, 4 × 4).
And Fig. 12 shows the ratio of multiplication reduction for
12× 12 input activation pattern under different SSB ratio. It is
assumed that there is no padding, and stride is 1. As the SSB
ratio increases, the multiplication reduction ratio increases
almost linearly. And for 1 × 1 filter, when SSB ratio reaches
100%, the multiplication reduction ratio can reach 93.8% at
most. In addition, when the SSB ratio is less than 70%, the
multiplication reduction ratio is positively correlated with
filter size. When the SSB ratio is larger, the multiplication
reduction ratio is positively correlated with SB size. This is
because more data are compressed into one compressed value
in a large SB. Thus, more multiplications in a formula are
reduced.

F. COMPARISON OF ANS AND AVERAGE POOLING
Outwardly, average pooling and ANS both divide the acti-
vation pattern into windows and then compress the window
into one single data, the mean of the window. Actually, the
two have big differences. Pooling reduces the dimension of
the activation pattern in width and height without distinction
of local similarity. As illustrated in Fig. 13(a) and 13(c), the
4 × 4 activation pattern shrinks into 2 × 2 one after average
pooling, 75% of the information is lost no matter if the data in
the window are similar or not. As a result, only a minority of
layers could be pooling ones in a network in order to ensure
accuracy, e.g., ResNet152 has only 2 pooling layers among
total 152 layers. In comparison, ANS only compresses the
SSB while reserve all data in DSSB. When decompressing,
the compression value in SSB is broadcast to keep the original
shape of the activation pattern, as shown in Fig 13(b). These
strategies ensure the least disturbance on accuracy under big
compression ratio. That is why ANS can be applied to each
layer in the network.

V. ANS APPLIED INTO DNN ACCELERATORS
In this section, we discuss the methodology how the ANS
method can be applied into DNN accelerators. We proposed
two ways of AI- device implementation: the first way does
not disturb the internal structure of original accelerator at all,
that ANS can be seamlessly attached to various accelerators,
which is described in Part A. The other way is analyzed in
Part B, of which the motivation is to harvest the benefits of
multiplication reduction by ANS. Novel MAC sub-array with
changed data path is further proposed.

A. SEAMLESSLY ATTACHED ANS MODULES
Acc-A in Fig. 14(a) is an abstraction of various DNN accel-
erators such as GPUs [27], TPUs [45], NVDLA [46] CIMs
[15], [16] etc. Acc-A serves as baseline in the discussion of
this section. Weights and activations are loaded from DRAM
to the on-chip weight buffer(W_Buffer) and activation buffer
(Acti_Buffer), respectively. Next, the calculations are car-
ried out in MAC array based on vector multiplication data
path, of which the results need to be processed by spe-
cial function units (SFU) such as ReLU, Pooling, BN, etc.

VOLUME 11, 2023 25423



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 15. (a) ANS_C, (b) memory mapping of compressed activations
and (c) ANS_D.

And the final output activations are stored in off-chip DRAM.
Accelerators in this section are all designed with weight sta-
tionary dataflow, which makes activations, the most memory-
accessed data, full utilization of ANS benefits [9].

On the base of Acc-A, we suggest the way of Acc-B,
in which the ANSmodules are seamlessly attached at the chip
interface, including ANS _C and ANS _D. ANS _C works
before data is moved into DRAM.ANS _Dworks after data is
transferred into the chip. Acc-B neither changes the data path
and data flow of Acc-A, nor disturb the internal structure of
Acc-A, which is beneficial to seamlessly apply ANSmodules
into various accelerators.

Fig. 15 shows a hardware implementation of ANS_C and
ANS_D. The signed FXP8 activation values are entered into
ANS_C in the order of SB, and there are four paths to process
these values. P1 and P2 search the maximum and minimum
values in SB respectively, and then carry out subtraction. The
results are compared with the Th to determine whether SB
is similar, and the index is determined by MUX2, which is
a multiplexer. When SB is DSSB, activation values on P4
are not compressed. When SB is SSB, data on path P3 will
be added first and then divided, which is replaced by a shift
operation. In addition, the intermediate results produced for
2×2 SB, includingADD,MAX andMIN, enable to be reused
as SB is 3 × 3, meaning that one 3 × 3 SB ANS_C can be
programmed to be two 2 × 2 SB ANS_C.

