IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 February 2023, accepted 3 March 2023, date of publication 13 March 2023, date of current version 23 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3256533

== RESEARCH ARTICLE

Heterogeneous Ensemble Model to Optimize
Software Effort Estimation Accuracy

SYED SARMAD ALI'“12, JJAN REN"“?, KUI ZHANG "1, J1 WU, AND CHAO LIU!

I'State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2Department of Computer Science, Mohammad Ali Jinnah University, Karachi 75400, Pakistan

Corresponding author: Jian Ren (renjian @buaa.edu.cn)

This work was supported in part by the State Key Laboratory of Software Development Environment.

ABSTRACT The software industry has experienced rapid expansion in recent years, with software devel-
opment now essential to the success of many multinational corporations. The demand for complex software
systems has dramatically increased, effective software development has become crucial, given the limitations
of resources such as money, time, and labor. Cost and effort calculations significantly impact the development
process and client needs, and project failure is often caused by errors in job estimating. Underestimating
a project’s cost and effort can have severe repercussions, such as exceeding the project’s budget. Project
overruns, on the other hand, can also have a detrimental impact on software projects’ successful completion.
Researchers and experts in the software industry are continually exploring ways to keep management and
development productivity at high levels. However, standalone estimating models have revealed inadequacies
over the last decade, and they have not produced any noteworthy research results. Recent literature suggests
that opting for ensemble models would yield better results than standalone models. We have proposed a
heterogeneous ensemble effort estimation (EEE) model in this research. Our proposed model comprises
standalone estimating models such as Use Case Point, Expert Judgment (EJ), and Artificial Neural Network
(ANN). We combined the effort of each unique base model using linear combination rule. To validate our
model’s effectiveness, we applied it to the benchmark dataset, the International Software Benchmarking
Standards Group (ISBSG), using three different variations to avoid biases. We further applied the trained
models to industry use cases for cross-validation. Our study’s findings demonstrated that, in comparison to
stand-alone estimate strategies, the ensemble technique produced better estimation results. Finally, our study
proposes a heterogeneous ensemble effort estimation model that outperforms standalone models in terms of
accuracy. This model has the potential to aid in effective software development, particularly in project cost
and effort estimation.

INDEX TERMS Software effort estimation, ensemble effort estimation (EEE), standalone estimation, use
case point (UCP), machine learning algorithms, deep learning, expert judgement.

I. INTRODUCTION

Over the past decade, the software industry has under-
gone significant development, and software development has
become essential to the success of many multinational cor-
porations [1]. The development of software that operates
effectively within the constraints of cost, effort, and time

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry

has become a crucial factor. Both software practitioners and
academics are exploring strategies to maintain high levels of
productivity in both development and management. During
the development of a new software project, effectively man-
aging issues related to cost, time, and labor is critical. How-
ever, the cost of software development has risen considerably,
presenting significant challenges for businesses. Addition-
ally, accurately estimating project effort and time has become
increasingly important. It is not uncommon for software

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

27759

https://orcid.org/0000-0002-1036-2924
https://orcid.org/0000-0001-7924-9586
https://orcid.org/0000-0002-8784-2184
https://orcid.org/0000-0002-3937-2368
https://orcid.org/0000-0002-1939-4842

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

development to exceed predicted costs and timelines [2], [3].
According to Stanish Group International, around 60% of
IT projects were delayed, and 56% of them exceeded the
budget [4], [5]. Software effort estimation (SEE), a method-
ology for determining the amount of labor required to con-
struct a software system, is critical to the success of software
project management and related activities [6], [7], [8], [9].
Several factors, such as project duration, cost, and necessary
manpower, need to be considered when estimating the effort
required for a software project.

Effort appraisal is a critical aspect of software project
management and involves several important considerations,
including project duration, cost, and necessary manpower [3].
According to Wen et al. [10], the effort required for a project
is often measured in man-months or man-hours. Predicting
effort is the primary function of software cost estimation,
which is why the research community often refers to cost esti-
mation as effort estimation [11]. Developing software with
a precise understanding of the required effort is crucial yet
challenging. Therefore, both academics and practitioners are
actively researching software development effort estimation
and duration, as estimating software efforts and planning for
resources are necessary for creating a trustworthy software
system [12], [13]. In a 2017 assessment conducted by the
Project Management Institute (PMI), it was found that while
69% of software projects met their initial goals and business
priorities, a significant number of projects faced challenges.
Specifically, 43% of projects failed to adhere to their intended
budget, 48% experienced delays, and 32% failed to deliver
altogether. Large effort overruns can lead to dissatisfied cus-
tomers, substandard software, and frustrated software devel-
opers [14].

We have proposed Heterogeneous ensemble model which
is a combination of Use Case Point (UCP), Artificial Neural
Network and Expert Judgement (EJ). In the next section,
we are going to discuss several model which were used in
the literature to predict software effort estimation. However,
our proposed model Heterogeneous ensemble models can be
more effective than single models or homogeneous ensemble
models for software effort estimation for several reasons:

« Diverse set of models: A heterogeneous ensemble model
combines different types of models, such as decision
trees, neural networks, and regression models, to lever-
age the strengths of each model and reduce the weak-
nesses. This can lead to a more accurate and robust
estimation of software effort.

o Improved generalization: A heterogeneous ensemble
model can improve the generalization of software effort
estimation by reducing the impact of bias and variance.
Bias refers to the systematic errors in the model, while
variance refers to the sensitivity of the model to changes
in the training data. A heterogeneous ensemble model
can reduce both bias and variance by combining differ-
ent models that have different strengths and weaknesses.

