
Received 4 February 2023, accepted 3 March 2023, date of publication 13 March 2023, date of current version 23 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3256533

Heterogeneous Ensemble Model to Optimize
Software Effort Estimation Accuracy
SYED SARMAD ALI 1,2, JIAN REN 1, KUI ZHANG 1, JI WU 1, AND CHAO LIU1
1State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2Department of Computer Science, Mohammad Ali Jinnah University, Karachi 75400, Pakistan

Corresponding author: Jian Ren (renjian@buaa.edu.cn)

This work was supported in part by the State Key Laboratory of Software Development Environment.

ABSTRACT The software industry has experienced rapid expansion in recent years, with software devel-
opment now essential to the success of many multinational corporations. The demand for complex software
systems has dramatically increased, effective software development has become crucial, given the limitations
of resources such asmoney, time, and labor. Cost and effort calculations significantly impact the development
process and client needs, and project failure is often caused by errors in job estimating. Underestimating
a project’s cost and effort can have severe repercussions, such as exceeding the project’s budget. Project
overruns, on the other hand, can also have a detrimental impact on software projects’ successful completion.
Researchers and experts in the software industry are continually exploring ways to keep management and
development productivity at high levels. However, standalone estimating models have revealed inadequacies
over the last decade, and they have not produced any noteworthy research results. Recent literature suggests
that opting for ensemble models would yield better results than standalone models. We have proposed a
heterogeneous ensemble effort estimation (EEE) model in this research. Our proposed model comprises
standalone estimating models such as Use Case Point, Expert Judgment (EJ), and Artificial Neural Network
(ANN). We combined the effort of each unique base model using linear combination rule. To validate our
model’s effectiveness, we applied it to the benchmark dataset, the International Software Benchmarking
Standards Group (ISBSG), using three different variations to avoid biases. We further applied the trained
models to industry use cases for cross-validation. Our study’s findings demonstrated that, in comparison to
stand-alone estimate strategies, the ensemble technique produced better estimation results. Finally, our study
proposes a heterogeneous ensemble effort estimation model that outperforms standalone models in terms of
accuracy. This model has the potential to aid in effective software development, particularly in project cost
and effort estimation.

INDEX TERMS Software effort estimation, ensemble effort estimation (EEE), standalone estimation, use
case point (UCP), machine learning algorithms, deep learning, expert judgement.

I. INTRODUCTION
Over the past decade, the software industry has under-
gone significant development, and software development has
become essential to the success of many multinational cor-
porations [1]. The development of software that operates
effectively within the constraints of cost, effort, and time

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

has become a crucial factor. Both software practitioners and
academics are exploring strategies to maintain high levels of
productivity in both development and management. During
the development of a new software project, effectively man-
aging issues related to cost, time, and labor is critical. How-
ever, the cost of software development has risen considerably,
presenting significant challenges for businesses. Addition-
ally, accurately estimating project effort and time has become
increasingly important. It is not uncommon for software

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 27759

https://orcid.org/0000-0002-1036-2924
https://orcid.org/0000-0001-7924-9586
https://orcid.org/0000-0002-8784-2184
https://orcid.org/0000-0002-3937-2368
https://orcid.org/0000-0002-1939-4842

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

development to exceed predicted costs and timelines [2], [3].
According to Stanish Group International, around 60% of
IT projects were delayed, and 56% of them exceeded the
budget [4], [5]. Software effort estimation (SEE), a method-
ology for determining the amount of labor required to con-
struct a software system, is critical to the success of software
project management and related activities [6], [7], [8], [9].
Several factors, such as project duration, cost, and necessary
manpower, need to be considered when estimating the effort
required for a software project.

Effort appraisal is a critical aspect of software project
management and involves several important considerations,
including project duration, cost, and necessarymanpower [3].
According to Wen et al. [10], the effort required for a project
is often measured in man-months or man-hours. Predicting
effort is the primary function of software cost estimation,
which is why the research community often refers to cost esti-
mation as effort estimation [11]. Developing software with
a precise understanding of the required effort is crucial yet
challenging. Therefore, both academics and practitioners are
actively researching software development effort estimation
and duration, as estimating software efforts and planning for
resources are necessary for creating a trustworthy software
system [12], [13]. In a 2017 assessment conducted by the
Project Management Institute (PMI), it was found that while
69% of software projects met their initial goals and business
priorities, a significant number of projects faced challenges.
Specifically, 43% of projects failed to adhere to their intended
budget, 48% experienced delays, and 32% failed to deliver
altogether. Large effort overruns can lead to dissatisfied cus-
tomers, substandard software, and frustrated software devel-
opers [14].

We have proposed Heterogeneous ensemble model which
is a combination of Use Case Point (UCP), Artificial Neural
Network and Expert Judgement (EJ). In the next section,
we are going to discuss several model which were used in
the literature to predict software effort estimation. However,
our proposed model Heterogeneous ensemble models can be
more effective than single models or homogeneous ensemble
models for software effort estimation for several reasons:

• Diverse set of models: A heterogeneous ensemble model
combines different types of models, such as decision
trees, neural networks, and regression models, to lever-
age the strengths of each model and reduce the weak-
nesses. This can lead to a more accurate and robust
estimation of software effort.

• Improved generalization: A heterogeneous ensemble
model can improve the generalization of software effort
estimation by reducing the impact of bias and variance.
Bias refers to the systematic errors in the model, while
variance refers to the sensitivity of the model to changes
in the training data. A heterogeneous ensemble model
can reduce both bias and variance by combining differ-
ent models that have different strengths and weaknesses.

• Robustness to noise and outliers: A heterogeneous
ensemble model can be more robust to noise and outliers

in the training data because it combines multiple models
that are trained on different subsets of the data. This can
reduce the impact of noisy or outlier data points on the
final prediction.

• Scalability: A heterogeneous ensemble model can be
more scalable than a single model or a homogeneous
ensemble model because it can leverage the strengths of
different types of models and handle different types of
input data.

Overall, a heterogeneous ensemble model can be more
effective than single models or homogeneous ensemble mod-
els for software effort estimation because it combines dif-
ferent types of models to leverage their strengths, reduce
weaknesses, improve generalization, and be more robust to
noise and outliers.

II. LITERATURE REVIEW
Effort estimation, which refers to the prediction of time and
resources needed for software development, has been exten-
sively studied by both practitioners and researchers. Accord-
ing to Leung and Fan [12], the process of evaluating software
effort has evolved to include the cost and resources required
to produce software products. Effort estimation models were
first introduced in the early 1950s [15], and since then,
numerous models have been presented by Boehm [16], [17],
Putnam [18], Albrecht [19], [20], SEER-SEM [21], Rubin
[22], and Yan-Chin and McDevitt [23]. These models aim
to efficiently allocate resources to meet project requirements.
However, none of these estimation models can be recognized
as trustworthy and cannot be used as a standard because
effort estimation is an unsettled and open-ended subject. Cost
estimation models often fail to provide accurate and reliable
projections, possibly due to their inadequacy in the firm’s
environment.

During his research, Heemstra [24] discovered that 30% of
companies do not estimate their budget. Furthermore, among
the total of 598 organizations surveyed, 50% do not keep
track of active projects. Inaccurate estimation has been shown
to cause 80% of businesses to overestimate expenses and
deadlines. The CHAOS research by The Standish Group [4]
suggests that inaccurate effort estimates account for approx-
imately 24% of project failures. In 2015, The Chaos Report
from The Standish Group International revealed that 56% of
IT projects exceeded their budget, while 60%were completed
late. Factors contributing to improper and inaccurate effort
estimation include the use of inexperienced estimators or
premature estimating. However, the accurate estimation of
effort is essential for generating requirements for discussions,
planning, bids, contract monitoring, and control. It also helps
in the more efficient preparation of resources for stakehold-
ers. Over the past three decades, researchers and practitioners
have collaborated to develop cost estimatingmodels and tech-
niques for more accurate effort assessment. A mathematical
construct called a cost estimation model combines formulas
or algorithms for estimating the amount of time and work

27760 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

required to complete a software project. For the last thirty
years, researchers and practitioners have worked together to
develop models and techniques for accurately estimating the
costs of software development efforts. One such model is the
cost estimation model, which is a mathematical construct that
combines formulas or algorithms to estimate the amount of
time and work required to complete a software project.

Software effort estimation is a crucial task for software
project managers, involving the prediction of the time and
resources required to develop a software system. This process
is essential for planning and allocating resources, setting
project timelines, and communicating project progress to
stakeholders. Several approaches to software effort estima-
tion exist, including expert judgment, algorithmic methods,
and machine learning techniques.

Expert judgment involves seeking input from experienced
software developers or project managers who possess knowl-
edge of the specific work being undertaken. This approach
relies on the expertise and knowledge of individuals pro-
viding the estimates, which may be subjective in nature.
Expert judgment has several variations, including the Delphi
Technique, Wide-Delphi Technique, Planning Poker, Work
Breakdown Structure, and Activity-Based Model. Delphi is a
consensus-based approach to effort estimation that involves
a team of professionals, including a software developer,
an estimation expert, and an expert from the application area.
This approach provides an ample communication channel for
the professionals to debate and discuss essential data and
information necessary for their cooperation and internal esti-
mations. The Wide-band Delphi technology was introduced
by the Rand Corporation and was further improved upon
by Barry Boehm and John Farquhar in the 1970s [25]. One
of the primary benefits of this strategy is the one-on-one
interaction between specialists, which facilitates planning,
scheduling, and estimating. The core principles ofWide-band
Delphi are grounded in group-based software cost estimation,
where required effort is computed using the group’s consen-
sus. Planning Poker is another consensus-based estimation
method, similar to Wideband Delphi. This strategy was ini-
tially proposed by Grenning in 2002 [26] and later promoted
by M. Cohn in his book from 2005 [27]. Planning Poker is
often used in agile development due to its alignment with the
people-focused Agile principles.

Algorithmic methods involve the use of a predetermined
set of rules or formulas to calculate estimates based on spe-
cific inputs. These methods can be based on historical data or
best practices in the field. During the 1970s, Lines of Code
(LOC) were considered the foundation for effort estimation,
and numerous estimation models were developed based on
LOC on various datasets [28]. The Putnam SLIM is one of the
earliest algorithmic cost models and is commonly regarded
as a macro estimate model based on the Norden/Rayleigh
function [18]. Functional Point Analysis (FPA) was estab-
lished to determine the time and money spent developing
new software applications as well as maintaining those that

already exist [19], [20]. Statistical modeling involves using
statistical techniques to analyze data from past projects to
develop models that can be used to predict future effort.
This approach may be more accurate than expert judgment
or algorithmic methods, but it requires a significant amount
of data and may be more complex to implement. The use case
point model was first proposed by Karner in 1993 and used to
calculate the software development effort with the aid of the
use case diagram. An early effort estimate based on use cases
can be developed if one has a good understanding of the issue
domain, system size, and architecture [29].

Since the 1990s, many researchers have suggested using
machine learning (ML) based Software Development Effort
Estimation (SDEE) models to improve estimation accuracy.
Wen et al. [10] conducted a study that found that eight differ-
ent types ofML techniques, including Case-Based Reasoning
(CBR), Artificial Neural Networks (ANN), Decision Trees
(DT), Bayesian Networks (BN), Support Vector Regression
(SVR), Genetic Algorithms (GA), Genetic Programming
(GP), andAssociation Rules (AR), have been used to estimate
software development effort. Among these algorithms, CBR
and ANN were found to be the most dominant in estimating
effort for software projects. The aforementioned ML tech-
niques were often used singly or in combination to forecast
software development effort. To build a combination form,
ML techniques can be mixed with non-ML techniques or two
or more ML approaches. Fuzzy logic and general algebra
are two popular non-ML methods that are commonly used
with other ML methods [10]. Regardless of the approach
taken, it is important to carefully consider all relevant factors
when estimating software effort, including the complexity of
the project, the skills and experience of the team, and the
resources available. It is also important to regularly review
and update estimates as the project progresses, as changes
in project scope or other factors may affect the overall effort
required. A comprehensive review of literature on software
effort estimation revealed a plethora of models, frameworks,
and approaches put forth by researchers and practitioners
to achieve high prediction accuracy. However, no single
approach has been able to precisely calculate software effort.
In their analysis of 304 studies, Jorgensen and Shepard found
that the regression method was the most commonly used
(49%) approach for assessing effort [6]. Recently, machine
learning (ML) methods such as artificial neural networks
(ANN) and support vector regression (SVR) have gained
attention. Among these, CBR (37%) and ANN (26%) are the
most frequently applied ML techniques [10]. When evaluat-
ing software effort, ML techniques tend to offer greater accu-
racy compared to non-ML methods (with means of Pred (25)
= 46% and mean of MMRE for CBR, compared to mean of
Pred (25) = 64% and mean of MMRE = 37% for ANN). Idri
et al. conducted a comprehensive analysis of analogy-based
software effort estimation techniques and found that the mean
prediction accuracy values ofMMRE,MdMRE, and Pred(25)
were 49.8%, 29.7%, and 51.23%, respectively. Wu et al. [30]

VOLUME 11, 2023 27761

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

introduced a hybrid technique that fuses CBR and PSO for
estimating software effort, incorporating Euclidean distance,
Manhattan distance, and grey relational grade, which are
commonly employed CBR techniques in SEE, with optimal
weights obtained using the PSO method.