The memory mapping format of activations after com-
pression is shown in Fig. 15(b). The bit width of index
is consistent with the bit width of one value, indicating
the number of SB compressed in a period. For FXP8 data,
a period can achieve 8 bits of index, that is, 8 SBs are
compressed.

FIGURE 16. Compression ratio & top-5 accuracy for ResNet18 VS. Th,
including FP32, FXP16, FXP8 @SB size 2 × 2.

ANS_D utilizes indexes to calculate the values length
in a period in the Computing Length Module (CmpLM).
Controller Module (CtrlM) retrieves values for one period
according to the calculated data length. Finally, values are
decompressed with the scatter operation.

B. DEEPLY COUPLED ANS MODULES
Different from Acc-B, Acc-C in Fig. 14(c) has ANS modules
deeply coupled inside Acc-A with changed data path in the
MAC array, which means directly processing the compressed
format of activations and indexes. Thus, Acti_Buffer is used
to store the compressed data, no need to utilize ANS_D to
decompress. This way can harvest the benefits of multipli-
cation reduction due to ANS, and thus significantly reduces
computational energy consumption.

Take 2 × 2 SB as an example, we propose the data path
design of MAC sub-array, as shown in Fig. 14(d). The design
for 3 × 3 SB is just expanded on the basis of 2 × 2 SB.
Additional multiplexers are used for configuration between
SSB and DSSB. DSSB operation corresponds to red arrow
flow, while the order of calculation between weight and
activation is multiplication before addition. All multipliers
and adders have to be used for the operation. SSB opera-
tion corresponds to blue arrow flow. Contrary to DSSB, the
order of calculation for SSB is addition before multiplication.
As depicted in Section IV-E, first add the weights and then
multiply it with the compressed activations. It is notable that
only one multiplier out of four is used due to multiplication
reduction, which decreases energy consumption.

VI. EXPERIMENTS
In this section, the effects of ANS on compression ratio
and accuracy for models are analyzed experimentally and
compared with three mainstream compression methods.
Further, the ANS hardware modules are implemented and the
energy efficiency of the accelerators combined with ANS is
evaluated.

A. ALGORITHM EVALUATION
1) EXPERIMENTAL SETUP
ResNet18 is taken as an example of popular CNN networks
to discuss how ANS is deployed into practical inference and
training. ANS is further applied into five widely used CNNs

25424 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 17. The results of accuracy and compression ratio for training
ResNet18 VS. epochs.

FIGURE 18. ANS compression ratio improvement over RLC5, GRLC
and ZVC.

to evaluate the compression results. Finally, the compari-
son with the three mainstream compression methods, RLC5/
GRLC/ZVC, is carried out. The ImageNet validation dataset
with 50K labelled images is used for inference. The ImageNet
training dataset with 1.34M images is applied to the training
phase.

In our experiments, ANS modules are implemented by
extending PyTorch framework, which can also be imple-
mented by other popular frameworks, such as TensorFlow.
The pre-training models for inference are all from the
PyTorch website [48].

2) APPLIED TO INFERENCE WITH FXP QUANTIZATION
We linearly quantize the ResNet18 pre-training parameters
and activations into FXP16 and FXP8, which is a usual
strategy for inference [8], [18]. And the experimental results
of quantized networks utilizing ANS are shown in Fig. 16.
The accuracy of quantified FXP16 ResNet18 remains same
compared with that of unquantified FP32 network, while that
of the FXP8 decrease slightly. Set a 1% drop of accuracy
as unacceptable, then the accuracy of the network quantized
FXP8 decreases 0.384% at the worst case of Th 0.5, which
is lower slightly than that of the unquantified network. The
quantized and unquantified networks have same compression
ratio, which increases linearly with the Th. There is still a

FIGURE 19. Indexes required by the four compression methods
(normalized to ANS), and the ratio of index to ZVs of activation in the five
network.