« Robustness to noise and outliers: A heterogeneous
ensemble model can be more robust to noise and outliers

27760

in the training data because it combines multiple models
that are trained on different subsets of the data. This can
reduce the impact of noisy or outlier data points on the
final prediction.

o Scalability: A heterogeneous ensemble model can be
more scalable than a single model or a homogeneous
ensemble model because it can leverage the strengths of
different types of models and handle different types of
input data.

Overall, a heterogeneous ensemble model can be more
effective than single models or homogeneous ensemble mod-
els for software effort estimation because it combines dif-
ferent types of models to leverage their strengths, reduce
weaknesses, improve generalization, and be more robust to
noise and outliers.

II. LITERATURE REVIEW

Effort estimation, which refers to the prediction of time and
resources needed for software development, has been exten-
sively studied by both practitioners and researchers. Accord-
ing to Leung and Fan [12], the process of evaluating software
effort has evolved to include the cost and resources required
to produce software products. Effort estimation models were
first introduced in the early 1950s [15], and since then,
numerous models have been presented by Boehm [16], [17],
Putnam [18], Albrecht [19], [20], SEER-SEM [21], Rubin
[22], and Yan-Chin and McDevitt [23]. These models aim
to efficiently allocate resources to meet project requirements.
However, none of these estimation models can be recognized
as trustworthy and cannot be used as a standard because
effort estimation is an unsettled and open-ended subject. Cost
estimation models often fail to provide accurate and reliable
projections, possibly due to their inadequacy in the firm’s
environment.

During his research, Heemstra [24] discovered that 30% of
companies do not estimate their budget. Furthermore, among
the total of 598 organizations surveyed, 50% do not keep
track of active projects. Inaccurate estimation has been shown
to cause 80% of businesses to overestimate expenses and
deadlines. The CHAOS research by The Standish Group [4]
suggests that inaccurate effort estimates account for approx-
imately 24% of project failures. In 2015, The Chaos Report
from The Standish Group International revealed that 56% of
IT projects exceeded their budget, while 60% were completed
late. Factors contributing to improper and inaccurate effort
estimation include the use of inexperienced estimators or
premature estimating. However, the accurate estimation of
effort is essential for generating requirements for discussions,
planning, bids, contract monitoring, and control. It also helps
in the more efficient preparation of resources for stakehold-
ers. Over the past three decades, researchers and practitioners
have collaborated to develop cost estimating models and tech-
niques for more accurate effort assessment. A mathematical
construct called a cost estimation model combines formulas
or algorithms for estimating the amount of time and work

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

required to complete a software project. For the last thirty
years, researchers and practitioners have worked together to
develop models and techniques for accurately estimating the
costs of software development efforts. One such model is the
cost estimation model, which is a mathematical construct that
combines formulas or algorithms to estimate the amount of
time and work required to complete a software project.

Software effort estimation is a crucial task for software
project managers, involving the prediction of the time and
resources required to develop a software system. This process
is essential for planning and allocating resources, setting
project timelines, and communicating project progress to
stakeholders. Several approaches to software effort estima-
tion exist, including expert judgment, algorithmic methods,
and machine learning techniques.

Expert judgment involves seeking input from experienced
software developers or project managers who possess knowl-
edge of the specific work being undertaken. This approach
relies on the expertise and knowledge of individuals pro-
viding the estimates, which may be subjective in nature.
Expert judgment has several variations, including the Delphi
Technique, Wide-Delphi Technique, Planning Poker, Work
Breakdown Structure, and Activity-Based Model. Delphi is a
consensus-based approach to effort estimation that involves
a team of professionals, including a software developer,
an estimation expert, and an expert from the application area.
This approach provides an ample communication channel for
the professionals to debate and discuss essential data and
information necessary for their cooperation and internal esti-
mations. The Wide-band Delphi technology was introduced
by the Rand Corporation and was further improved upon
by Barry Boehm and John Farquhar in the 1970s [25]. One
of the primary benefits of this strategy is the one-on-one
interaction between specialists, which facilitates planning,
scheduling, and estimating. The core principles of Wide-band
Delphi are grounded in group-based software cost estimation,
where required effort is computed using the group’s consen-
sus. Planning Poker is another consensus-based estimation
method, similar to Wideband Delphi. This strategy was ini-
tially proposed by Grenning in 2002 [26] and later promoted
by M. Cohn in his book from 2005 [27]. Planning Poker is
often used in agile development due to its alignment with the
people-focused Agile principles.

Algorithmic methods involve the use of a predetermined
set of rules or formulas to calculate estimates based on spe-
cific inputs. These methods can be based on historical data or
best practices in the field. During the 1970s, Lines of Code
(LOC) were considered the foundation for effort estimation,
and numerous estimation models were developed based on
LOC on various datasets [28]. The Putnam SLIM is one of the
earliest algorithmic cost models and is commonly regarded
as a macro estimate model based on the Norden/Rayleigh
function [18]. Functional Point Analysis (FPA) was estab-
lished to determine the time and money spent developing
new software applications as well as maintaining those that

VOLUME 11, 2023

already exist [19], [20]. Statistical modeling involves using
statistical techniques to analyze data from past projects to
develop models that can be used to predict future effort.
This approach may be more accurate than expert judgment
or algorithmic methods, but it requires a significant amount
of data and may be more complex to implement. The use case
point model was first proposed by Karner in 1993 and used to
calculate the software development effort with the aid of the
use case diagram. An early effort estimate based on use cases
can be developed if one has a good understanding of the issue
domain, system size, and architecture [29].