III. PROBLEM STATEMENT
Software practitioners and the academic community have
been concerned about accurately assessing efforts for soft-
ware projects. Since the software projects complexity have
been increased over the years, it is becoming increasingly
difficult to determine the effort of these enormous software
projects, as they also required huge investments for many
industries [31]. The research community is currently being
compelled to adopt new approaches to optimize the accu-
racy in predicting the effort due to the significant innovation
and expansion in the usage of new techniques and devel-
opment frameworks/methodologies in the field of software
engineering. Despite the significant efforts made to offer
new, distinct models and frameworks, there is still much that
can be done to improve the accuracy of effort estimation.
The inaccuracy of the software industry’s estimates of the
effort required to create software applications has previously
been highlighted by researchers [31], [32]. Unquestionably,
substantial over- or under-estimations endanger a software
project in several ways. The quality and maintainability of
software projects could suffer from an underestimation of
tasks (such as testing and documentation) that were to be
abandoned or more staff were to be hired [33]. This research
study’s major goal is to propose an effort estimating ensemble
model to increase the precision of software development
effort prediction. To maximize effort accuracy, the suggested
heterogeneous model has been incorporated with Use Case
Points (UCP), Artificial Neural Network (ANN), and Expert
Judgment (EJ) approaches. It is analyzed using case stud-
ies from software development companies, industry experts,
archived data on estimations, and evaluation indicators to
use a quantitative methodology. The software development
companies and practitioners will utilize the proposed model
created after this project as a tool to estimate the effort needed
to develop software projects.

IV. PROPOSED SOLUTION
To obtain high-effort estimation accuracy, professionals and
academics have offered a variety of estimating approaches
based on the before stated strategies. In the beginning,
researchers used various separate estimation techniques to
gauge the project’s first effort. Although there is evidence in
the literature to the contrary, according to Wen et al. [10],
[34], no standalone/solo estimating model has presented
an accurate estimation. Recent proposals for new ensem-
ble estimation arrangements include Kocaguneli et al. [35]
and Minku and Yao [36]. The ensemble method in software
development effort estimating was developed to address the
shortcomings of standalone estimation strategies (SDEE).
To create an ensemble estimation model(EEE), approaches

combine various classical estimation models. To anticipate
the software development effort of a new project using a
combination rule, such as mean, median, and Inverse Rank
Weighted Mean-IRWM, an ensemble effort estimating tech-
nique combines more than one standalone model [37]. Each
base model’s estimation is integrated to create an ensem-
ble’s estimation. To increase the efficiency and accuracy of
software development projects, a heterogeneous ensemble
model is suggested in this article that combines Artificial
Neural Networks (ANN), Use Case Points (UCP), and Expert
Judgment (EJ).

A. RESEARCH QUESTIONS
This study’s principal research question is: ‘‘How to
improve/optimize software effort estimation accuracy’’.

• RQ-1 Does a heterogeneous ensemble effort estimation
model using Use Case Points (UCP), Artificial Neural
Network (ANN) and Expert Judgement (EJ) produced
better results as compared to Standalone ML models?

• RQ-2 Does Heterogeneous Ensemble Model produce
better results as compared to Machine Learning Ensem-
ble model?

• RQ-3 Does the variation in Feature selection of the
data-set have any impact on result accuracy or compari-
son

V. METHODOLOGY
In this section, we are going to present the methodology used
for the integration of the classical standalone model to form
a heterogeneous ensemble model. We have combined ANN,
UCP, and EJ to form an ensemble model.

A novel data mining approach based on ensembles or com-
binations of methods is now being used to address prediction
issues. Studies [10], [38], and [35], on data mining show
that ensemble methods outperform single methods in terms
of accuracy. The software engineering community has been
inspired to create and test ensemble techniques across a range
of areas as a result. In the literature on methods for estimat-
ing software development work, ensemble effort estimation
(EEE) is defined as a combination of several single estimation
procedures, or base models, under a certain combination rule.
The effort prediction of an EEE technique is the total of the
estimations from each constituent basemodel under a specific
combination rule. Elish [39] claim that there are two different
categories of EEE techniques: homogeneous approaches and
heterogeneous approaches. In this study, we are going to
employ a heterogeneous approach

A. HETEROGENEOUS ENSEMBLE FRAMEWORK
EEE methodologies combine different classical estimating
models to generate an ensemble estimationmodel. An ensem-
ble effort estimation technique combines more than one stan-
dalone model to predict the software development effort of a
new project using a combination rule, like mean, median, and
Inverse Rank Weighted Mean-IRWM. The estimation of an

27762 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

ensemble is produced by integrating the estimation of each
base model. In this study, a heterogeneous ensemble model
that integrates use case points (UCP), expert judgment (EJ),
and artificial neural networks (ANN) is developed to improve
the accuracy and efficiency of software development projects.
The whole framework of ensemble model is presented in
Figure 6.

B. DATASETS USED IN EXPERIMENTATL SETUP
We have used two datasets for our experiments i.e. ISBSG
dataset (benchmark dataset) and eight industrial projects.
Following are the details of the datasets.

1) ISBSG DATASET
The ISBSG (International Software Benchmarking Standards
Group) dataset is a collection of data on software devel-
opment projects that have been compiled and maintained
by the ISBSG. The dataset includes information on various
aspects of software development projects, including project
size, duration, effort, and cost. The goal of the ISBSG is
to provide organizations with a source of real-world data
that can be used to benchmark the performance of their
software development processes and to identify best practices
for improving software development efficiency. The ISBSG
dataset is widely used in software engineering research and
practice to support the development of software cost and
effort estimation models, as well as to evaluate the effective-
ness of different software development methodologies and
tools [31], [32].

Feature Selection and Cleansing of ISBSG Dataset We
had approximately 256 features in total. There are a few
empty values in the column. Such columns might have a
direct impact on the results. Given that NULL values have
no description. Practitioners and academics avoid these val-
ues as a result. Moreover, we eliminated all columns with
missing values bigger than 50. By removing redundant and
unnecessary data, feature selection (FS) techniques have been
used in the field of SDEE to minimize the dimensionality
of a dataset. The SDEE algorithms are trained on a dataset
with relevant information, to increase the precision of their
estimations. A dataset with N features must be provided to FS
for it to select the ‘‘best’’ feature subset from among the 2N
competing candidate subsets. Which subsets are best depends
on the task at hand, so a subset picked by one evaluation
function might not be the same as a subset picked by another.

2) PRIMARY DATASET (INDUSTRIAL CASE STUDIES)
The goal of this section is to observe the phenomenon of
effort estimation in practical settings. As a result, a spe-
cific case study technique is used in the investigation, which
encourages the examination of a phenomenon in its natural
setting. Software engineering should be improved via the case
study method. In a sample case study, two academic projects
and two commercial software projects are observed and ana-
lyzed using historical data on estimations [40]. Although

observational studies are typically carried out in a real-world
setting, the researchers used software development projects
as target cases and observed them in genuine enterprises. The
fundamental benefit of observational studies is the wealth
of information they offer, which enables us to analyze a
phenomenon in a context that is appropriate to real-world
situations.

VI. FRAMEWORK OF HETEROGENEOUS ENSEMBLE
MODEL
A. MODEL DEVELOPMENT
A novel data mining approach based on ensembles or com-
binations of standalone algorithms is now being considered
to address the problem of effort prediction. As a result,
the community of software engineers has been motivated
to develop and evaluate ensemble techniques in a variety
of fields. Ensemble effort estimation (EEE) is described
as a combination of various single estimation approaches,
or base models, under a certain combination rule in the
literature on methodologies for estimating software devel-
opment work [10], [35], and [38]. The sum of the esti-
mations from each constituent base model under a certain
combination rule constitutes the effort prediction of an EEE
approach.

We have developed three base model i.e.
• BM1: Use Case Point (UCP), as shown in Figure 2
• BM2: Artificial Neural Network (ANN), as shown in
Figure 3

• BM3: Expert Judgement (EJ), as shown in Figure 5
We have combined all the three base (BM1, BM2, BM3),

using the linear combination rule as suggested by Hosni
et al. [38].

In homogeneous ensemble model, base model is combined
with at least two alternative configurations, or one ensemble
learning approach is combined with one base model, such
as bagging [41], negative correlation [42], or randomiza-
tion [38]. Homogeneous Ensemble Model, according to Idri
et al. [43], can be further subdivided into two groups:

• Ensembles made up of at least two configurations of a
single SDEE technology

• Ensembles, such as bagging, boosting, negative correla-
tion, and random subspace, that combine a single meta
model and a single SDEE strategy.

There is no agreement on the techniques for measur-
ing software effort that result in the most precise mod-
els, despite decades of research. Previous studies show
that no single strategy consistently beats the others when
M-estimating approaches are used. Instead of selecting
one estimating method as the best, it could be wiser to
develop estimates using ensembles of a few different meth-
ods. When the estimates of many estimators are integrated
[44], it is found that the combined techniques outperform
any one estimator. According to Shepperd, no standalone
model compete with the strength and diversity of ensemble
models [6], [45].

VOLUME 11, 2023 27763

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 1. Descriptive statistics of use cases.

FIGURE 1. Ensemble effort estimation (EEE) processes [14], [38].

B. LINEAR COMBINATION RULE
Combining the outputs of base models yields ensemble effort
estimates. To combine our base models, we have used the
Median combination rule. Idri et al. [38] identified 18 rules
used to get prediction values from an ensemble.Majorly there
can be distinguish into two categories:

• Linear Combination Rule: In a linear combination, the
output of each base model is multiplied by a weight, and
the resulting outputs are added together to produce the
final prediction. This can be expressed mathematically
as:

y = w1 ∗ y1 + w2 ∗ y2 + . . . + wn ∗ yn (1)

where y is the final prediction, y1, y2, . . . , yn are the
predictions of the base models, and w1, w2, . . . , wn are
the weights assigned to each base model. The weights
can be determined using various techniques, such as
cross-validation or grid search.

• Non-Linear Model: In a non-linear combination, the
output of each base model is first transformed using a
non-linear function, and then the resulting outputs are
combined to produce the final prediction. This can be

TABLE 2. Combination Rule.

expressed mathematically as:

y = f (w1 ∗ g(y1) + w2 ∗ g(y2) + . . . + wn ∗ g(yn))
(2)

where f is the non-linear function and g is the trans-
formation function. The non-linear function can be any
function that maps the weighted sum of the base model
outputs to the final prediction. The transformation func-
tion can be any function that maps the output of the base
model to a new space where the non-linear function can
better capture the relationships between the base model
outputs.

1) MEDIAN COMBINATION RULE
The median linear combination rule is a common method for
combining the predictions of different models in a hetero-
geneous ensemble. In this case, we have three base models:
UseCase Point (UCP), Artificial Neural Network (ANN), and
Expert Judgement (EJ). Here’s how we can use the median
linear combination rule to create a heterogeneous ensemble
model:

Train the three base models on the same training data set.
Generate predictions for the test data set using each of the
three models. Combine the predictions by taking the median
of the three predictions for each test instance. That is, for each
instance in the test set, we take the median of the predicted
values from the UCP model, the ANN model, and the EJ
model. Use the resulting combined predictions as the final
output of the ensemble model. The median linear combina-
tion rule is a robust method for combining the predictions
of different models, as it is not sensitive to extreme values
or outliers in the individual model predictions. Additionally,

27764 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 2. Use Case Point Base Model 1 (BM1).

by combining different modeling techniques like UCP, ANN,
and EJ, we can leverage the strengths of eachmethod to create
a more accurate and robust ensemble model.

C. MACHINE LEARNING MODELS EXPERIMENTAL SETUP
ON THE ISBSG DATASET FOR FEATURE SELECTION
The ISBSG dataset served as the basis for our experiments.
We used the most well-known machine learning techniques
for this experiment, including Support Vector Regressor
(SVR), Linear Regression, K-Nearest Neighbor (KNN),
XGBoost Regressor, and Artificial Neural Network(ANN).
To prevent bias in the outcomes, we will employmany dataset
variations. For instance, we employed the ISBSG features
that were evaluated in the ways listed below.