TABLE 2. Final Th learned from five networks.

compression ratio of 0.168 at Th 0, thanks to some SSB with
total 0 values.

3) APPLIED TO TRAINING
There are three general scenarios as training and deploying a
model with or without ANS:

TAIA (Training with ANS and Inference with ANS): ANS
is applied in both training and inference. This means that the
inference accelerator includes real-time compression mod-
ules of ANS.

TAINA (Training with ANS and Inference with No ANS):
ANS is applied in training, but not in inference. In this
scenario, there is no ANS modules in the inference terminal.

TNAINA (Training with No ANS and Inference with No
ANS): This is the uncompressed scenario as a baseline for
comparison.

We utilize ANS in activations of the layer that requires
training parameters, including CA and BA. The works in [20]
can realize BA by recalculating in the backward propagation,
so as to reduce activations storage, which is orthogonal to
ANS, and is not considered in our experiment. The ResNet18
training results with ImageNet training dataset are shown in
Fig. 17.Without increasing the number of iterations, ANS can
only reduce the accuracy of ResNet18 by 0.286% in TAIA
scenario and by 0.892% in TAINA scenario. In addition,
the compression ratio with ANS has little fluctuation in the
whole training period, and the GM of compression ratio
is 49.4%, which proves once again that the Th learned by
infinitesimal samples enables to achieve reliable compression
ratio.

VOLUME 11, 2023 25425



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

TABLE 3. Specification and unit energy consumption of each modules of
the accelerator.

TABLE 4. Hardware simulation results of ANS_C and ANS_D.

4) DEPLOYMENTS AND COMPARISON OF
COMPRESSION RESULTS
Five networks, including AlexNet, Vgg16, GoogleNet,
ResNet18 and MobileNet_v2, which cover a wide range of
classic and modern CNNs with different parameter sizes,
are selected as the benchmark to evaluate the ANS effects.
Table 2 shows the Th of ANS for five networks when the Top1
and Top5 accuracy decreases by less than 1%. We compare
compression ratio of ANS with three mainstream compres-
sion methods, including RLC5, GRLC, and ZVC.

Fig. 18 shows the compression ratio improvement of
ANS over three compression methods. ANS achieves the
highest compression ratio improvement of 5.4x over RLC5,
2.5 x over GRLC and 2.2x over ZVC for benchmarks
MobileNet_v2, and achieves the GM of compression ratio
improvement of 3.2x over RLC5, 1.9x over GRLC and 1.7x
over ZVC. ANS shows high compression capability, because
not only it can compress ZVs and locally similar NZVs, but
also its indexes have low overhead. As shown in Fig. 19,
indexes for ANS are reduced by 8x-13x compared with RLC,
5x compared with GRLC, and 3x compared with ZVC.

B. HARDWARE EVALUATION
1) EXPERIMENTAL SETUP
In this section, we evaluate the overburden of ANS realiza-
tion, as well as impact on performance and energy efficiency.

As analyzed in Section V-A, Acc-B does not disturb the
internal structure of accelerator at all, just seamlessly attach
ANS_C and ANS_D at the interface. In order to evaluate the
over-burden from the attached modules, ANS_C and ANS_D
are implemented by using Verilog RTL code and synthesized
in 28nm HKMG technology node with Design Compiler and
IC compiler tool chain of Synopsys. Based on this, we can

TABLE 5. DOP of ANS modules.

obtain the area, power and delay of ANS_C and ANS_D
within one single ANS module.

In practical DNN accelerators, MAC arrays would oper-
ate in parallel and output a batch of values in one cycle.
Correspondingly, multiple ANS modules, instead of single
one, should be combined into the Acc-B in order to process
these values in parallel in the next cycle. Here the number of
ANS modules is defined as the degree of parallelism (DOP).
In order to evaluate the area/power over-burden of multiple
ANS modules in real accelerators, we use AlexNet layer
1 as benchmark and quantify the ANS DOP in three com-
mercial accelerators, Ascend310 [50], FSD HW3 [51] and
TPU v1 [18], next the area/power of multiple ANS modules
could be achieved.