Since the 1990s, many researchers have suggested using
machine learning (ML) based Software Development Effort
Estimation (SDEE) models to improve estimation accuracy.
Wen et al. [10] conducted a study that found that eight differ-
ent types of ML techniques, including Case-Based Reasoning
(CBR), Artificial Neural Networks (ANN), Decision Trees
(DT), Bayesian Networks (BN), Support Vector Regression
(SVR), Genetic Algorithms (GA), Genetic Programming
(GP), and Association Rules (AR), have been used to estimate
software development effort. Among these algorithms, CBR
and ANN were found to be the most dominant in estimating
effort for software projects. The aforementioned ML tech-
niques were often used singly or in combination to forecast
software development effort. To build a combination form,
ML techniques can be mixed with non-ML techniques or two
or more ML approaches. Fuzzy logic and general algebra
are two popular non-ML methods that are commonly used
with other ML methods [10]. Regardless of the approach
taken, it is important to carefully consider all relevant factors
when estimating software effort, including the complexity of
the project, the skills and experience of the team, and the
resources available. It is also important to regularly review
and update estimates as the project progresses, as changes
in project scope or other factors may affect the overall effort
required. A comprehensive review of literature on software
effort estimation revealed a plethora of models, frameworks,
and approaches put forth by researchers and practitioners
to achieve high prediction accuracy. However, no single
approach has been able to precisely calculate software effort.
In their analysis of 304 studies, Jorgensen and Shepard found
that the regression method was the most commonly used
(49%) approach for assessing effort [6]. Recently, machine
learning (ML) methods such as artificial neural networks
(ANN) and support vector regression (SVR) have gained
attention. Among these, CBR (37%) and ANN (26%) are the
most frequently applied ML techniques [10]. When evaluat-
ing software effort, ML techniques tend to offer greater accu-
racy compared to non-ML methods (with means of Pred (25)
= 46% and mean of MMRE for CBR, compared to mean of
Pred (25) = 64% and mean of MMRE = 37% for ANN). Idri
et al. conducted a comprehensive analysis of analogy-based
software effort estimation techniques and found that the mean
prediction accuracy values of MMRE, MdMRE, and Pred(25)
were 49.8%, 29.7%, and 51.23%, respectively. Wu et al. [30]

27761

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

introduced a hybrid technique that fuses CBR and PSO for
estimating software effort, incorporating Euclidean distance,
Manhattan distance, and grey relational grade, which are
commonly employed CBR techniques in SEE, with optimal
weights obtained using the PSO method.

Ill. PROBLEM STATEMENT

Software practitioners and the academic community have
been concerned about accurately assessing efforts for soft-
ware projects. Since the software projects complexity have
been increased over the years, it is becoming increasingly
difficult to determine the effort of these enormous software
projects, as they also required huge investments for many
industries [31]. The research community is currently being
compelled to adopt new approaches to optimize the accu-
racy in predicting the effort due to the significant innovation
and expansion in the usage of new techniques and devel-
opment frameworks/methodologies in the field of software
engineering. Despite the significant efforts made to offer
new, distinct models and frameworks, there is still much that
can be done to improve the accuracy of effort estimation.
The inaccuracy of the software industry’s estimates of the
effort required to create software applications has previously
been highlighted by researchers [31], [32]. Unquestionably,
substantial over- or under-estimations endanger a software
project in several ways. The quality and maintainability of
software projects could suffer from an underestimation of
tasks (such as testing and documentation) that were to be
abandoned or more staff were to be hired [33]. This research
study’s major goal is to propose an effort estimating ensemble
model to increase the precision of software development
effort prediction. To maximize effort accuracy, the suggested
heterogeneous model has been incorporated with Use Case
Points (UCP), Artificial Neural Network (ANN), and Expert
Judgment (EJ) approaches. It is analyzed using case stud-
ies from software development companies, industry experts,
archived data on estimations, and evaluation indicators to
use a quantitative methodology. The software development
companies and practitioners will utilize the proposed model
created after this project as a tool to estimate the effort needed
to develop software projects.

IV. PROPOSED SOLUTION

To obtain high-effort estimation accuracy, professionals and
academics have offered a variety of estimating approaches
based on the before stated strategies. In the beginning,
researchers used various separate estimation techniques to
gauge the project’s first effort. Although there is evidence in
the literature to the contrary, according to Wen et al. [10],
[34], no standalone/solo estimating model has presented
an accurate estimation. Recent proposals for new ensem-
ble estimation arrangements include Kocaguneli et al. [35]
and Minku and Yao [36]. The ensemble method in software
development effort estimating was developed to address the
shortcomings of standalone estimation strategies (SDEE).
To create an ensemble estimation model(EEE), approaches

27762

combine various classical estimation models. To anticipate
the software development effort of a new project using a
combination rule, such as mean, median, and Inverse Rank
Weighted Mean-IRWM, an ensemble effort estimating tech-
nique combines more than one standalone model [37]. Each
base model’s estimation is integrated to create an ensem-
ble’s estimation. To increase the efficiency and accuracy of
software development projects, a heterogeneous ensemble
model is suggested in this article that combines Artificial
Neural Networks (ANN), Use Case Points (UCP), and Expert
Judgment (EJ).