1) DATA VARIATION 1: Applying all features on
ISBSG dataset.
We are going to incorporate all the features of ISBSG
dataset i.e. 256 features.

2) DATAVARIATION 2: Using selected features on rec-
ommendation of Nassif et al. [46]

3) DATAVARIATION 3: Applying Results of Statistical
Feature Selection.

We have all undoubtedly faced the difficulty of removing
the irrelevant or insignificant elements from a set of data
that do not significantly affect our target variable to increase
the precision of our model. The performance of a model is
significantly impacted by feature selection, as it is considered
one of the core principles of machine learning. The data
properties to train machine learning models have a significant
impact on the performance one can achieve. The performance
of the model could be negatively impacted by features that
are irrelevant or only partially relevant. Feature selection and

data cleansing should be the first and most important steps
in the development of any machine learning model. Whether
features are chosen manually or automatically will depend
on the traits that are crucial to prediction variables or desired
results. The model might learn based on irrelevant features in
the given data, which could lower model accuracy.

D. USE CASE POINT (UCP)
Base Model (BM1) is presented in Figure 2 i.e. UCP. The use
case point model was first introduced by Karner [48]. This
model was used to calculate the effort of software develop-
ment with the help of the use case diagram. If the idea about
the problem domain, system size, and architecture is clear,
then an early effort estimation focused on use cases could
be made [29]. The overall working of our first base model
i.e. UCP is shown in Figure 2 and the calculation of UCP is
shown in Equation 3. After classifying actors and use cases,
we calculate unadjusted weights and points for actors and use
cases from Equation 4 and Equation 5. After calculating the
unadjusted weights, we combine them to get Un-adjusted Use
Case Point (UUCP) in Equation 6.

According to [47], following are the actions that must
be taken in order to obtain an estimate using the UCP
method:

1) Determine the UUCPs and compute them.
2) Calculate and determine the TCFs.
3) Calculate and determine the ECFs.
4) Calculate the PF.
5) Estimate the number of hours required.
The equation can be used to predict the number of

man-hours required to accomplish a project when productiv-
ity is added as a time-expressing coefficient. Here’s the whole

VOLUME 11, 2023 27765

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

equation Equation 3, which includes a Productivity Factor
(PF):

UCP = UUCP ∗ TCF ∗ EF ∗ PF (3)

The UUCP value obtained from the above equation is
altered based on the weights allotted to 13 Technical Com-
plexity Factors(TCF) and 8 Environmental Factos(EFs).
After calculating the Technical Complexity Factor (TCF) and
Environmental factor, we can find the final Use Case Point by
simply adding Un-adjusted Use Case Point (UCP), Technical
and Environmental Factor as in Equation 8 to get Effort 1 i.e.
Yi as shown in Figure 2.

E. UNADJUSTED USE CASE WEIGHT (UUCW)
TheUUCW is calculated as given in Table 4 using the number
of use cases in the three categories (simple, average, and com-
plex). Each use case’s scenario’s number of stages, including
alternate flows, is categorized. It is critical to remember that
the estimation is influenced by the number of phases in a
scenario. The UUCW will be skewed toward complexity in
a use-case scenario with several phases and rising UCPs. The
UUCW will be skewed toward simplicity and the UCPs will
be kept to a minimum if only a few steps are taken. Countless
steps can be skipped, without having an adverse effect on
the business process. The UUCW is determined by counting
the number of use cases in each category, multiplying each
total by the weighting factor indicated, and then adding the
products.

F. UNADJUSTED ACTOR WEIGHT (UAW)
A use case becomes slightly more challenging when com-
municating with actors, who have established APIs. It is
slightly more complex when interacting with actors who have
established protocols, and significantly more complex when
interacting with actors who have developed GUIs. Table 6
lists the actors along with explanations of their complexity,
classifications, and numerical weighting.

UAW =

∑3

i=1
Ni ∗Wi (4)

Unadjusted Actor Weight (UAW) is calculated by sum-
ming the weights of all actors shown in Equation 4. The
detailed calculation of UAW is shown in Table 7.

UUCW =

3∑
f=1

Pj ∗ Xj (5)

UUCP = UAW ∗ UUCW (6)

Tfactor =

13∑
i=1

Ti ∗Wi (7)

EFactor =

8∑
f=1

Ei ∗Wi (8)

UCP = UUCP ∗ TCF ∗ EF (9)

G. UNADJUSTED USE CASE POINT (UUCP)
The sum of UAW and UUCW is the Unadjusted Use Case
Point (UUCP). It supplies the system’s unadjusted size, which
is indicated in Equation as Unadjusted Use Case Points.

UUCP = UAW ∗ UUCW (10)

H. TECHNICAL COMPLEXITY FACTOR (TCP)
The Technical Complexity Factor (TCF) is an important
criterion for UUCP modification [48]. TCF has an impact
on project performance since it is derived using 13 techni-
cal parameters (T1-T13) shown in Table 8. These variables
describe the project’s non-functional requirements, ranging
from 0 (insignificant) to 5 (very important) (very relevant).
Technical Factor (TFactor) and Technical Complexity Factor
(TCF) are determined using Equation 11 and Equation 12.
The Technical Factor (TFactor) is calculated by summing the
values of the technical factors (T1–T13) multiplied by their
weight.

Tfactor =

13∑
i=1

Ti ∗Wi (11)

where,
• Ti=takes values between 0 and 5
• Wi=complexity weight

TCF = 0.6 + (0.01 TFactor) (12)

I. ENVIRONMENTAL COMPLEXITY FACTOR (ECF)
The Environmental Complexity Factor is a crucial feature
used in UUCP modification (ECF). Eight environmental
elements (E1-E8) are used to calculate the effects of envi-
ronmental factors on productivity, as shown in Table 9. The
ranking of the project is determined by these factors, which
range from 0 (insignificant) to 5 (very important) (very rel-
evant). Below equations are used to compute the EFactor
and ECF in Equation 13. To calculate the ECF, multiply the
environmental factors (E1–E8) by their weight, then sum all
of the figures to get the EFactor.

EFactor =

∑8

f=1
Ei ∗Wi (13)

where,
• Ei=takes values between 0 and 5
• Wi=complexity weight

ECF = 1.4 + (0.03EFactor) (14)

J. PRODUCTIVITY FACTOR
The productivity element is very significant when evaluating
software effort. It is described as a ratio of size to effort.
Once the modified UCP has been determined, the UCP and
productivity are multiplied as given in Equation 15.

Effort = Productivity UCP (15)

27766 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 3. Use Case Categories.

TABLE 4. Computing UUCW.

TABLE 5. Use Case complexity detailed.

TABLE 6. Use Case Categories.

TABLE 7. Actor complexity detailed.

Numerous factors, such as the kind of software process,
the expertise of the developers, team communications, the
environment, and deliverables, affect the value of the pro-
ductivity factor. Based on previously finished projects, the
productivity factor is computed. However, this productivity
can only be used to calculate the labor for a new project when
the difficulty of the current project and the old project are both
identical.

K. ARTIFICIAL NUERAL NETWORK (ANN)
We have used Artificial Neural Network as our second base
model. Inspired by the neural network produced by biolog-
ical neurons, a model called a neural network (NN) was
developed is our Base Model (BM2). The artificial neuron

serves as the building block for creating a NN. A vector of
numerical values serves as the input for an artificial neuron.
Each value or component of the vector is translated by the
neuron using its weight, which is a discrete, independent
sensitivity. The neuron chooses its internal state after receiv-
ing the input vector before deciding on its output value.
The inner product of the input vector, weight vector, and
bias represents the internal state of the neuron. A transfer
function is another name for this function [49]. A promi-
nent criticism of the use of ANNs in prediction is their
sensitivity to initial weight values and choices for training,
validation, and test sets. When properly constructed, ANN
ensembles can lessen these effects and produce dependable
findings [50].

VOLUME 11, 2023 27767

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 3. Artificial Neural network Base Model 2 (BM2).

TABLE 8. Technical complexity factors [48].

TABLE 9. Environmental complexity factors [48].

A single neuron with adjustable weights and bias makes
up the single-layer feedforward class. An example of a mul-
tilayer feedforward neuron consists of an input layer made
up of a group of neurons, one or more hidden layers, and
an output layer. The multilayer perceptron is another name
for this type of neural network (MLP). Each neuron’s model
has a nonlinear activation function, and the network is very
interconnected.

The intrinsic state of the cell influences how it reacts
to outside stimuli. This function is known as an activation
function. The fundamental responsibility of the activation

function is to convert each potential internal state value into a
desirable range of output values. The weights and bias values
of a synthetic neuron are automatically modified to support
learning. The most popular model for data processing and
software estimation is the neural network. Because it can
learn from any dataset, it is possible to obtain pertinent results
from it. The general structure of ANNs is composed of the
input layer, hidden layer, and output layer. To produce an
output, it, therefore, comprises a collection of inputs that are
weighted and integrated.

1) BASIC ARCHITECTURE OF PROPOSED BASE MODEL 2
(ANN)
We have used an Artificial Neural Network (ANN) with
100 nodes and Rectified Linear Unit (ReLU) as the activation
function. Following is the basic architecture followed tomake
the Base Model 1.

• Input Layer: This layer receives the input data that the
network is supposed to process. The number of input
nodes in this layer would depend on the number of
features or variables in the input data.

• Hidden Layer(s): This layer is where the actual computa-
tion takes place. In this case, the network has one hidden
layer with 100 nodes. Each node in this layer takes in
the output from the previous layer, performs a linear
transformation on it, and applies the ReLU activation
function to produce the output. The ReLU activation
function is defined as f(x)=max(0,x), which means that
if the input is positive, the output will be equal to the
input, and if the input is negative, the output will be zero.

• Output Layer: This layer produces the final output of
the network. The number of nodes in this layer would
depend on the type of problem the network is trying
to solve. For example, if the network is being used for

27768 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

binary classification, there would be one output node
that produces the probability of belonging to the positive
class.

During training, the network adjusts its weights and biases
to minimize the loss function, which measures how well the
network is performing on the task at hand. This is typically
done using back-propagation, which is an algorithm for com-
puting the gradients of the loss function with respect to the
weights and biases. The gradients are then used to update the
weights and biases using an optimization algorithm such as
stochastic gradient descent. This process is repeated for mul-
tiple epochs until the network’s performance on a validation
set stops improving.

2) RATIONALITY OF HYPER-PARAMETER SETTINGS IN DEEP
LEARNING
The rationality of hyper-parameter settings in deep learning
depends on several factors such as the problem at hand,
the size of the dataset, the complexity of the model, and
the computational resources available. Regarding the use of
ReLU as an activation function and 100 nodes in an Artificial
Neural Network (ANN), these are common choices that have
been shown to work well in many applications. ReLU is a
popular choice for an activation function because it has been
shown to be effective in addressing the vanishing gradient
problem and allows for faster training compared to other
activation functions like sigmoid or tanh. Additionally, ReLU
has a sparsity-inducing effect which can lead to better gener-
alization performance. The choice of 100 nodes in an ANN
depends on the complexity of the problem and the size of the
dataset. If the problem is relatively simple or the dataset is
small, then 100 nodes may be more than enough to capture
the underlying patterns in the data. However, if the problem
is more complex or the dataset is large, then a larger number
of nodes may be necessary to capture the complexity of the
problem.