We set up a cycle-level simulation platform based on
NVDLA [46], an open source accelerator, for the compar-
ison of energy efficiency among Acc-A, Acc-B and Acc-C
(detailed in Section V).

t is obvious from Section V-A that the difference of energy
consumption between Acc_A and Acc_B come from the
attached ANS_C and ANS_D modules, and is independent
of the accelerator type and structure. So the trend based on
our NVDLA platform would be consistent with other type of
accelerator.

Next, according to Section V-B, the difference of energy
consumption between Acc_B and Acc_C comes from
Acti_Buffer andMAC array, which is independent of all other
modules such asW_Buffer, SFU etc. Thus, only if Acc_B and
Acc_C are realized based on the same accelerator structure,
that means all same except Acti_Buffer and MAC array,
the energy difference due to ANS can be achieved through
comparison between Acc_B and Acc_C. Thus, the trends
based on our NVDLA platform are representative.

In our experiment, the energy consumption of each module
(Energy_Module) can be obtained as:

Energy_Module = Unit_Energy × Num_Operations (5)

where Unit Energy is listed in the last column of Table 3, and
Num_Operations refers to the number of MAC computations
or memory data accesses, which can be obtained through our
simulation platform when running the benchmark network.

25426 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 20. The timing of accelerator (a) w/o ANS and (b) embedded
transparently with ANS modules.

Table 3 lists the detail information of each module for
energy evaluation in our experiment. 512 KB Acti_Buffer
size is selected to store the activation. Correspondingly, the
array consisting of 4096 MACs is used to realize convolution
operations of different tile sizes. Batch size 1 and 64 are
selected, which represents two different scenarios. For batch
size of 1, 512KB of Acti_Buffer can store almost activations
of all layers. For batch size of 64, on-chip memory is far less
than data requirement.

2) OVERBURDEN OF ANS MODULES
The area, power and latency are shown in Table 4. A com-
bination of ANS_C and ANS_D (configured for one 3 × 3
SB or two 2 × 2 SBs) has an area of 1926 um2 and a power
consumption of 0.72 mW. The critical paths of ANS_C are
P1 and P2 in Fig. 15(a), and the path delay is 1.01 ns.

We further evaluate the DOP of ANS modules for
three commercial accelerators, Ascend310, FSD HW3 and
TPU v1. The area, power and MAC number of the three
accelerator chips are listed in Table 5 [18], [50], [51]. Here
the utilization of MAC array is assumed to be 100%.

The number of cycles is equal to multiplications divided
by the number of MAC. AlexNet layer 1 has a total
of 105 M multiplications. Thus, three accelerators respec-
tively require 6409, 5697 and 1602 cycles to compute these
multiplications when MACs are fully utilized, as shown
in Table 5.
AlexNet layer 1 has 283 K output activation values. If these

values are output in each computing cycle on average, that
means output for each cycle is equal to activations divided
by the cycles. Thus, the three accelerators will respectively
output 43, 51 and 181 activation values in each cycle, which
is also the data that the ANS modules needs to compress in
parallel in one cycle.

For 2 × 2 SB, the three accelerators will require 11(43/4),
13(51/4), and 46(181/4) ANS modules of DOP respectively.
For 3 × 3 SB, the DOP are 5(43/9), 6(51/9), 21(181/9).
Then the area/power of multiple ANS modules are equal
to the product of DOP and area/power of one single ANS.
Our calculations indicate that the area/power overburden of

FIGURE 21. Energy breakdown of the three accelerators at batch size 1.

FIGURE 22. Energy breakdown of the three accelerators at batch size 64.

multiple ANS modules in the three accelerators are all less
than 0.01%, which could be ignorable in comparison with the
total consumption of accelerators.

3) IMPACT OF ANS ON PERFORMANCE
Our evaluation shows that the timing delay could be elim-
inated through transparent implementation strategy of ANS
modules. The timing schematic is shown in Fig. 20.
For original situation without ANS (see Fig. 20(a)), a Conv

for a layer starts from reading weights (RW) and input image
(RI) or activations (RA) since ‘‘t1’’. Next, convolution com-
putation (Comp1) by PEs starts since ‘‘t2’’. At ‘‘t3’’, the
output activations begin to be written back (WA), which lasts
until ‘‘t4’’. Then the convolution for next layer is carried out
by repeating above operations.