A. RESEARCH QUESTIONS
This study’s principal research question is: “How fto
improve/optimize software effort estimation accuracy”.

« RQ-1 Does a heterogeneous ensemble effort estimation
model using Use Case Points (UCP), Artificial Neural
Network (ANN) and Expert Judgement (EJ) produced
better results as compared to Standalone ML models?

« RQ-2 Does Heterogeneous Ensemble Model produce
better results as compared to Machine Learning Ensem-
ble model?

e RQ-3 Does the variation in Feature selection of the
data-set have any impact on result accuracy or compari-
son

V. METHODOLOGY

In this section, we are going to present the methodology used
for the integration of the classical standalone model to form
a heterogeneous ensemble model. We have combined ANN,
UCP, and EJ to form an ensemble model.

A novel data mining approach based on ensembles or com-
binations of methods is now being used to address prediction
issues. Studies [10], [38], and [35], on data mining show
that ensemble methods outperform single methods in terms
of accuracy. The software engineering community has been
inspired to create and test ensemble techniques across a range
of areas as a result. In the literature on methods for estimat-
ing software development work, ensemble effort estimation
(EEE) is defined as a combination of several single estimation
procedures, or base models, under a certain combination rule.
The effort prediction of an EEE technique is the total of the
estimations from each constituent base model under a specific
combination rule. Elish [39] claim that there are two different
categories of EEE techniques: homogeneous approaches and
heterogeneous approaches. In this study, we are going to
employ a heterogeneous approach

A. HETEROGENEOUS ENSEMBLE FRAMEWORK

EEE methodologies combine different classical estimating
models to generate an ensemble estimation model. An ensem-
ble effort estimation technique combines more than one stan-
dalone model to predict the software development effort of a
new project using a combination rule, like mean, median, and
Inverse Rank Weighted Mean-IRWM. The estimation of an

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

ensemble is produced by integrating the estimation of each
base model. In this study, a heterogeneous ensemble model
that integrates use case points (UCP), expert judgment (EJ),
and artificial neural networks (ANN) is developed to improve
the accuracy and efficiency of software development projects.
The whole framework of ensemble model is presented in
Figure 6.

B. DATASETS USED IN EXPERIMENTATL SETUP

We have used two datasets for our experiments i.e. ISBSG
dataset (benchmark dataset) and eight industrial projects.
Following are the details of the datasets.

1) ISBSG DATASET

The ISBSG (International Software Benchmarking Standards
Group) dataset is a collection of data on software devel-
opment projects that have been compiled and maintained
by the ISBSG. The dataset includes information on various
aspects of software development projects, including project
size, duration, effort, and cost. The goal of the ISBSG is
to provide organizations with a source of real-world data
that can be used to benchmark the performance of their
software development processes and to identify best practices
for improving software development efficiency. The ISBSG
dataset is widely used in software engineering research and
practice to support the development of software cost and
effort estimation models, as well as to evaluate the effective-
ness of different software development methodologies and
tools [31], [32].

Feature Selection and Cleansing of ISBSG Dataset We
had approximately 256 features in total. There are a few
empty values in the column. Such columns might have a
direct impact on the results. Given that NULL values have
no description. Practitioners and academics avoid these val-
ues as a result. Moreover, we eliminated all columns with
missing values bigger than 50. By removing redundant and
unnecessary data, feature selection (FS) techniques have been
used in the field of SDEE to minimize the dimensionality
of a dataset. The SDEE algorithms are trained on a dataset
with relevant information, to increase the precision of their
estimations. A dataset with N features must be provided to FS
for it to select the “best” feature subset from among the 2N
competing candidate subsets. Which subsets are best depends
on the task at hand, so a subset picked by one evaluation
function might not be the same as a subset picked by another.

2) PRIMARY DATASET (INDUSTRIAL CASE STUDIES)

The goal of this section is to observe the phenomenon of
effort estimation in practical settings. As a result, a spe-
cific case study technique is used in the investigation, which
encourages the examination of a phenomenon in its natural
setting. Software engineering should be improved via the case
study method. In a sample case study, two academic projects
and two commercial software projects are observed and ana-
lyzed using historical data on estimations [40]. Although

VOLUME 11, 2023

observational studies are typically carried out in a real-world
setting, the researchers used software development projects
as target cases and observed them in genuine enterprises. The
fundamental benefit of observational studies is the wealth
of information they offer, which enables us to analyze a
phenomenon in a context that is appropriate to real-world
situations.

VI. FRAMEWORK OF HETEROGENEOUS ENSEMBLE
MODEL
A. MODEL DEVELOPMENT
A novel data mining approach based on ensembles or com-
binations of standalone algorithms is now being considered
to address the problem of effort prediction. As a result,
the community of software engineers has been motivated
to develop and evaluate ensemble techniques in a variety
of fields. Ensemble effort estimation (EEE) is described
as a combination of various single estimation approaches,
or base models, under a certain combination rule in the
literature on methodologies for estimating software devel-
opment work [10], [35], and [38]. The sum of the esti-
mations from each constituent base model under a certain
combination rule constitutes the effort prediction of an EEE
approach.

We have developed three base model i.e.

« BMI1: Use Case Point (UCP), as shown in Figure 2

o BM2: Artificial Neural Network (ANN), as shown in
Figure 3

« BM3: Expert Judgement (EJ), as shown in Figure 5

We have combined all the three base (BM1, BM2, BM3),
using the linear combination rule as suggested by Hosni
et al. [38].