3) MULTILAYER PERCEPTRON (MLP)
We have employed a feed-forward artificial neural network
model called a multi-layered perceptron, which has a single
input layer, at least one hidden layer, and a single output layer,
as shown in Figure 4. An input vector is represented by each
neuron in the input layer. A network is known as a perceptron
if it just contains an input layer and an output layer (no hidden
layers). In the neurons of the buried layer of anMLP network,
a nonlinear activation function is frequently used. It is com-
mon practice to use a linear activation function to generate
contrast in the output layer. The number of input neurons and
training method employed determine, how many neurons are
in the hidden layer. The back-propagation algorithm, a kind
of gradient descent, is one of the most widely used training
methods. The conjugate gradient approach is an alternative
way of training an MLP network. One of the most popular
neural network models in SDEE is the MLP network. Using
performance evaluation criteria like the MMRE, these MLP

FIGURE 4. Multilayer Perceptron Model.

models are compared to multiple linear regression models
[46]. One of the most popular neural network models in
SDEE is the MLP network. Using performance evaluation
criteria like MMRE, these MLP models are compared to
multiple linear regression models for analysis.

a: ACTIVATION FUNCTION
The activation function that will be applied to the neurons in
the different layers of the neural network must be carefully
chosen. The neural network model gains non-linearity from
activation functions, enabling the network to accumulate
more accurate feature representations over time. In the litera-
ture, a variety of activation mechanisms have been described.
The most popular activation functions are linear, sigmoid,
tanh, and ReLU, and they are typically selected empirically
rather than using a strict data-driven methodology throughout
the network building phase [51]. A neural network’s output,
such as yes or no, is decided by t. The values are changed
from 0 to 1, −1 to 1, and so forth (depending upon the
function). There are two groups that the activation functions
fall under. An example of an activation function that is linear
in Activation Functions That Aren’t Linear is the Linear Acti-
vation Function. We have employed ReLU as our activation
function.

b: ReLU
ReLU is a simple, non-linear, and efficient activation func-
tion that helps in addressing some of the common issues
in neural networks. Its effectiveness in improving the learn-
ing process and accuracy of neural networks has made it a
popular choice in many applications. Rectified Linear Units,
or ReLU. A two-hidden layer feedforward neural network
with ReLU is NP-hard to train, according to Agarap [52],
[53]. ReLU is a common activation function that is used in
a variety of contexts. Despite being widely used, the issue of
how challenging it is to train a multi-layer fully-connected
ReLU neural network has not been settled. The ReLU

VOLUME 11, 2023 27769

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 5. Expert Judgement Base Model 3 (BM3).

activation function was developed by Agarap [52], and it
is founded on sound biological and mathematical concepts.
It was shown to be helpful in deep neural network training in
2011. By setting the threshold to zero, f(x)= max, it operates
(0, x). Succinctly summarized, when x is zero, it outputs 0;
when x is more than zero, it outputs a linear function.

f (x) = max (0, x)

Rectified Linear Unit (ReLU) is a popular activation func-
tion used inArtificial Neural Networks (ANN) and has gained
popularity due to its effectiveness in improving the learning
process and accuracy of neural networks. Here are some rea-
sons why ReLU is preferred over other activation functions:

• Simplicity: ReLU is a simple function, and its imple-
mentation is straightforward. The function is linear for
all positive input values, which means that its computa-
tion is fast and efficient.

• Non-linearity: ReLU is a non-linear function, and it
can help to model complex non-linear relationships in
the data. Non-linear activation functions are essential in
neural networks because they allow the network to learn
non-linear decision boundaries.

• Sparsity: ReLU has a sparsity property, which means
that some of the neurons in the network may output zero
values. This sparsity can help in reducing the number
of parameters in the model and also help in preventing
overfitting.

• Gradient vanishing: ReLU helps in addressing the gra-
dient vanishing problem, which is a common issue in
deep neural networks. The gradient vanishing problem
occurs when the gradient of the cost function becomes
very small as it is propagated through multiple layers.
ReLU has a constant gradient of 1 for all positive input

values, which helps to maintain the magnitude of the
gradient during backpropagation.

• Large learning rates: ReLU allows for the use of large
learning rates, which speeds up the learning process, as it
has a constant gradient of 1 for all positive inputs.

• Simplicity: ReLU is a simple function that requires only
one mathematical operation, which makes it easy to
implement and optimize.

• Empirical performance: Empirical studies have shown
that ReLU generally performs better than other acti-
vation functions in deep neural networks for various
tasks, such as image recognition, speech recognition,
and natural language processing.

The reasons why we use ReLU as an activation due to its
popularity as an activation function used in ANN as com-
pared to other activation functions are its ability to introduce
sparsity, computational efficiency, non-linearity, ability to
avoid vanishing gradient problem, ability to use large learning
rates, simplicity, and empirical performance. ReLU has been
shown to perform better than other activation functions such
as sigmoid and tanh in many applications. This is because
ReLU can help in faster convergence of the network.

L. EXPERT JUDGEMENT (EJ)
The most popular methods for predicting software develop-
ment effort are those that rely on expert judgment and it
is our Base Model(BM3). Experts engaged in expert esti-
mating use their knowledge and prior experience to subjec-
tively analyze a range of elements to estimate the devel-
opment job. The fifth edition of A Guide to the Project
Management Body of Knowledge (PMBOK® Guide) by
far lists expert judgment as the tool or approach the most
frequently. According to Jorgensen [54], professionals use

27770 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

intuition as a ‘‘non-explicit and non-recoverable reasoning
process’’ to reach this judgment. Jorgensen [13] suggests
employing a variety of approaches when producing estimates
for expert-based estimating. The process of expert estimating
is straightforward and doesn’t require a ton of documenta-
tion. COCOMO and other algorithmic estimate techniques
pale in comparison. These qualities of expert estimation are
aligned with agile processes, which give more importance
to interactions between people than to technologies and pro-
cesses. Without formalism, an expert estimation can have
several problems; without a defined structure, an expert esti-
mation can become haphazard. Experts may ignore crucial
jobs and activities (such as testing efforts or non-functional
needs), which leads to an overestimation of development
time.We chose Expert Judgment(EJ) as the foundation model
for our ensemble estimation model for a variety of reasons.
The findings of empirical investigations contrasting estimates
of expert and model-based software development efforts
appear to be significant, according to Jorgensen [54]. It is
generally impossible to determine whether estimate models
or expert estimation is more accurate. Expert estimates, on the
other hand, seem to be more accurate when key information
is left out of the estimation models, when there is a high
level of estimation uncertainty because of unaccounted-for
environmental changes, or when straightforward estimation
techniques result in reasonably accurate estimates. For this
study, we have employed eight industry experts from different
software organizations as shown in Figure 5. We are not
disclosing the identity of personnel or organizations’ names
due to ethical reasons. To make sure that the right experts are
available for the software company’s effort calculation, the
experts’ demographic data is collected and examined using
a checklist fill-in approach. It was difficult to approach the
specialists because of many organizational laws and regu-
lations. The software requirement specification (SRS) doc-
ument, progress report (used for a real amount of effort),
software design document, case selection, UCP size, and
checklist were all used by the experts. Figure 6 presents our
proposed ensemble model. We are going to predict the efforts
of the target projects. As one can observe, each base model
(BM1, BM2, and BM3) yields their respective efforts and
then these efforts are combined using the rules to predict the
combined results.

VII. HETEROGENEOUS ENSEMBLE MODEL
We have combined all three base models i.e. Base Model 1
(UCP) as in Figure 2, BaseModel 2 (ANN) as in Figure 3 and
our Base Model 3 (EJ) as in Figure 5. Each Base Model has
yielded a separate effort. These efforts are combined using the
combination rules as shown in Figure 6 inspired by Figure 1.

VIII. RESULTS AND FINDINGS
A. ML ALGORITHMS AND PERFORMANCE MEASURES
This section is comprised of three different sub-sections
which exclusively present Machine Learning predictions on

the primary sources and benchmark datasets i.e. ISBSG
dataset and industrial case studies.

1) Results of Standalone Models.
2) Results of Ensemble Models (Heterogeneous Ensem-

ble Model and Machine Learning Ensemble Model).
3) Comparative Analysis on Ensemble Approaches with

rest of Standalone Algorithms

We have used five algorithms for our experiments i.e.
SVR, Linear Regression, k-NN, XGBoost Regressor, and
ANN. To estimate accuracy, we have employed accuracy
metrics that include MMRE, MAE, MdMRE, MDAE, and
PRED(25).MeanMagnitude of Relative Error (MMRE) (also
known as mean absolute relative error) currently uses the
most reliable and accepted measures, such as MMRE and
PRED at power levels of 0.25, 0.50, and 0.75, respectively.
Results of Standalone Models - ISBSG Dataset: We car-

ried out our experiments on ISBSG dataset. For experiment,
we have incorporated famous machine leaning algorithms
such as Support Vector Regressor (SVR), Linear Regression,
K-Nearest Neighbor (k-NN), XGBoost Regressor and Arti-
ficial Neural Network (ANN). We are going to use different
variation of datasets to avoid biasness in results. For instance
we have used ISBSG in following manners:

• Applying all features on ISBSG dataset.
• Using selected features on recommendation of Nassif
et al. [46]

• Applying Results of Statistical Feature Selection.

1) RESULTS OF STANDALONE MODELS USING ALL
FEATURES SELECTION OF ISBSG DATASET
We have used all of the ISBSG dataset’s features in our
first experiment. All ML methods have been applied to all
ISBSG Dataset features. In comparison to SVR, LR, k-NN,
and XGBoost Regressor, ANN have demonstrated promising
outcomes.

Models for estimating effort are evaluated using metrics
(criteria metrics). Prediction at Level 1 (Pred (l)), Magnitude
of Relative Error (MRE), and Mean Magnitude of Relative
Error(MMRE) are most commonly used in the literature [10],
[55], [56], [57].

The MMRE (Mean Magnitude Relative Error), Pred(),
and MAE measurements have been used to assess perfor-
mance and compare the proposed EEE model to conven-
tional models that have previously been published in the
literature [10], [55] [56]. Similar to this, Pred(25) is the
main precision indicator used by the MMRE [10]. According
to Kemerer [58], MMRE can be overestimated as well as
underestimated.

The diagonal line, which indicates the real effort input,
can be used to deduce the interpretation of Figure 10 of
All Feature ISBSG. Since the real input value is placed
on x and y, i.e., x=y, we obtain the red line in diagonal
form.

Now, we can see that scatter plots have developed in
Figure 10, of All Feature ISBSG. The values of the actual

VOLUME 11, 2023 27771

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 6. Hetrogeneous ensemble effort estimation model.

and expected effort are used to construct the data points
on the scattered plot. For instance, the values on the x-axis
correspond to the actual effort.

The anticipated effort datapoints are shown on the
y-axis.

In contrast to the otherMLmodels, ANN clearly lies on the
line i.e. close to the actual effort, as seen in Figure 10, of All
Feature ISBSG. According to the graph, ANN has produced
excellent results and outperformed other ML algorithms.
k-NN Regressor have shown good results as compared

27772 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 10. Standalone ML Model All Feature ISBSG.

to Linear Regressor (LR) and XG-Boost. However, k-NN
Regressor datasets fail to produce good results as compared
to SVR and ANN.

In addition to the findings, the training time had a sig-
nificant impact on the ML algorithm’s effectiveness. SVR
has produced positive results, but this ML model took the
longest time to run the experiment. Compared to other ML
algorithms, SVR has more than 7387.36 seconds (to be pre-
cisely), as shown in Figure 8. On the contrary ANN, which
have shown the best results was nearly took half time i.e.
436.409 seconds, to produce the best results among rest of
the ML Algorithms. k-NN produce the results with the least
time taken i.e. 0.095 seconds and the results were the third
best among the other ML Algorithm. Other model such as
XG-Boost, Linear Regressor completed their experiments in
145.89 and 10.73 seconds respectively.

The precision of a software estimating model’s predictions
is a crucial consideration. The mean magnitude of relative
error (MMRE), MdMRE, MAE, MdAE, and Pred(25) are
used to calculate the effort prediction accuracy and compare
the performance of multiple ML models. The estimation is
more precise if the value of theMMRE is lower. Pred(25) dis-
plays the proportion of forecasts with errors that are smaller
than 25% of the true value. The estimation would be more
accurate the greater the Pred(25) [59]. The mean/median
MRE (MMRE/MedMRE) and prediction at level p (Pred(p)),
which counts the number of observations when an SDEE
technique produced MREs that were fewer than p, are two
of the most often used SDEE accuracy metrics. Although
we have calculated MAE, MdMRE, and MdAE. However,
when it comes to Software Development Effort Estimation
(SDEE), MMRE and Pred(25) have been extensively used by
the research community.

As we can see in Figure 9, the radar plot clearly shows
the MMRE and Pred(25) of all ML algorithms. Typically,
25% is the ideal MMRE target number. This implies that
the accuracy of the existing estimation models would nor-
mally be less than 25%. Better estimates are produced by
software effort estimation models with lower MMRE val-
ues than models with larger values [60], [61]. During our
experiments ANN have the lowest MMRE i.e. ANN(0.06)
followed by SVR(0.35), XG-Boost(0.745), k-NN(0.49) and
Linear Regression(1.28). The highest value of MMRE was
generated by Linear Regression(1.28), which is not consid-
ered as optimal. Better estimates are produced by software

effort estimation models with lower MMRE values than
models with larger values [62]. On the other hand, the radar
plot shows that ANN(0.948) outperformed all the other ML
algorithms. The Pred(25) values of the rest of the algorithms
are SVR(0.8014), Linear Regression (0.54), k-NN(0.786)
and XG-Boost Regressor(0.782). The recommended estimate
accuracy indicator is PRED (25). PRED determines the per-
centage of predictions that are 25% or less of the actual
number (25).

The interpretation that a significant estimating error
is a sign of poor estimation skills is not always cor-
rect. Alternative, competitive, or supplemental variables
include things like poor project cost control, difficult
development work, and more functionality provided than
anticipated.