For situation with ANS (see Fig. 20(b)), the ANS_C starts
to work at ‘‘t3’’ that the output activations for first SSB
judgement come out, and then the compressed activations
begin to write back (WAC1). Due to the delay of WAC1
after ANS_C, a tiny time burden is generated. RAC1, the
time span for reading the compressed activations of the next
layer, is shorter than RA1 thanks to the smaller activation
data size. This can compensate the time burdens generated
by ANS_C and ANS_D. So, ANS modules could cause
no additional time delay under reasonable orchestration of
execution flow.

VOLUME 11, 2023 25427



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

FIGURE 23. ANS achieves high precision and compression ratio by
preserving feature regions and compressing non-feature regions. And a
comparison of ANS with SCP, BGP and CGP.

4) ENERGY EFFICIENCY
For five wide-used networks, the energy consumption of
Acc-A, Acc-B and Acc-C (introduced in Section V), includ-
ing off-chip memory, on-chip memory and the computing
unit, is statistically analyzed.

The results at batch size of 1 is shown in Fig. 21. The
Acti_Buffer can store activations for most of layers in five
networks, and activations are only read from DRAM once
and then reused repeatedly on the chip. Therefore, SRA
consumes most of the energy for on-chip storage, while DRW
consumes most of the energy for off-chip storage. The GM of
energy consumption of Acc-B and Acc-C is reduced by 9%
and 37% respectively in comparison to Acc-A. The energy
consumption advantage of the Acc-C over Acc-B comes from
the amount reduction of Acti_Buffer read and multiplication,
which corresponds to consumption parts of SRA and MAC.
For the network, the greater the proportion of activations in
the total (see Fig. 1 for details), the more energy consumption
reduces from Acc-A to Acc-C, because ANS compresses
more data and transfers less data. Taking MobileNet_v2 and
AlexNet for examples, the former activations account for
81%, thereby reducing energy consumption by 54%, while
the latter activations account for only 3% of the total data,
reducing energy consumption by 11%.

Fig. 22 shows the results at the batch size of 64. Since
the 512 KB Acti_Buffer cannot store the 64x activations,
the activations have to be read more than once from off-
chip DRAM. Therefore, DRA dominates the energy con-
sumption of each network. So the benefits from the reduction
of data size by ANS are significantly demonstrated. As a
result, the GM of energy consumption of Acc-B is reduced
by 38% in comparison to Acc-A due to DRA reduction.
Similar to batch size of 1, the energy consumption reduction
of Acc-C mainly depends on MAC and SRA, and the final
GM of energy consumption is reduced by 56% in comparison
to Acc-A.

VII. DISCUSSION
ANS achieves high compression ratio with less accuracy loss,
which can be attributed to two root causes: 1st one, NZVs

dominate the activations, while there are large percentage
of SSB in region of NZVs. ANS handles both regions of
NZVs and ZVs, and almost all similar data are compressed.
That is why ANS has high compression ratio. This is very
different from SCP, which can only handle the ZVs. 2nd
one, features only exist within dis-similar NZVs. That is
because there is numerical jump at location of features, such
as edge/textures/pose, which is convoluted by filter and trans-
ferred among activations layer by layer [52]. ANS retains
all values in DSSB, the numerical jump of region. In other
words, ANS doesn’t sacrifice any tiny feature values while
ignore all non-feature values. That is why ANS has both
less accuracy and high compression ratio. This is very dif-
ferent from BGP/CGP, in which some feature values are cut
off indiscriminately, leading to accuracy loss and additional
retrain penalty. Fig. 23 evidently depicts the above two points.