In homogeneous ensemble model, base model is combined
with at least two alternative configurations, or one ensemble
learning approach is combined with one base model, such
as bagging [41], negative correlation [42], or randomiza-
tion [38]. Homogeneous Ensemble Model, according to Idri
et al. [43], can be further subdivided into two groups:

« Ensembles made up of at least two configurations of a
single SDEE technology

« Ensembles, such as bagging, boosting, negative correla-
tion, and random subspace, that combine a single meta
model and a single SDEE strategy.

There is no agreement on the techniques for measur-
ing software effort that result in the most precise mod-
els, despite decades of research. Previous studies show
that no single strategy consistently beats the others when
M-estimating approaches are used. Instead of selecting
one estimating method as the best, it could be wiser to
develop estimates using ensembles of a few different meth-
ods. When the estimates of many estimators are integrated
[44], it is found that the combined techniques outperform
any one estimator. According to Shepperd, no standalone
model compete with the strength and diversity of ensemble
models [6], [45].

27763

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 1. Descriptive statistics of use cases.

Case ID Case Name No. of Actors No. of Use Cases
CS1 Inventory Management System 6 30
CS2 Smart Home Automation 2 11
CS3 Pre-Owned Accessories 7 5
CS4 BAM Electra 2 7
CSs Sign Language Translator 3 8
CS6 Spect AR 2 8
CS7 Digital Identity 7 26
CS8 The Educational Network (TEN) 2 13

Ensemble Effort Estimation

Base Model 1 Base Model 2 Base Model N

Single Ensemble 2 Single Ensemble 21 - - | Single Ensemble N

Combination Rule

Effort Prediction

FIGURE 1. Ensemble effort estimation (EEE) processes [14], [38].

B. LINEAR COMBINATION RULE

Combining the outputs of base models yields ensemble effort
estimates. To combine our base models, we have used the
Median combination rule. Idri et al. [38] identified 18 rules
used to get prediction values from an ensemble. Majorly there
can be distinguish into two categories:

¢ Linear Combination Rule: In a linear combination, the
output of each base model is multiplied by a weight, and
the resulting outputs are added together to produce the
final prediction. This can be expressed mathematically

as:

y=wlxyl+w2%xy2+...+wnx*xyn D
where y is the final prediction, y1, y2, ..., yn are the
predictions of the base models, and wl, w2, ..., wn are

the weights assigned to each base model. The weights
can be determined using various techniques, such as
cross-validation or grid search.

o Non-Linear Model: In a non-linear combination, the
output of each base model is first transformed using a
non-linear function, and then the resulting outputs are
combined to produce the final prediction. This can be

27764

TABLE 2. Combination Rule.

Type Combination Rule

Linear Mean, Mean weighted, Median, Inverse ranked
weighted mean (IRWM), Weighted adjustment
based on criterion, Equally weighted, Median
weighted, Outperformance combination, Geo-
metric Mean. Harmonic Mean

MLP, SVR, Adaptive Resonance Theory
(ART), Fuzzy inference system using fuzzy c-
means (FIS-FCM), Fuzzy inference system us-
ing subtractive clustering (FIS-SC), ANFIS-
FCM, ANFIS-SC, MLR, RBF, DENFIS

Non-linear

expressed mathematically as:

y=f(wl*xgyl) + w2 xg(32)+ ...+ wn* g(yn))
@)

where f is the non-linear function and g is the trans-
formation function. The non-linear function can be any
function that maps the weighted sum of the base model
outputs to the final prediction. The transformation func-
tion can be any function that maps the output of the base
model to a new space where the non-linear function can
better capture the relationships between the base model
outputs.

1) MEDIAN COMBINATION RULE

The median linear combination rule is a common method for
combining the predictions of different models in a hetero-
geneous ensemble. In this case, we have three base models:
Use Case Point (UCP), Artificial Neural Network (ANN), and
Expert Judgement (EJ). Here’s how we can use the median
linear combination rule to create a heterogeneous ensemble
model:

Train the three base models on the same training data set.
Generate predictions for the test data set using each of the
three models. Combine the predictions by taking the median
of the three predictions for each test instance. That is, for each
instance in the test set, we take the median of the predicted
values from the UCP model, the ANN model, and the EJ
model. Use the resulting combined predictions as the final
output of the ensemble model. The median linear combina-
tion rule is a robust method for combining the predictions
of different models, as it is not sensitive to extreme values
or outliers in the individual model predictions. Additionally,

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

USE CASE POINT

Use Case
Transaction

o
Use Case \C>

uucw

Unadjusted
"7 Use Case Point

UML MODEL
v wooe: | uaw

UCP Size

TARGET PROJECTS

o

Technical

Properties

Projects H Team Properties

Other Environmental
Factors

FIGURE 2. Use Case Point Base Model 1 (BM1).

by combining different modeling techniques like UCP, ANN,
and EJ, we can leverage the strengths of each method to create
a more accurate and robust ensemble model.