2) RESULTS OF LITERATURE-BASED FEATURES SELECTION
ON ISBSG DATASET
To perform the comparison between different machine learn-
ing algorithms, we have done feature selection on the ISBSG
dataset based on suggestions presented in the literature [46].
We used the ISBSG Release 11 industrial datasets to fairly
compare machine learning models. There are more than
5000 cross-company efforts from all across the world in the
ISBSG Release 11 database. The main characteristics and
issues with ISBSG datasets are different platforms, program-
ming languages, and software development life cycle models
were used to construct ISBSG projects. Different measure-
ments for program size are used. They consist of SLOC,
IFPUG, and COSMIC. Each project is given an ‘‘A,’’ ‘‘B,’’ or
‘‘C’’ grade depending on its quality. According to the ISBSG
guideline, projects with a rank other than ‘‘A’’ and ‘‘B’’
should be terminated. There are many rows (projects) with
blank data. More than 100 columns (features) are present;
some of them, such as the project number and project date, are
not linked to the output (software effort). Statistical analysis
revealed that although some of the traits are connected, they
are statistically insignificant. Only project ranks ‘‘A’’ and
‘‘B’’ were considered for the experiments. The followings are
the primary characteristics and problems of ISBSG datasets
as identified by Nassif et al. [46], [63]:

1) ISBSG projects were built using a variety of platforms,
programming languages, and software development
life cycle models.

VOLUME 11, 2023 27773

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 7. Results of all features ISBSG dataset.

TABLE 11. Results of Literature-Based Features Selection on ISBSG Dataset.

2) There are several different metrics used to gauge pro-
gram size. Some of these are COSMIC, SLOC, and
IFPUG.

3) A, B, or C grades are assigned to each project based on
its calibre. Projects with ranks other than ‘‘A’’ and ‘‘B’’
are advised to be cancelled, according to the ISBSG
advice.

4) Numerous rows (projects) have empty values.
Usually, such an occurrence can be replaced by
different techniques as suggested by the
literature.

5) More than 100 columns (features) are present; some
of them, such as the project number and project date,
are not linked to the output (software effort). Statistical
analyses show that although some of the traits are
connected, they are statistically insignificant.

6) In a new version of ISBSG 11, two types of develop-
ment are new development and enhancement.

7) Even when utilising the same size metric, productivity
(the ratio between software work and size) varies sub-
stantially because of the dataset’s tremendous variety.
The productivity, for projects of metric size IFPUG, for

27774 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 8. Training Time All Features ISBSG (Standalone ML-Model).

FIGURE 9. RADAR Graph: Results for all ISBSG Features Standalone
Algorithm.

instance, ranges from 0.1 to 621. For instance, the time
required to produce a project of 100 units can vary from
10 hours (assuming productivity of 0.1) to 6210 hours
(if productivity is 621). This is a significant problem
that requires attention.

We developed a scalable approach to filter the ISBSG
Release 11 and generate five subsets based on the aforemen-
tioned ISBSG features (datasets). The ISBSG’s suggestions
were used to divide the general population into five sub-
groups. The first things we settled on were IFPUG adjusted
function points (AFP), the development type ‘‘new devel-
opment,’’ the development platform, the language type, the
resource level, and the normalised work effort. The model’s
output is the latter (normalised work effort), while its inputs
are the other attributes. It is important to note that only
the software size (AFP) is a continuous variable among the
model’s inputs, whilst the others are categorical variables.
Only projects with quality ratings of ‘‘A’’ or ‘‘B’’ and nomiss-
ing data were taken into consideration, as advised by ISBSG.
Based on the productivity value, five different subsets were
chosen to address the problem raised in issue 7 above. When
the range of the productivity values is from 0 to 4.9 inclusive,
the first subset is selected. The second one occurs when

productivity levels range from 5 to 9.9, and so forth. Each
dataset is split into a training dataset and a testing dataset after
five datasets have been prepared.

The projects are arranged in the datasets according to the
dates on which they were completed, with the oldest 30% of
the projects being utilised for testing and the oldest 70% for
training. This strategy is comparable to how previous projects
are utilised to prepare current ones and forecast their effort in
the real world. This method is reproducible and the splitting is
not random, so please be aware that it differs from the random
70/30 per cent stated above.

a: SELECTION ON THE BASIS OF DATA QUALITY RATING
As suggested by literature [46], we filter the dataset based
on the data quality. A, B, or C grades are assigned to each
project based on its caliber. Projects with ranks other than
‘‘A’’ and ‘‘B’’ are advised to be canceled, according to the
ISBSG advice. We left with 7780 total results.

b: SELECTING FEATURES
As discussed in the literature we have selected features pre-
scribed by the literature. Since these features are the ones that
help predict effort. Therefore, we are cleansing our datasets
of irrelevant features. We have selected attributes such as
Adjusted Function Points (column G), Normalised Work
Effort (Column J), Development Type (column AF), Devel-
opment Platform (columnBQ), Language Type (columnBR),
and Resource Level (Column CU). Please note that Nor-
malised Work Effort is the output of the model (Dependent
Variable) where the other attributes are the input of the model
(independent variables). Please also note that Development
Type will not be input because all projects have the same
development type. After this selection, we have 6015 rows
and 6 columns.

c: DROPING MISSING VALUES
Missing values always create problems in terms of analysing
the dataset. These values has no meaning therefore can have a
false impact on the results. After dropping the missing values
we have 3432 records left in the dataset.

d: SELECTION OF PRODUCTIVITY ANALYSIS
After dropping values we tend to select the development type.
We opted new development type for the productivity analysis.

e: SEPARATING INPUTS AND OUTPUTS
For implementation we need to select the input variables and
output variable. For input data we have selected Adjusted
Function Points, Development Platform, Language Type,
Resource Level and Productivity. Similarly for the output we
need only one variable i.e. Normalized Work Effort.

f: TRANSFORMATION OF NOMINAL DATA INTO NUMBERS
Our dataset is consisting of diverse input. For analysis of
dataset we need to have similar datatype of all the input
i.e. numbers so that our results are more understandable

VOLUME 11, 2023 27775

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 10. Results of ISBSG Dataset Literature-Based Feature selection.

and meaningful. Use the Nominal to Numerical operator to
change non-numeric properties into a numeric kind. In addi-
tion to changing the type of the attributes, this operator
changes all values for the selected attributes to numeric
values. The values of a binary attribute are represented by
the integers 0 and 1. The numerical input properties of the
Example Set remain unchanged. Using this operator, there
are three ways to go from nominal to numeric. This mode
is managed by the coding type argument.

Filtering is the process in which we make our data more
meaningful. For instance, we have eliminate the tuples which
are meaningless. Similarly, the empty column were replaced
by the mean of the column.

All ML techniques have been applied to every feature of
the ISBSG Dataset. If ANN is compared against SVR, LR,
k-NN, and XGBoost Regressor, it has showed good out-
comes. The diagonal line, which represents the actual effort
input, can be used to infer ISBSG. Due to the fact that the true
input value is centred on x and y, i.e., x=y, we obtain the red
line in diagonal form.

This particular feature selected was based on the
literature-based as shown in Figure 10. The datapoints on
the scattered plot are built using the values of the actual
and predicted effort. The values on the x-axis, for instance,

FIGURE 11. RADAR Graph: Results for All ISBSG Features Standalone
Algorithm.

represent the real effort. The y-axis displays the datapoints
representing the expected effort.

ANN produce better result in terms of scattered plaot in
Figure 10. Majority of ANN datapoints lies on the red diag-
onal line. The x and y represent the values of Actual Effort
(x) and Predicted Effort (y). However, other ML algorithm

27776 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 12. Training Time Literature-Based Features Selection on ISBSG
(Standalone ML-Model).

were average in terms of lying on the diagonal line nearer to
the actual effort. XG-Boost have shown good results even the
datapoints were closer to the diagonal line. However, k-NN,
Linear Regression and SVR datapoints/resulted scattered plot
were not impressive as of ANN and XG-Boost. Therefore,
in literature-based feature selection ANN and XG-Boost
have performed well as compared to k-NN, Linear Regres-
sion and SVR

The fact thatMMRE is frequently used in scenarios involv-
ing software effort estimation may be due to the fact that
people believe it to be the mean absolute percentage error.
Since MMRE is scale-free, estimation errors from all sizes of
software development projects can be combined using it. The
MMRE has no upper score limits for overestimation, but an
underestimating of effort can never result in a score higher
than one. Despite this scoring asymmetry restriction, MMRE
(MAPE) may be the most widely used estimation error metric
in research and industry [54].

The MMRE of ANN(0.22) was more better than the other
ML algorithms as shown in Figure 11XG-Boost (0.53) stands
second best, SVR (1.01) third best, Linear Regression (1.15)
fourth best and finally k-NN (1.73). These results show that
ANN outperformed other ML algorithm when it comes to
MMRE analysis. ANN also produce great results in terms of
PRED(25). Comparison of ANN with other ML techniques
with respect to MMRE and PRED(25) can be observed un
RADAR plot in Figure 11 The higher the Pred value the better
model is considered. ANN andXG-Boost were better in terms
of PRED(25). While k-NN ranked second. Linear Regression
produce better results as compared to SVR which has the
accuracy of (0.37). Higher PRED(25) shows that its derived
estimates are more accurate than other models.

Figure 12, contrasts the execution times of several mod-
els (in s). Compared to other algorithms, the ANN algo-
rithms’ training process takes a long time (SVR,LR, k-NN
and XG-Boost). We can see that less complex algorithms take
less time to train than simple ones like Linear Regression
(LR) and k-NN (values can be interpreted from Table). When
combining the execution times for training and testing, LR is
one of the quickest algorithms.

3) RESULTS OF STATISTICAL BASED FEATURES SELECTION
ON ISBSG DATASET
a: F- REGRESSION
Whether a characteristic is chosen manually or automatically
depends on how important it is to prediction variable or
desired result. Model may learn based on irrelevant features
in the given data, which could result in a reduction in model
accuracy.

Following is the equation of F- Regression Model. F-
Regression ranks features based on its weight(importance).

Equation of F- Regression ranks features:

FRFeature = {⟨f1, score⟩, ⟨f2, score⟩,, ⟨fn, score⟩} (16)

Sort with respect to the score:

FRSorting = {⟨f ′

1, score⟩, ⟨f
′

2, score⟩,, ⟨f
′
n, score⟩} (17)

such that:

f ′

1 : score < f ′

2 : score, f ′

2 : score

< f ′

2 : score,, f ′
n : score < f ′

n : score (18)

Finally:

FRTop25F eature = FRSorted [−25 :] (19)

The stages of feature extraction and selection are now
required for ‘‘low loss dimension reduction.’’ These fields—
machine learning, data mining, and pattern recognition—all
make use of this paradigm. In machine learning, a set of
pertinent target features must be preprocessed, and to reduce
dimensionality, the most suitable feature subset must be cho-
sen for the classification task. As we have already covered the
literature-based feature selection and all features selections.
Now we are moving toward to our third feature selection
method. This methods is being chosen on the basis of its
results.

The choice of filter features typically depends on statistical
assessments of correlation between input and output vari-
ables. Therefore, the types of variable data have a signifi-
cant impact on the choice of statistical measures. The more
details that are known about the data type of a variable, the
simpler it is to choose an appropriate statistical measure for a
filter-based feature selection strategy. Input and output are the
two main categories of variables to take into account, as well
as the two main types of variables: categorical and numerical.
Input variables are the variables that are utilised as inputs in
a model. When selecting features, we want to use as few of
these variables as possible.

Response variables are typically used to refer to the
variables that a model is meant to predict, also known as
the output variables. The type of response variable typi-
cally determines the specific predictive modelling task under
consideration. A problem with regression predictive mod-
elling is indicated by a numerical output variable, for exam-
ple, and a problem with classification predictive modelling
by a categorical output variable. Typically, the target vari-
able is utilised to construct the statistical measures used in

VOLUME 11, 2023 27777

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 12. Statistical based Feature Selection.

filter-based feature selection one input variable at a time.
They are known as univariate statistical measures as a result.
This could imply that the filtering procedure does not take
into account any input variable interactions.

As mentioned in the previous two section the formation
of the diagonal line in Figure 13, depend on the input of
actual effort which is used to plot the diagonal line. ISBSG
may be deduced from the diagonal line, which depicts the
actual effort input. We get the red line in diagonal form
because the true input value is centred on x and y, i.e., x=y.
As we have previously observed in All features selection
and Literature-based features selection, ANN has again out-
performed other ML algorithm in statistical based features
selection. The datapoints of ANN stick on the actual effort
diagonal line which means that ANN predicted result were
closer to the actual effort as compared to other ML algo-
rithms. k-NN and SVR results were better after ANN results.
Linear Regressor results were disperse across the actual effort
diagonal line. XG-Boost few datapoints were scattered away
from the actual effort. However, rest of the datapoints lie on
the actual efforts diagonal line.