VIII. CONCLUSION
We propose ANS compressing method, which can signifi-
cantly reduce data size of activation/image, and energy con-
sumption. ANS can be combined with low precision data
in inference without accuracy loss. We train ResNet18 with
ANS in two TAIA and TAINA scenarios, and the accuracy
loss was less than 0.286% and 0.892%, respectively, while
achieving a compression ratio of 49.4%. The amount of
multiplication reduces greatly as the ANS are deeply coupled
in accelerator. Comparing to three state-of-art compressed
methods, ANS provides compression ratio improvement of
3.2x over RLC5, 1.9x over GRLC and 1.7x over ZVC.We fur-
ther evaluated the energy consumption of ANS combined into
the accelerator system. (a) For accelerator with ANSmodules
attached at the interface of the chip, energy consumption is
reduced by 38% averagely among five popular models at
batch size 64, which comes from decrease of data size. (b) For
accelerator with ANS modules deeply coupled with changed
data-pathMAC array, 56% reduction averagely is achieved in
energy consumption, of which the additional benefits come
from the decrease of multiplications.

REFERENCES
[1] N. P. Jouppi, D. H.Yoon,M.Ashcraft,M.Gottscho, T. B. Jablin, G. Kurian,

J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young,
Z. Zhou, and D. Patterson, ‘‘Ten lessons from three generations shaped
Google’s TPUv4i: Industrial product,’’ in Proc. ACM/IEEE 48th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 1–14.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[4] M. Paulius, ‘‘Fundamentals of scaling out DL training,’’ in Proc. IEEE Hot
Chips 32 Symp., Aug. 2020, pp. 1–53.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[6] K.-H.-L. Loh, ‘‘Fertilizing AIoT from roots to leaves,’’ in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 15–21.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

25428 VOLUME 11, 2023



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

[8] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[9] V. Rangharajan, ‘‘Basic design approaches to accelerating deep neural
networks,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2021, pp. 1–93.

[10] N. Samuel, ‘‘Architecting chiplet solutions for high volume products,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021,
pp. 1–42.

[11] T.-Y.-J. Chang, Y.-H. Chen, W.-M. Chan, H. Cheng, P.-S. Wang, Y. Lin,
H. Fujiwara, R. Lee, H.-J. Liao, P.-W. Wang, G. Yeap, and Q. Li, ‘‘A 5-nm
135-mb SRAM in EUV and high-mobility channel FinFET technology
with metal coupling and charge-sharing write-assist circuitry schemes for
high-density and low-VMIN applications,’’ IEEE J. Solid-State Circuits,
vol. 56, no. 1, pp. 179–187, Jan. 2021.

[12] S. Lee, S.-H. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim,
H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and N. S. Kim,
‘‘Hardware architecture and software stack for PIM based on commercial
DRAM technology: Industrial product,’’ in Proc. ACM/IEEE 48th Annu.
Int. Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 43–56.

[13] S. Lee et al., ‘‘A 1y nm 1.25 V 8 Gb, 16 Gb/s/pin GDDR6-based
accelerator-in-memory supporting 1TFLOPS MAC operation and various
activation functions for deep-learning applications,’’ in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 1–3.

[14] G. Van der Plas and E. Beyne, ‘‘Design and technology solutions for 3D
integrated high performance systems,’’ in Proc. IEEE Symp. VLSI Circuits,
Jun. 2021, pp. 1–2.

[15] R.-L. Bruce, ‘‘Designing materials systems and algorithms for analog
computing,’’ in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1–40.

[16] H. Kim, T. Yoo, T. T.-H. Kim, and B. Kim, ‘‘Colonnade: A reconfig-
urable SRAM-based digital bit-serial compute-in-memory macro for pro-
cessing neural networks,’’ IEEE J. Solid-State Circuits, vol. 56, no. 7,
pp. 2221–2233, Jul. 2021.

[17] H. Fujiwara, H. Mori, W.-C. Zhao, M.-C. Chuang, R. Naous,
C.-K. Chuang, T. Hashizume, D. Sun, C.-F. Lee, K. Akarvardar, S. Adham,
T.-L. Chou, M. E. Sinangil, Y. Wang, Y.-D. Chih, Y.-H. Chen, H.-J. Liao,
and T.-Y.-J. Chang, ‘‘A 5-nm 254-TOPS/W 221-TOPS/mm2 fully-digital
computing-in-memory macro supporting wide-range dynamic-voltage-
frequency scaling and simultaneous MAC and write operations,’’ in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022,
pp. 1–3.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, and A. Borchers, ‘‘In-datacenter perfor-
mance analysis of a tensor processing unit,’’ in Proc. ACM/IEEE 44th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 1–12.