C. MACHINE LEARNING MODELS EXPERIMENTAL SETUP
ON THE ISBSG DATASET FOR FEATURE SELECTION
The ISBSG dataset served as the basis for our experiments.
We used the most well-known machine learning techniques
for this experiment, including Support Vector Regressor
(SVR), Linear Regression, K-Nearest Neighbor (KNN),
XGBoost Regressor, and Artificial Neural Network(ANN).
To prevent bias in the outcomes, we will employ many dataset
variations. For instance, we employed the ISBSG features
that were evaluated in the ways listed below.
1) DATA VARIATION 1: Applying all features on
ISBSG dataset.
We are going to incorporate all the features of ISBSG
dataset i.e. 256 features.
2) DATA VARIATION 2: Using selected features on rec-
ommendation of Nassif et al. [46]
3) DATA VARIATION 3: Applying Results of Statistical
Feature Selection.

We have all undoubtedly faced the difficulty of removing
the irrelevant or insignificant elements from a set of data
that do not significantly affect our target variable to increase
the precision of our model. The performance of a model is
significantly impacted by feature selection, as it is considered
one of the core principles of machine learning. The data
properties to train machine learning models have a significant
impact on the performance one can achieve. The performance
of the model could be negatively impacted by features that
are irrelevant or only partially relevant. Feature selection and

VOLUME 11, 2023

Complexity Factor

Environmental
Factor

Productivity

Hours Per
Use Case Point

BASE MODEL 1 (BM1)

data cleansing should be the first and most important steps
in the development of any machine learning model. Whether
features are chosen manually or automatically will depend
on the traits that are crucial to prediction variables or desired
results. The model might learn based on irrelevant features in
the given data, which could lower model accuracy.

D. USE CASE POINT (UCP)

Base Model (BM1) is presented in Figure 2 i.e. UCP. The use
case point model was first introduced by Karner [48]. This
model was used to calculate the effort of software develop-
ment with the help of the use case diagram. If the idea about
the problem domain, system size, and architecture is clear,
then an early effort estimation focused on use cases could
be made [29]. The overall working of our first base model
i.e. UCP is shown in Figure 2 and the calculation of UCP is
shown in Equation 3. After classifying actors and use cases,
we calculate unadjusted weights and points for actors and use
cases from Equation 4 and Equation 5. After calculating the
unadjusted weights, we combine them to get Un-adjusted Use
Case Point (UUCP) in Equation 6.

According to [47], following are the actions that must
be taken in order to obtain an estimate using the UCP
method:

1) Determine the UUCPs and compute them.

2) Calculate and determine the TCFs.

3) Calculate and determine the ECFs.

4) Calculate the PF.

5) Estimate the number of hours required.

The equation can be used to predict the number of
man-hours required to accomplish a project when productiv-
ity is added as a time-expressing coefficient. Here’s the whole

27765

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

equation Equation 3, which includes a Productivity Factor
(PF):

UCP = UUCP % TCF * EF *x PF 3)

The UUCP value obtained from the above equation is
altered based on the weights allotted to 13 Technical Com-
plexity Factors(TCF) and 8 Environmental Factos(EFs).
After calculating the Technical Complexity Factor (TCF) and
Environmental factor, we can find the final Use Case Point by
simply adding Un-adjusted Use Case Point (UCP), Technical
and Environmental Factor as in Equation 8 to get Effort 1 i.e.
Yi as shown in Figure 2.

E. UNADJUSTED USE CASE WEIGHT (UUCW)

The UUCW is calculated as given in Table 4 using the number
of use cases in the three categories (simple, average, and com-
plex). Each use case’s scenario’s number of stages, including
alternate flows, is categorized. It is critical to remember that
the estimation is influenced by the number of phases in a
scenario. The UUCW will be skewed toward complexity in
a use-case scenario with several phases and rising UCPs. The
UUCW will be skewed toward simplicity and the UCPs will
be kept to a minimum if only a few steps are taken. Countless
steps can be skipped, without having an adverse effect on
the business process. The UUCW is determined by counting
the number of use cases in each category, multiplying each
total by the weighting factor indicated, and then adding the
products.

F. UNADJUSTED ACTOR WEIGHT (UAW)

A use case becomes slightly more challenging when com-
municating with actors, who have established APIs. It is
slightly more complex when interacting with actors who have
established protocols, and significantly more complex when
interacting with actors who have developed GUIs. Table 6
lists the actors along with explanations of their complexity,
classifications, and numerical weighting.

3
UAW = E) 1Ni*Wl- 4)
1=

Unadjusted Actor Weight (UAW) is calculated by sum-
ming the weights of all actors shown in Equation 4. The
detailed calculation of UAW is shown in Table 7.

3

UUCW = D" P;*X; ()
=1

UUCP = UAW x UUCW (6)
13

Tfactor = »_T; x W, @)
i=1
8

EFactor = ZEi * W; ®)
=1

UCP = UUCP % TCF * EF ©)

27766

G. UNADJUSTED USE CASE POINT (UUCP)

The sum of UAW and UUCW is the Unadjusted Use Case
Point (UUCP). It supplies the system’s unadjusted size, which
is indicated in Equation as Unadjusted Use Case Points.

UUCP = UAW « UUCW (10)

H. TECHNICAL COMPLEXITY FACTOR (TCP)

The Technical Complexity Factor (TCF) is an important
criterion for UUCP modification [48]. TCF has an impact
on project performance since it is derived using 13 techni-
cal parameters (T1-T13) shown in Table 8. These variables
describe the project’s non-functional requirements, ranging
from O (insignificant) to 5 (very important) (very relevant).
Technical Factor (TFactor) and Technical Complexity Factor
(TCF) are determined using Equation 11 and Equation 12.
The Technical Factor (TFactor) is calculated by summing the
values of the technical factors (T1-T13) multiplied by their
weight.