Training time consider to be an important aspect when we
compare different Ml algorithm. Some models tends to have
long training time. On the contrary, some models execute
the experiment within no time. Training time is also plays
a significant role in decisive of the optimal model. However,
there are other factors which also constitute to make a model
an optimal solution. As Figure 14 indicate that ANNhas taken
the most time to run its experiment. During our statistical
based Feature Selection, ANN consume the maximum time
to train its model on our dataset i.e. 161.36. However, ANN
produced the best statistical based feature selection results as
compared to other algorithm but it also consume the max-
imum training time among all of the models. Although the
result on the scattered plot of ANN was far better than the
other ML Algorithm. Other Algorithm which include SVR
(3.55s), Linear Regression (0.14s), XG-Boost(0.515).k-NN
(0.0046s) has taken the least time to execute statistical based
feature selection experiment.

Radar plot in Figure 15 clearly shows that MMRE of
ANN(0.06) was the least among all the other ML algorithms.
Other algorithms such as SVR tends to have (0.15) MMRE
and position second as the lowest MMRE. The model have

the least MMRE are considered to be the best. Apart from
that k-NN prove to the third best producing (0.276) MMRE.
However, XG-Boost produce (0.513) MMRE forth best and
Linear Regression has produced the worst among all, produc-
ing (1.28) MMRE.

B. RESULT OF STANDALONE ALGORITHMS ON CASE
STUDIES
We have gathered eight case studies from the software indus-
try. These initiatives are genuine industry projects. In this
section, we will try to predict the effort of our collected case
studies using our trained machine learning algorithms (SVR,
LR, k-NN, XGB, and ANN). As was mentioned in the pre-
vious section, our ML models were created utilizing ISBSG
datasets, and they have shown some positive results. We will
now use the pickled model to anticipate case studies. The
objective is to assess the error between the amount of effort
used in the case studies and the amount of effort estimated by
our trained ML models.

1) RESULTS: ML ALGORITHMS ON CASE STUDIES (ALL
FEATURES)
Results from the Table 13, according to All Features,
ML techniques were applied to the case studies, and the
associated effort was calculated. The quantitative measure-
ments we employed to quantify our experiment wereMMRE,
MAE, MdMRE, MdAE, and PRED (25). Pred(25) deter-
mines the proportion of an estimate that is within a 25%
range of the true value. Pred(25) provides the closest and
frequently most accurate result as a result. A good esti-
mation model tries to increase PRED while attempting to
decrease MMRE (25). A combination of MMRE and PRED,
the evaluation function (EF) might be the third evaluating
component (25).

The result in Table 13 shows that XGBoost and ANN
yield to produce better results with respect to Pred(25) i.e.
1. However, SVR was not far behind with 0.875. k-NN and
Linear Regression tend to produce 0.5. On the contrary, with
respect to MMRE ANN lead all the other ML techniques
by producing 0.0022. On the other hand, SVR(0.07) was the
second, however LR(0.30) and k-NN failed to produce good
results.

27778 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 13. Results of ISBSG dataset statistical based features selection.

FIGURE 14. Training Time Statistical Based Features Selection on ISBSG
(Standalone ML-Model).

2) RESULTS: ML ALGORITHMS ON CASE STUDIES
LITERATURE-BASED FEATURES SELECTION
Similarly, we have run the ML trained algorithm(precisely
on the literature based learning variation). As mentioned
earlier, the literature based feature selectionwas done to avoid
irrelevant data from the dataset to produce good results.

FIGURE 15. RADAR Graph: Results for Statistical Based Features Selection
(Standalone Model) Algorithm.

3) RESULTS: ML ALGORITHMS ON CASE STUDIES BASED
ON F-REGRESSION FEATURES SELECTION
Following the procedure which we have obtained in the
previous two subsections, we have applied our trained ML

VOLUME 11, 2023 27779

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 13. Results: ML Algorithms on Case Studies (All Features).

TABLE 14. Results: ML Algorithms on Case Studies.

algorithms on our case studies using F-Regression feature
selection.

Previously, in Table 12, ML algorithms tend to produce
good results on simple ISBSG dataset. Lets compare these
results with the results on Case Studies as mentioned above
in Table 15. On both occasion, ANN and SVR produced good
result, but on the basis of overall performance ANN have
produced best results (PRED - ISBSG = 0.953 and Case
Studies = 1) and (MMRE ISBSG = 0.06 and Case Studies
= 0.03). Among ML, worst results was produced by Linear
Regression (PRED - ISBSG = 0.5 and Case Studies = 0.5)
and (MMRE - ISBSG = 1.28 and Case Studies = 1.28).

IX. RESULTS OF HETEROGENEOUS ENSEMBLE MODELS
The acquired information will be applied to the proposed
model, and the measurement of the solution will be evaluated
to ascertain the anticipated effort. To do a comparative anal-
ysis, four machine learning models—Support Vector Regres-
sor (SVR), Linear Regression, K-Nearest Neighbor (k-NN),
XGBoost Regressor, and Artificial Neural Network (ANN)—
have been introduced.

The estimation of software work is a regression problem in
the context of ML. Given a history of correlation between the
two variables, the regression algorithms are an equation that
seeks to estimate the value of a variable (y) based on one or
more independent variables (x). The goal of the function is to
create a linear relationship between X and Y so that X’s value
can be determined from Y’s value [64].

A. RESULTS OF USE CASE POINTS FOR EFFORT
ESTIMATION (UCP)
1) COMPUTE UNADJUSTED ACTOR WEIGHT
During this phase, the unadjusted actor weight is calculated
over eight case studies. Unadjusted Actor Weight is the
sum of all actor weights stated in Table 16. Three complex
actors, one average actor, and two simple actors are among
the 15 unadjusted actor weights in the case study (CS1).
Similar results are obtained for CS2, which has 3 average
and 2 complicated players, CS3, which has 1 simple and
1 difficult actor, and CS4, which has 2 complex actors, which,
respectively, equal to 12, 4, and 6 UAW.

2) ESTIMATE THE UNADJUSTED USE CASE WEIGHT
The unadjusted use case weight at this level was calculated
using data from four case studies. The total use case weights
listed in Table 17 make up the unadjusted use case weight
(UUCW). The calculated unadjusted use case weights for
cases (CS1, CS2, CS3, CS5, CS6, CS7, and CS8) are 195,
70, 120, 130, 75, 90, 200, and 130, respectively.

3) ESTIMATION OF THE UNADJUSTED USE CASE POINT
(UUCP)
The Unadjusted Use Case Point (UUCP), also known as
the Unadjusted Use Case Points (UUCP) given in Table 18,
is created by adding the Unadjusted ActorWeight (UAW) and
Unadjusted Use-Case Weight (UUCW).

27780 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 15. Results: ML Algorithms on Case Studies - F-Regression.

TABLE 16. Unadjusted Actor Weight (UAW).

TABLE 17. Use Case Weight (UUCW).

TABLE 18. Unadjusted Use Case Point (UUCP).

4) COMPUTING TECHNICAL COMPLEXITY FACTORS
The technical complexity factors, which have values rang-
ing from 0 (completely inconsequential) to 5, characterize
the non-functional project needs (very relevant). The author
provided these components to the creators of the chosen
instances in order for them to achieve the appropriate value

(RV) against 13 technical characteristics. It is crucial to
remember that separate teams built the target instances with
various requirements and scopes, which results in a range of
associated values. The values shown in Table and Figure were
created by the developers of the selected instances using
their prior development experience. The technical factors

VOLUME 11, 2023 27781

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

(T1-T13) are multiplied by their corresponding weights to
produce the technical factor (TFactor), which is then calcu-
lated by adding up all the resulting values. Equation 12 is used
to compute the TCF. The TCF for (CS1, CS2, CS3, CS5, CS6,
CS7, and CS8) is, respectively,.89,.93,.95, and.92.

5) COMPUTING ENVIRONMENTAL COMPLEXITY FACTORS
The effects of environmental circumstances on production
are calculated using eight environmental parameters (E1-E8).
According to these criteria, the initiatives are graded from
value (completely unimportant) to 5. (very relevant). This
study employed the expertise of experts from six software
sectors to compute the related value (RV) against eight envi-
ronmental elements in order to prevent bias in the outcomes
of these aspects. In addition, four experts who each work in
a different area of the software industry provided the values
for CS1 and CS2 (expert 1 for CS1 and expert 2 for CS2,
respectively). The data are then combined to improve the
values’ accuracy. However, for CS3 and CS4, the expertise
of two professionals working in two separate software busi-
nesses is utilized. It is crucial to keep in mind that because
different teams generated the target instances, the associated
values are diverse. The values presented in Tables 27 and
Table 26 were recommended by the experts based on their
prior development experiences(Please refer to Appendix A
for all the Tables1).
The computations for the environmental factor (EFac-

tor) and environmental complexity factor (ECF).2 Table 19
reveals that the average ECF for CS1, CS2, CS3, CS4, CS5,
CS6, CS7, and CS8 is, respectively, 0.755, 0.5525, 0.62,
0.5825, 0.8675, 0.8, 0.83, and 0.8525.5.

a: COMPUTING ADJUSTED USE CASE POINT (AUCP) AND
ESTIMATED EFFORT
The size figure for the chosen situations is provided by the
AUCP. The productivity factor is a crucial component of
estimating software effort because it helps translate size into
human work. It is described as a ratio of effort to area.
After the corrected UCP has been calculated, productivity
is multiplied. The estimated and actual effort of the selected
situations are shown in Table 20 and Figure 18.

Karner’s first calculation of the number of man hours
required for each AUCP was twenty. the notion that environ-
mental factors should be taken into account when calculating
the number of work hours needed for each use case point. The
number of environmental factors with scores between one and
three in categories E1 through E6 is tallied and added to the
factors with scores between three and eight in categories E7
through E8, according to Schneider andWinters [65]. if more
than two are united. If there are three or four UCPs, use
28 man hours per UCP instead of the typical advice of 20.
If there are more than five use case points, it is frequently

1Please refer Appendix for Table 25 consist of Technical Complexity
factors of selected case studies.

2Please refer Appendix section for Table 27 consist of environmental
values assigned by experts of case studies.

suggested to consider budget 36 man hours for each one.
So, we applied the Schneider and Winters [65] approach to
calculate the productivity factor. But using this method results
in a productivity factor of 20 man-hours for each use case
point for all of the selected examples.

B. EFFORT ESTIMATION USING EXPERT JUDGEMENT
One of the most widely used estimation strategies is effort
estimation by expert judgment. Many sectors rely on the
expert opinion when estimating a project’s cost, the number
of people needed, and how the tasks will be distributed among
them. The level of effort in the selected situations is esti-
mated using the experts’ expertise. The experts’ demographic
information is obtained and analyzed using a checklist fill-in
method to ensure that the appropriate specialists are acces-
sible for the software company’ effort calculation. Due to
various organizational laws and regulations, approaching the
specialists may be a challenging task. Although the expert
may be extremely skilled and knowledgeable and able to
complete the assignment in a field closely connected to it,
accurate estimation may be difficult.3

The primary determinants of effort are the target instances’
functional requirements. The analysts were able to identify
the most likely attempt in each instance using the checklist’s
A and B. Before estimating the time needed to accomplish the
functional needs of the projects, the specialists were aware
of the technical and environmental factors4 present in the
target scenarios. For the four case studies, there are a total of
28, 11, 23, and 34 functional criteria, respectively. Different
professionals have different levels of prejudice, which are a
product of both conscious and unconscious processes. The
average of each expert’s unique estimations, which are added
together to create a single estimate, is taken into consideration
to lessen the amount of bias. The time experts estimate it will
take to develop the target cases.

X. COMPARATIVE ANALYSIS, RESULTS AND DISCUSSION
A. RESULTS OF BASE MODELS BM1, BM2 AND BM3
We are going to show the outcomes of the UCP, ANN, and EJ
in this part. Additionally, the actual outcome will be shown
for comparison. Table 22 shows the efforts of BM1, BM2,
and BM3 with regard to their case study.

a: RQ1: DOES A HETEROGENEOUS ENSEMBLE EFFORT
ESTIMATION MODEL USING UCP, ANN AND EJ PRODUCED
BETTER RESULTS AS COMPARED TO STANDALONE ML
MODELS?
To answer RQ1, lets first have a brief review of the exper-
iments. Machine learning models were trained using the
benchmark datasets ISBSG and UCP. Eight case studies from
the software industries were gathered, and these ML meth-
ods were then used on them in real-world scenarios. The

3Please refer Appendix for Table 28 consist of Feedback given by Experts.
4Please refer Appendix-A for Table 26 for Environment Complexity

Factor.