[19] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica, ‘‘Checkmate: Breaking the memory wall
with optimal tensor rematerialization,’’ Proc. Mach. Learn. Syst., vol. 2,
pp. 497–511, Mar. 2020.

[20] A. Chakrabarti and B. Moseley, ‘‘Backprop with approximate activations
for memory-efficient network training,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 2429–2438.

[21] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, ‘‘Explor-
ing the regularity of sparse structure in convolutional neural networks,’’
2017, arXiv:1705.08922.

[22] J.-H. Luo and J. Wu, ‘‘An entropy-based pruning method for CNN com-
pression,’’ 2017, arXiv:1706.05791.

[23] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,’’
2016, arXiv:1607.03250.

[24] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W. Keckler,
‘‘Compressing DMA engine: Leveraging activation sparsity for training
deep neural networks,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2018, pp. 78–91.

[25] Y. Park, Y. Kang, S. Kim, E. Kwon, and S. Kang, ‘‘GRLC: Grid-based
run-length compression for energy-efficient CNN accelerator,’’ in Proc.
ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPED), Aug. 2020,
pp. 91–96.

[26] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, ‘‘Gist: Effi-
cient data encoding for deep neural network training,’’ in Proc. ACM/IEEE
45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018, pp. 776–789.

[27] J. Choquette and W. Gandhi, ‘‘NVIDIA A100 GPU: Performance & inno-
vation for GPU computing,’’ in Proc. IEEE Hot Chips 32 Symp. (HCS),
Aug. 2020, pp. 1–43.

[28] D. T. Vooturi, D. Mudigere, and S. Avancha, ‘‘Hierarchical block sparse
neural networks,’’ 2018, arXiv:1808.03420.

[29] S. Chou, F. Kjolstad, and S. Amarasinghe, ‘‘Format abstraction for sparse
tensor algebra compilers,’’ Proc. ACM Program. Lang., vol. 2, pp. 1–30,
Oct. 2018.

[30] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 243–254, 2016.

[31] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and
H. Esmaeilzadeh, ‘‘SnaPEA: Predictive early activation for reducing
computation in deep convolutional neural networks,’’ in Proc. ACM/IEEE
45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018, pp. 662–673.

[32] A. Parashar,M. Rhu, A.Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, ‘‘SCNN: An accelerator for
compressed-sparse convolutional neural networks,’’ SIGARCH Comput.
Archit. News, vol. 45, no. 2, pp. 27–40, 2017.

[33] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[34] A. R. Alameldeen and D. A.Wood, ‘‘Adaptive cache compression for high-
performance processors,’’ in Proc. 31st Annu. Int. Symp. Comput. Archit.
(ISCA), 2004, pp. 212–223.

[35] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang, ‘‘DRQ:
Dynamic region-based quantization for deep neural network accelera-
tion,’’ in Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA),
May 2020, pp. 1010–1021.

[36] K. Huang, S. Chen, B. Li, L. Claesen, H. Yao, J. Chen, X. Jiang, Z. Liu,
and D. Xiong, ‘‘Structured precision skipping: Accelerating convolutional
neural networks with budget-aware dynamic precision selection,’’ J. Syst.
Archit., vol. 124, Mar. 2022, Art. no. 102403.

[37] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, ‘‘Doppelgänger:
A cache for approximate computing,’’ in Proc. ACM/IEEE 49th Int. Symp.
Microarchitecture (MICRO), Dec. 2015, pp. 50–61.

[38] A. Fuchs andD.Wentzlaff, ‘‘Scaling datacenter accelerators with compute-
reuse architectures,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 353–366.

[39] M. Riera, J.-M. Arnau, and A. González, ‘‘Computation reuse in DNNs
by exploiting input similarity,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2018, pp. 57–68.

[40] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, ‘‘EVA2:
Exploiting temporal redundancy in live computer vision,’’ in Proc.
ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018,
pp. 533–546.