13
Tfactor = Z T; = W; (11
i=1
where,

o Ti=takes values between 0 and 5
o Wi=complexity weight

TCF = 0.6 + (0.01 TFactor) (12)

I. ENVIRONMENTAL COMPLEXITY FACTOR (ECF)

The Environmental Complexity Factor is a crucial feature
used in UUCP modification (ECF). Eight environmental
elements (E1-E8) are used to calculate the effects of envi-
ronmental factors on productivity, as shown in Table 9. The
ranking of the project is determined by these factors, which
range from O (insignificant) to 5 (very important) (very rel-
evant). Below equations are used to compute the EFactor
and ECF in Equation 13. To calculate the ECF, multiply the
environmental factors (E1-ES8) by their weight, then sum all
of the figures to get the EFactor.

8
EFactor = zf—l E;ixW; (13)

where,

o Ei=takes values between 0 and 5
o Wi=complexity weight

ECF = 1.4 + (0.03EFactor) (14)

J. PRODUCTIVITY FACTOR

The productivity element is very significant when evaluating
software effort. It is described as a ratio of size to effort.
Once the modified UCP has been determined, the UCP and
productivity are multiplied as given in Equation 15.

Effort = Productivity UCP (15)

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

TABLE 3. Use Case Categories.

Use Case Category Description Weight

Simple The user interface is simple. Only affects one database entity. Its success scenario 5
consists of three or fewer steps. It is implemented with fewer than five classes.

Average Work on the user interface continues. At the same time, it affects two or more 10
database entities. There are four to seven steps. It is implemented using five to
ten classes.

Complex Complex user interface or processing. Touches three or more database entities. 15

More than seven steps. Its implementation involves more than 10 classes

TABLE 4. Computing UUCW.

Use Case Category Description Weight No. of use Cases Results
Simple The user interface is simple. Only affects one database entity. Its 5 7 35
success scenario consists of three or fewer steps. It is implemented
with fewer than five classes.
Average Work on the user interface continues. At the same time, it affects 10 13 130
two or more database entities. There are four to seven steps. It is
implemented using five to ten classes.
Complex complex processing or user interface. relates to three or more 15 3 35

database objects. additional to seven steps. In order to implement
it, more than ten classes are needed.

TABLE 5. Use Case complexity detailed.

Use Case Category Use Case Weight No. of Use Case Product
Simple 5 SuC 5% SyC
Average 10 AyC 10 x AyC
Complex 15 CyC 15 % CyC
UAW =5%SyC+ 10 x* AyC + 15 %« CyC
TABLE 6. Use Case Categories.
Actor Category Description Actor Weight

Simple
Average

Complex

The actor represents a system that has a well-defined API.

The actor represents another system with which it communicates via a protocol
(e.g., TCP/IP, FTP, HTTP, database, text-based interface).

The actor is a representation of a human who interacts with a graphical user

1
2

3

interface.

TABLE 7. Actor complexity detailed.

Actor Category Actor Weight No. of Actors Product
Simple 1 Sa 1%Sa
Average 2 Aa 2% Ap
Complex 3 Ca 3% Ca

UAW = 1%xSp +2%xAp +3%xCp

Numerous factors, such as the kind of software process,
the expertise of the developers, team communications, the
environment, and deliverables, affect the value of the pro-
ductivity factor. Based on previously finished projects, the
productivity factor is computed. However, this productivity
can only be used to calculate the labor for a new project when
the difficulty of the current project and the old project are both
identical.

K. ARTIFICIAL NUERAL NETWORK (ANN)

We have used Artificial Neural Network as our second base
model. Inspired by the neural network produced by biolog-
ical neurons, a model called a neural network (NN) was
developed is our Base Model (BM2). The artificial neuron

VOLUME 11, 2023

serves as the building block for creating a NN. A vector of
numerical values serves as the input for an artificial neuron.
Each value or component of the vector is translated by the
neuron using its weight, which is a discrete, independent
sensitivity. The neuron chooses its internal state after receiv-
ing the input vector before deciding on its output value.
The inner product of the input vector, weight vector, and
bias represents the internal state of the neuron. A transfer
function is another name for this function [49]. A promi-
nent criticism of the use of ANNs in prediction is their
sensitivity to initial weight values and choices for training,
validation, and test sets. When properly constructed, ANN
ensembles can lessen these effects and produce dependable
findings [50].

27767

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TARGET PROJECTS

4. I//‘
27 AN
Z >

Proposed ANN

N

(O Estimated Effort E2
oupu

BASE MODEL 3 (BM3)

FIGURE 3. Artificial Neural network Base Model 2 (BM2).

TABLE 8. Technical complexity factors [48].

Factor Description Weight
T1 Distributed System 2.0
T2 Response time or throughput performance objec- 1.0
tives
T3 Efficiency of end user 1.0
T4 Complicated internal processing 1.0
T5 Reusability of the code 1.0
T6 Easy to install 0.5
T7 Usability 0.5
T8 Portability 1.0
T9 Changeability 1.0
T10 Concurrent 1.0
T11 Inclusion of special security features 1.0
T12 Provides direct access for third parties 1.0
T13 Special user training facilities are required 1.0
TABLE 9. Environmental complexity factors [48].