27782 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 16. Graphical representation TCF.

TABLE 19. Average ECF of Case Studies.

TABLE 20. Estimated effort using UCP method.

assessment standards for our findings were carried out by
PRED. The PRED value with the highest value was selected
using the combination rule of the Ensemble model. All of
the ML models were applied to the case studies, and the ML
models were then integrated by averaging the highest PRED
score.

Table 23 compares Heterogeneous Proposed Ensemble
with stand-alone algorithms. The Heterogeneous Ensemble
outperforms the StandaloneAlgorithm during our experimen-
tation as one can observed in the cell with the darkest colour,
as seen in Table 23. This would be seen as the ensemble’s
most noticeable improvement over the stand-alone method

VOLUME 11, 2023 27783

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

FIGURE 17. Graphical representation ECF.

FIGURE 18. Estimated effort using UCP method.

27784 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 21. Results: Expert Judgement - Effort Estimation.

TABLE 22. Hetrogeneous Model Results.

as Heterogeneous Ensemble outperformed XG-Boost Stan-
dalone in all areas of the ISBSG dataset by 78%. Second,
the findings of the heterogeneous ensemble model exceeded
those of the k-NN by a factor of 70.45%. (ISBSG Dataset
on Literature-Based Feature Selection). Table 23 shows
that the Heterogeneous Ensemble likewise performed well
on SVR by 62.7% and LR by 65.45%(ISBSG Dataset on
Literature-Based Feature Selection).

B. ML ENSEMBLE MODEL VS. STANDALONE ML MODEL
RQ2: Does Ensemble Model Produced Better Results as
Compared to Machine Learning Model?: ML Ensemble
models have improved Standalone Model results on k-NN by
55%. (ISBSG Dataset with Literature-Based Feature selec-
tion). The ML Ensemble has also delivered successful results
on SVR by 47% and LR by 50% with light-darker shading
(ISBSG Dataset with Literature-Based Feature selection).

The cell with the white shade, on the other hand, shows
that there was no appreciable difference between the perfor-
mance of the ML Ensemble model and that of Standalone
Models, including the variants of Standalone models LR and
XG-Boost. The negative numbers show that the Standalone
models’ values were bigger than those of the ML Ensemble,
which skews the findings in that way.

C. RESULTS BASED ON FEATURE SELECTION
RQ3: Does the Variation in Feature Selection of the Dataset
Have Any Impact on Result Accuracy: In our study we have
used feature selection not only to avoid the irrelevant infor-
mation. Nevertheless, it also help us to avoid the biasness of
the results. We have used three variation in our experiment
just to make sure that we have fully grasp the understanding
of the implementation of the ML technique and our proposed
model on our datasets.

The feature selection process is one of the crucial steps
in a feature engineering process. This technique involves
reducing the amount of input variables to produce a predic-
tive model. Feature selection procedures are used to reduce
the number of input variables by eliminating unused or
duplicated characteristics. The most crucial features for the
machine learning model are then eliminated from the list of
features. In machine learning, a feature selection aim chooses
the most advantageous set of characteristics that can be used
to build powerful models of the phenomenon being studied.

Lets compare the results of ANN algorithm in different
feature selection setups i.e. all features, selection based on
literature and on F-Regression. The training time of ANN in
All features was (436.409), in literature based selection ANN
spend (20.53), while on F-Regression ANN yield (161.36).
As we can observe that with all the irrelevant features, ANN
tends to take enormous time. Simply including all features
tends to waste time and eventually the results would not be
optimal. Hence we can say that feature selection not only
provide optimal results but also save a lot of precious time.

TheMMRE of ANN inAll features was (0.06), in literature
based selection ANN spend (0.22), while on F-Regression
ANN yield (0.06). However, PRED(25) of ANN in All fea-
tures was (0.948), in literature based selection ANN spend
(0.74), while on F-Regression ANN yield (0.953). Conclud-
ing the results based on precision metrics, we can say that
ANN has produced better results on feature selection.

In our concluding remarks we can say that feature selection
increase accuracy. It also enhances the algorithms’ capacity to
predict results by concentrating on the most crucial variables
and eliminating the unnecessary ones. it minimizes the over-
fitting, improve accuracy and reduce training time. Decisions
are less likely to be based on noise when there are fewer
redundant data points. Less data allows algorithms to operate
more rapidly.

VOLUME 11, 2023 27785

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 23. Results Comparation of (Hetrogen) Proposed Ensemble Model VS ML Standalone Models.

TABLE 24. Results Comparison of ML Ensemble Model VS ML Standalone Models.

TABLE 25. Technical complexity factors of selected cases T1 - T13.

XI. LIMITATION OF THE PROPOSED HETEROGENEOUS
ENSEMBLE MODEL
Heterogeneous ensemble models combine different types of
base models, such as decision trees, neural networks, and
support vector machines, to improve the overall performance
of the ensemble. However, these models also have several
limitations, including:

• Complexity: Our proposed Heterogeneous ensemble
model can be more complex than homogeneous ensem-
ble models because they combine different types of
models with different parameters, architectures, and
hyper-parameters. This can make it difficult to interpret
the results and diagnose problems with the model.

• Over-fitting: Our proposed Heterogeneous ensemble
model can be prone to over-fitting, if the base models
are not diverse enough or if the ensemble is too complex.
This can lead to a decrease in performance on new data.

• Computational cost: Heterogeneous ensemble models
can be more computationally expensive than homoge-
neous ensemble models because they require training
multiple types of models with different parameters
and architectures. In our case we tried different
cleaned datasets but still a lot of training was served.
It would be interesting to see how proposed model
react when encounter a diverse, large and complex
dataset.

27786 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TA
B

LE
26

.
En

vi
ro

nm
en

ta
lC

om
pl

ex
it

y
Fa

ct
or

(E
CF

).

VOLUME 11, 2023 27787

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TA
B

LE
27

.
En

vi
ro

nm
en

ta
lV

al
ue

s
A

ss
ig

ne
d

by
Ex

pe
rt

.

27788 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TA
B

LE
28

.
Ex

pe
rt

’s
Fe

ed
ba

ck
.

VOLUME 11, 2023 27789

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

• Training data requirements: Heterogeneous ensemble
models require more training data than homogeneous
ensemble models because they have more parameters
and architectures to learn. This can be a problem if the
dataset is small or imbalanced.We faced similar problem
when applying to another benchmark dataset i.e. UCP
Dataset.

• Integration challenges: Heterogeneous ensemblemodels
can be challenging to integrate with existing systems
or workflows because they require different types of
models and may have different input and output formats.

XII. CONCLUSION AND FUTURE DIRECTION
The primary goal of this research is to employ the ensem-
ble technique to improve the precision of performance esti-
mates for software development effort. For estimating soft-
ware effort, we provided a state-of-the-art, Heterogeneous
Ensemble model. To increase the efficiency and precision of
software development initiatives, a heterogeneous ensemble
model that combines artificial neural networks (ANN), use
case points (UCP), and expert judgement (EJ) is proposed and
implemented on benchmark dataset i.e. ISBSG and Industrial
case studies. We have used different variation in using the
dataset not only to avoid the biasness in results but also to
observe the difference in results. It was interesting to see how
machine learning algorithms react to different experimental
setups.

During our experiments, we have found that ensemble
models have produced better results as compared to stan-
dalone models on the benchmark datasets. On the other
hand, our proposed heterogeneous ensemble model have also
shown exceptional results on industrial case studies. We have
observed in the literature [10], [55], and [56] that ensemble
model have produce better results as compared to standalone
models. With our experiments, not only we have proved
the above said observations, but with our proposed hetero-
geneous model, it has open new dimensions of research.
In future, we are going to implement the same setup (or with
different combination rule) on some other datasets to observe,
does number of features has any impact on the observations?
does change in algorithms setup like changing the activation
function of Artificial Neural Network or combination rule,
have any impact on the heterogeneous ensemble model’s
results?. Moreover, we are planning to compare our heteroge-
neous ensemble model with different ensemble model setup
and try to observe, how we can improve the accuracy by tun-
ing the machine learning algorithms. It would be interesting
to see how heterogeneous ensemble models compete with
powerful ensemble models with respect to training time and
precision metrics.

Our proposed ensemble model can provide better perfor-
mance than a single model. However, it is arguable that a
heterogeneous ensemble model is the state of the art for all
problems. The choice of modeling approach depends on the
specific problem, the available data, and the desired out-
come. This is because different methods can capture different

aspects of the data, and combining them can lead to a more
robust and accurate prediction.

In the specific case of software development effort esti-
mation, UCP is a widely used method for predicting the size
and complexity of a software project, while ANNs have been
shown to perform well in predicting software development
effort. Expert judgment can also provide valuable insights
and context-specific knowledge. Therefore, combining UCP,
ANN, and expert judgment in a heterogeneous ensemble
model for software development effort estimation can lever-
age the strengths of each method and lead to more accurate
and reliable predictions. However, the effectiveness of the
ensemble model also depends on how the individual models
are combined and how the weights are assigned to each
model.

APPENDIX A
TECHNICAL COMPLEXITY FACTOR
See Table 25.

APPENDIX B
ENVIRONMENTAL COMPLEXITY FACTOR (ECF)
See Table 26.

APPENDIX C
ENVIRONMENTAL VALUES ASSIGNED BY EXPERT
See Table 27.

APPENDIX D
EXPERT’s FEEDBACK
See Table 28.

ACKNOWLEDGMENT
The authors would like to thank Dr. Yasir Mahmood (Univer-
siti Teknologi Malaysia), Dr. Yaseen Khan (Daraz-Alibaba
Group Inc.), and Dr. Salman Ahmed Khan (The University
of Lahore, Pakistan) for their sincere guidance. This research
work is dedicated to Dr. Chao Liu, who unfortunately passed
away before this study report was published. He was an
exceptional teacher, a supervisor, and a mentor. They all
grieve his passing deeply.

REFERENCES
[1] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, ‘‘A new approach

to software effort estimation using different artificial neural network
architectures and Taguchi orthogonal arrays,’’ IEEE Access, vol. 9,
pp. 26926–26936, 2021.

[2] P. Rai, D. K. Verma, and S. Kumar, ‘‘A hybrid model for prediction of
software effort based on team size,’’ IET Softw., vol. 15, no. 6, pp. 365–375,
Dec. 2021.

[3] Z. Dan, ‘‘Improving the accuracy in software effort estimation: Using
artificial neural network model based on particle swarm optimization,’’ in
Proc. IEEE Int. Conf. Service Oper. Logistics, Informat. (SOLI), Jul. 2013,
pp. 180–185.

[4] CHAOS Report 2015, Standish Group Int., Boston, MA, USA, 2015, p. 13.
[5] The Standish Group CHAOS Report, Standish Group Int., Boston, MA,

USA, 2009.
[6] M. Jørgensen, ‘‘Forecasting of software development work effort: Evi-

dence on expert judgement and formal models,’’ Int. J. Forecasting, vol. 23,
no. 3, pp. 449–462, Jul. 2007.

27790 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

[7] M. Z. M. Hazil, M. N. Mahdi, M. S. M. Azmi, L. K. Cheng, A. Yusof,
and A. R. Ahmad, ‘‘Software project management using machine learning
technique—A review,’’ in Proc. 8th Int. Conf. Inf. Technol. Multimedia
(ICIMU), Aug. 2020, pp. 363–370.

[8] S.-J. Huang and N.-H. Chiu, ‘‘Optimization of analogy weights by genetic
algorithm for software effort estimation,’’ Inf. Softw. Technol., vol. 48,
no. 11, pp. 1034–1045, Nov. 2006.

[9] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl, ‘‘Optimal
project feature weights in analogy-based cost estimation: Improvement and
limitations,’’ IEEE Trans. Softw. Eng., vol. 32, no. 2, pp. 83–92, Feb. 2006.

[10] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, ‘‘Systematic literature review of
machine learning based software development effort estimation models,’’
Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59, Jan. 2012.

[11] M. A. Ahmed, I. Ahmad, and J. S. AlGhamdi, ‘‘Probabilistic size proxy
for software effort prediction: A framework,’’ Inf. Softw. Technol., vol. 55,
no. 2, pp. 241–251, Feb. 2013.

[12] H. Leung and Z. Fan, ‘‘Software cost estimation,’’ inHandbook of Software
Engineering & Knowledge Engineering. Hong Kong: The Hong Kong
Polytechnic Univ., 2002.

[13] M. Jørgensen, ‘‘Communication of software cost estimates,’’ in Proc. 18th
Int. Conf. Eval. Assessment Softw. Eng., Jul. 2014, pp. 1–5.

[14] Y. Mahmood, N. Kama, and A. Azmi, ‘‘A systematic review of studies
on use case points and expert-based estimation of software development
effort,’’ J. Softw., Evol. Process, vol. 32, no. 7, Jul. 2020, Art. no. e2245.