[41] Z. Yuan, Y. Yang, J. Yue, R. Liu, X. Feng, Z. Lin, X. Wu, X. Li, H. Yang,
and Y. Liu, ‘‘A 65 nm 24.7 µJ/frame 12.3 mW activation-similarity-aware
convolutional neural network video processor using hybrid precision, inter-
frame data reuse and mixed-bit-width difference-frame data codec,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020,
pp. 232–234.

[42] N. M. Cicek, L. Ning, O. Ozturk, and X. Shen, ‘‘General reuse-centric
CNN accelerator,’’ IEEE Trans. Comput., vol. 71, no. 4, pp. 880–891,
Apr. 2022.

[43] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[45] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, ‘‘A domain-specific supercomputer for training deep
neural networks,’’ Commun. ACM, vol. 63, no. 7, pp. 67–78, Jun. 2020.

[46] (2017). NVDLA Deep Learning Accelerator. [Online]. Available:
http://nvdla.org/

[47] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. S. Emer, C. T. Gray, S. W. Keckler, and B. Khailany,
‘‘A 0.11 pJ/op, 0.32–128 TOPS, scalable multi-chip-module-based deep
neural network accelerator with ground-reference signaling in 16 nm,’’ in
Proc. Symp. VLSI Circuits, Jun. 2019, pp. C300–C301.

VOLUME 11, 2023 25429



W. Wang et al.: ANS at High Accuracy for Significant Deduction of CNN Storage and Computation

[48] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[49] A. Stillmaker and B. Baas, ‘‘Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,’’ Integration, vol. 58,
pp. 74–81, Jun. 2017.

[50] H. Liao, J. Tu, J. Xia, and X. Zhou, ‘‘DaVinci: A scalable architecture for
neural network computing,’’ in Proc. IEEE Hot Chips 31 Symp. (HCS),
Aug. 2019, pp. 1–44.

[51] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes, ‘‘Computer
and redundancy solution for the full self-driving computer,’’ in Proc. IEEE
Hot Chips 31 Symp. (HCS), Aug. 2019, pp. 1–22.

[52] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818–833.

WANG WANG (Graduate Student Member,
IEEE) received the B.S. degree from the School
of Microelectronics, Xidian University, Xi’an,
China, in 2014, and the M.S. degree from the
ASIC and System State Key Laboratory, School
of Microelectronics, Fudan University, Shanghai,
China, in 2018, where he is currently pursuing
the Ph.D. degree. His current research interests
include deep-learning accelerator architecture and
system design.

XIN ZHONG received the M.S. degree in mate-
rial engineering from Wuhan University of Tech-
nology, in 2018. He is currently pursuing the
Ph.D. degree with the ASIC and System State Key
Laboratory, School of Microelectronics, Fudan
University, Shanghai, China. His current research
interests include non-volatile memories, big data,
machine learning, and FPGA design.

MANNI LI received the B.S. degree from the
School of Microelectronics, Xidian University,
Xi’an, China, in 2016. She is currently pursu-
ing the M.S. degree with the ASIC and System
State Key Laboratory, School of Microelectron-
ics, Fudan University, Shanghai, China, in 2020.
Her current research interests include AI memory
architecture and DL accelerator design.

ZIXU LI received the B.S. degree from the School
of Microelectronics, Xidian University, Xi’an,
China, in 2017. She is currently pursuing the Ph.D.
degree with the ASIC and System State Key Lab-
oratory, School of Microelectronics, Fudan Uni-
versity, Shanghai, China, in 2021. Her research
interest includes near-memory-processing-based
DRAM systems.

YINYIN LIN (Member, IEEE) received the M.S.
degree in microelectronics and solid state electron-
ics fromXi’dian University, in 1995, and the Ph.D.
degree in microelectronics and solid state elec-
tronics from Xi’an Jiaotong University, in 1998.
She has been with Fudan University, since 1999,
where she is currently a Professor with the School
of Microelectronics. Over the past years, she has
contributed over 90 papers in journals and con-
ferences. She holds over 50 patents. Her recent

research interests include the co-optimization of memory architecture and
chip design for AI and low-power systems under PVTA variation.

25430 VOLUME 11, 2023