[15] T. K. Abdel-Hamid, ‘‘On the utility of historical project statistics for cost
and schedule estimation: Results from a simulation-based case study,’’
J. Syst. Softw., vol. 13, no. 1, pp. 71–82, Sep. 1990.

[16] B. W. Boehm and R. Valerdi, ‘‘Achievements and challenges in cocomo-
based software resource estimation,’’ IEEE Softw., vol. 25, no. 5,
pp. 74–83, Sep. 2008.

[17] B. W. Boehm, Software Engineering Economics. Upper Saddle River, NJ,
USA: Prentice-Hall, 1981.

[18] L. H. Putnam, ‘‘A general empirical solution to the macro software sizing
and estimating problem,’’ IEEE Trans. Softw. Eng., vol. SE-4, no. 4,
pp. 345–361, Jul. 1978.

[19] A. J. Albrecht, ‘‘Measuring application development productivity,’’ in
Proc. IBM Appl. Develop. Symp., Oct. 1979, pp. 83–92.

[20] A. J. Albrecht and J. E. Gaffney, ‘‘Software function, source lines of code,
and development effort prediction: A software science validation,’’ IEEE
Trans. Softw. Eng., vol. SE-8, no. 6, pp. 639–648, Nov. 1983.

[21] Users Manual El Segundo, SEER-SEM, Galorath, Los Angeles, CA, USA,
2001.

[22] H. A. Rubin, ‘‘Interactive macro-estimation of software life cycle parame-
ters via personal computer: A technique for improving customer/developer
communication,’’ in Proc. Symp. Appl. Assessment Automated Tools Softw.
Develop. San Francisco, CA, USA: IEEE, 1983, pp. 44–54.

[23] Y.-C. Ho and C. D. McDevitt, ‘‘Determination of optimal resource alloca-
tion for software development—An application of a software equation,’’
Inf. Manage., vol. 18, no. 2, pp. 79–85, Feb. 1990.

[24] F. J. Heemstra, ‘‘Software cost estimation,’’ Inf. Softw. Technol., vol. 34,
no. 10, pp. 627–639, Oct. 1992.

[25] Y. Yang, B. Boehm, and B. Clark, ‘‘Assessing COTS integration risk using
cost estimation inputs,’’ in Proc. 28th Int. Conf. Softw. Eng., May 2006,
pp. 431–438.

[26] J. Grenning, ‘‘Planning poker or how to avoid analysis paralysis while
release planning,’’ Hawthorn Woods, Renaissance Softw. Consulting,
vol. 3, 2002.

[27] C. L. Martín, J. L. Pasquier, C. M. Yáñez, and A. T. Gutiérrez, ‘‘Software
development effort estimation using fuzzy logic: A case study,’’ in Proc.
6th Mex. Int. Conf. Comput. Sci. (ENC), 2005, pp. 113–120.

[28] C. E. Walston and C. P. Felix, ‘‘A method of programming measurement
and estimation,’’ IBM Syst. J., vol. 16, no. 1, pp. 54–73, 1977.

[29] S. K. Rath, B. P. Acharya, and S.M. Satapathy, ‘‘Early stage software effort
estimation using random forest technique based on use case points,’’ IET
Softw., vol. 10, no. 1, pp. 10–17, Jan. 2016.

[30] D. Wu, J. Li, and C. Bao, ‘‘Case-based reasoning with optimized weight
derived by particle swarm optimization for software effort estimation,’’ Soft
Comput., vol. 22, no. 16, pp. 5299–5310, Aug. 2018.

[31] J.-S. Chou and C.-C. Wu, ‘‘Estimating software project effort for manufac-
turing firms,’’ Comput. Ind., vol. 64, no. 6, pp. 732–740, Aug. 2013.

[32] A. B. Nassif, D. Ho, and L. F. Capretz, ‘‘Towards an early software
estimation using log-linear regression and a multilayer perceptron model,’’
J. Syst. Softw., vol. 86, no. 1, pp. 144–160, Jan. 2013.

[33] F. Sarro, A. Petrozziello, and M. Harman, ‘‘Multi-objective software effort
estimation,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016, pp. 619–630.

[34] M. Shepperd and G. Kadoda, ‘‘Comparing software prediction tech-
niques using simulation,’’ IEEE Trans. Softw. Eng., vol. 27, no. 11,
pp. 1014–1022, Nov. 2001.

[35] E. Kocaguneli, A. Tosun, and A. Bener, ‘‘AI-based models for software
effort estimation,’’ in Proc. 36th EUROMICRO Conf. Softw. Eng. Adv.
Appl. (SEAA), Sep. 2010, pp. 323–326.

[36] L. L. Minku and X. Yao, ‘‘Software effort estimation as a multiobjective
learning problem,’’ ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4,
pp. 1–32, Oct. 2013.

[37] M. Azzeh, A. B. Nassif, and L. L. Minku, ‘‘An empirical evaluation
of ensemble adjustment methods for analogy-based effort estimation,’’
J. Syst. Softw., vol. 103, pp. 36–52, May 2015.

[38] A. Idri, M. Hosni, and A. Abran, ‘‘Improved estimation of software devel-
opment effort using classical and fuzzy analogy ensembles,’’ Appl. Soft
Comput., vol. 49, pp. 990–1019, Dec. 2016.

[39] M. O. Elish, ‘‘Assessment of voting ensemble for estimating software
development effort,’’ in Proc. IEEE Symp. Comput. Intell. Data Mining
(CIDM), Apr. 2013, pp. 316–321.

[40] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[41] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996. [Online]. Available: https://link.springer.com/article/
10.1007

[42] Y. Liu, X. Yao, and T. Higuchi, ‘‘Evolutionary ensembleswith negative cor-
relation learning,’’ IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 380–387,
Nov. 2000.

[43] M. Hosni, A. Idri, and A. Abran, ‘‘On the value of filter feature selection
techniques in homogeneous ensembles effort estimation,’’ J. Softw., Evol.
Process, vol. 33, no. 6, pp. 1–38, Jun. 2021.

[44] E. Kocaguneli, T. Menzies, and J. W. Keung, ‘‘On the value of ensemble
effort estimation,’’ IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1403–1416,
Nov. 2012.

[45] M. Shepperd and C. Schofield, ‘‘Estimating software project effort using
analogies,’’ IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[46] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, ‘‘Neural network models
for software development effort estimation: A comparative study,’’ Neural
Comput. Appl., vol. 27, no. 8, pp. 2369–2381, Nov. 2016.

[47] K. Roy Clemmons, ‘‘Project estimation with use case points,’’ CrossTalk,
vol. 19, no. 2, pp. 18–22, 2006.

[48] G. Karner, ‘‘Resource estimation for objectory projects,’’ Objective Syst.
SF AB, 1993.

[49] C. López-Martín and A. Abran, ‘‘Neural networks for predicting the
duration of new software projects,’’ J. Syst. Softw., vol. 101, pp. 127–135,
Mar. 2015.

[50] D. R. Pai, K. S. McFall, and G. H. Subramanian, ‘‘Software effort estima-
tion using a neural network ensemble,’’ J. Comput. Inf. Syst., vol. 53, no. 4,
pp. 49–58, Jun. 2013.

[51] C. Banerjee, T. Mukherjee, and E. Pasiliao, ‘‘An empirical study on gener-
alizations of the ReLU activation function,’’ inProc. ACM Southeast Conf.,
Apr. 2019, pp. 164–167.

[52] A. F. Agarap, ‘‘Deep learning using rectified linear units (ReLU),’’ 2018,
arXiv:1803.08375.

[53] D. Boob, S. S. Dey, and G. Lan, ‘‘Complexity of training ReLU neural
network,’’ Discrete Optim., vol. 44, pp. 1–21, May 2020.

[54] M. Jørgensen, ‘‘Unit effects in software project effort estimation: Work-
hours gives lower effort estimates than workdays,’’ J. Syst. Softw., vol. 117,
pp. 274–281, Jul. 2016.

[55] A. Idri, M. Hosni, and A. Abran, ‘‘Systematic literature review of ensemble
effort estimation,’’ J. Syst. Softw., vol. 118, pp. 151–175, Aug. 2016.

[56] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, ‘‘Software
effort estimation accuracy prediction of machine learning techniques: A
systematic performance evaluation,’’ Softw., Pract. Exp., vol. 52, no. 1,
pp. 39–65, Jan. 2022.

[57] S. S. Ali, M. S. Zafar, and M. T. Saeed, ‘‘Effort estimation problems in
software maintenance—A survey,’’ in Proc. 3rd Int. Conf. Comput., Math.
Eng. Technol. (iCoMET), Jan. 2020, pp. 1–9.

[58] C. F. Kemerer, ‘‘An empirical validation of software cost estimation mod-
els,’’ Commun. ACM, vol. 30, no. 5, pp. 416–429, May 1987.

VOLUME 11, 2023 27791

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

[59] Z. Li, ‘‘Intelligently predict project effort by reduced models based on
multiple regressions and genetic algorithms with neural networks,’’ in
Proc. Int. Conf. E-Bus. E-Government (ICEE), May 2010, pp. 1536–1542.

[60] A. Idri, I. Abnane, and A. Abran, ‘‘Evaluating Pred(p) and standardized
accuracy criteria in software development effort estimation,’’ J. Softw.,
Evol. Process, vol. 30, no. 4, pp. 1–15, Apr. 2018.

[61] S.-J. Huang and N.-H. Chiu, ‘‘Applying fuzzy neural network to estimate
software development effort,’’ Int. J. Speech Technol., vol. 30, no. 2,
pp. 73–83, Apr. 2009.

[62] S. H. S. Moosavi and V. K. Bardsiri, ‘‘Satin bowerbird optimizer: A new
optimization algorithm to optimize ANFIS for software development effort
estimation,’’ Eng. Appl. Artif. Intell., vol. 60, pp. 1–15, Apr. 2017.

[63] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and C. Lokan,
‘‘The usage of ISBSG data fields in software effort estimation: A system-
atic mapping study,’’ J. Syst. Softw., vol. 113, pp. 188–215, Mar. 2016.

[64] W. D. O. Bussab and P. A. Morettin, Estatística Básica, 2010, pp. 16–540.
[65] G. Schneider and J. P. Winters, Applying Use Cases: A Practical Guide.

India: Pearson, 2001.

SYED SARMAD ALI received the bachelor’s
degree in computer engineering from Sir Syed
University of Engineering and Technology
(SSUET), Pakistan, and the M.S. degree from
Coventry University, Coventry, U.K., in 2012.
He is currently pursuing the Ph.D. degree in
software engineering with the Software Engineer-
ing Institute (SEI), Beihang University, Beijing,
China.

Apart from working in the industry, he served
as an Assistant Professor for ten years at different universities. His research
interests include data science and machine learning, deep learning, ensemble
models (heterogeneous and homogeneous), and MOEAs using co-evolution
in search-based software engineering, under the supervision of Prof. Chao
Liu, Prof. Ren Jian, and Prof. JiWu (Beihang Software Testing and Evolution
Laboratory—BHSTEL).

JIAN REN received the dual M.Sc. degrees from
the Queen Mary University of London and Kings
College London and the Ph.D. degree in computer
science from the University College London. He is
currently an Assistant Professor with the School
of Computer Science, BeihangUniversity, Beijing.
His research interests include search-based soft-
ware engineering, software project planning and
management, requirements engineering, and evo-
lutionary computation.

KUI ZHANG received the master’s degree in
information management and information sys-
tems from the Beijing Institute of Technology,
Beijing, China, in 2010, and the Ph.D. degree
from the Software Engineering Institute (SEI),
Beihang University. His research interests include
model-driven engineering, model-based real-time
analysis, airworthiness certification, model-based
safety analysis, and general model-based software
engineering.

JI WU received the M.S. degree from the Second
Research Institute, China Aerospace Science and
Industry Group, in 1999, and the Ph.D. degree
from Beihang University, in 2003. He is currently
an Associate Professor of software engineering
with Beihang University. His research interests
include embedded systems and software modeling
and verification, software requirement and archi-
tecture modeling and verification, safety and reli-
ability assessment, and software testing.

CHAO LIU received the M.S. degree in computer
software and theory and the Ph.D. degree from
Beihang University. He is currently a Professor
of software engineering with Beihang University.
In the last ten years, he mainly focuses on the
modeling and verification of safety-critical soft-
ware and systems, including safety requirement
modeling and analysis, evidence-based software
safety analysis and evaluation, software safety and
reliability analysis based on the software devel-

opment process, and model-driven software testing. His research interests
include software quality engineering, software testing, model-driven soft-
ware development, and software process improvement.

27792 VOLUME 11, 2023