Factor Description Weight
E1l Familiar with the project model that is used 1.5
E2 Application experience 0.5
E3 Object-oriented experience 1.0
E4 Lead analyst capability 0.5
E5 Motivation 1.0
E6 Stable requirements 2
E7 Part-Time Staff -1.0
E8 Difficult programming language -1.0

A single neuron with adjustable weights and bias makes
up the single-layer feedforward class. An example of a mul-
tilayer feedforward neuron consists of an input layer made
up of a group of neurons, one or more hidden layers, and
an output layer. The multilayer perceptron is another name
for this type of neural network (MLP). Each neuron’s model
has a nonlinear activation function, and the network is very
interconnected.

The intrinsic state of the cell influences how it reacts
to outside stimuli. This function is known as an activation
function. The fundamental responsibility of the activation

27768

function is to convert each potential internal state value into a
desirable range of output values. The weights and bias values
of a synthetic neuron are automatically modified to support
learning. The most popular model for data processing and
software estimation is the neural network. Because it can
learn from any dataset, it is possible to obtain pertinent results
from it. The general structure of ANNs is composed of the
input layer, hidden layer, and output layer. To produce an
output, it, therefore, comprises a collection of inputs that are
weighted and integrated.

1) BASIC ARCHITECTURE OF PROPOSED BASE MODEL 2
(ANN)

We have used an Artificial Neural Network (ANN) with
100 nodes and Rectified Linear Unit (ReLU) as the activation
function. Following is the basic architecture followed to make
the Base Model 1.

o Input Layer: This layer receives the input data that the
network is supposed to process. The number of input
nodes in this layer would depend on the number of
features or variables in the input data.

o Hidden Layer(s): This layer is where the actual computa-
tion takes place. In this case, the network has one hidden
layer with 100 nodes. Each node in this layer takes in
the output from the previous layer, performs a linear
transformation on it, and applies the ReLU activation
function to produce the output. The ReLU activation
function is defined as f(x) = max(0,x), which means that
if the input is positive, the output will be equal to the
input, and if the input is negative, the output will be zero.

o Output Layer: This layer produces the final output of
the network. The number of nodes in this layer would
depend on the type of problem the network is trying
to solve. For example, if the network is being used for

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

binary classification, there would be one output node
that produces the probability of belonging to the positive
class.

During training, the network adjusts its weights and biases
to minimize the loss function, which measures how well the
network is performing on the task at hand. This is typically
done using back-propagation, which is an algorithm for com-
puting the gradients of the loss function with respect to the
weights and biases. The gradients are then used to update the
weights and biases using an optimization algorithm such as
stochastic gradient descent. This process is repeated for mul-
tiple epochs until the network’s performance on a validation
set stops improving.

2) RATIONALITY OF HYPER-PARAMETER SETTINGS IN DEEP
LEARNING

The rationality of hyper-parameter settings in deep learning
depends on several factors such as the problem at hand,
the size of the dataset, the complexity of the model, and
the computational resources available. Regarding the use of
ReLU as an activation function and 100 nodes in an Artificial
Neural Network (ANN), these are common choices that have
been shown to work well in many applications. ReLU is a
popular choice for an activation function because it has been
shown to be effective in addressing the vanishing gradient
problem and allows for faster training compared to other
activation functions like sigmoid or tanh. Additionally, ReLU
has a sparsity-inducing effect which can lead to better gener-
alization performance. The choice of 100 nodes in an ANN
depends on the complexity of the problem and the size of the
dataset. If the problem is relatively simple or the dataset is
small, then 100 nodes may be more than enough to capture
the underlying patterns in the data. However, if the problem
is more complex or the dataset is large, then a larger number
of nodes may be necessary to capture the complexity of the
problem.

3) MULTILAYER PERCEPTRON (MLP)

We have employed a feed-forward artificial neural network
model called a multi-layered perceptron, which has a single
input layer, at least one hidden layer, and a single output layer,
as shown in Figure 4. An input vector is represented by each
neuron in the input layer. A network is known as a perceptron
if it just contains an input layer and an output layer (no hidden
layers). In the neurons of the buried layer of an MLP network,
a nonlinear activation function is frequently used. It is com-
mon practice to use a linear activation function to generate
contrast in the output layer. The number of input neurons and
training method employed determine, how many neurons are
in the hidden layer. The back-propagation algorithm, a kind
of gradient descent, is one of the most widely used training
methods. The conjugate gradient approach is an alternative
way of training an MLP network. One of the most popular
neural network models in SDEE is the MLP network. Using
performance evaluation criteria like the MMRE, these MLP

VOLUME 11, 2023

\

Output
Node

N

N\
\
®

q
X

3'
]

j

0
o

D
7
{

FIGURE 4. Multilayer Perceptron Model.

models are compared to multiple linear regression models
[46]. One of the most popular neural network models in
SDEE is the MLP network. Using performance evaluation
criteria like MMRE, these MLP models are compared to
multiple linear regression models for analysis.

a: ACTIVATION FUNCTION

The activation function that will be applied to the neurons in
the different layers of the neural network must be carefully
chosen. The neural network model gains non-linearity from
activation functions, enabling the network to accumulate
more accurate feature representations over time. In the litera-
ture, a variety of activation mechanisms have been described.
The most popular activation functions are linear, sigmoid,
tanh, and ReLU, and they are typically selected empirically
rather than using a strict data-driven methodology throughout
the network building phase [51]. A neural network’s output,
such as yes or no, is decided by t. The values are changed
from O to 1, —1 to 1, and so forth (depending upon the
function). There are two groups that the activation functions
fall under. An example of an activation function that is linear
in Activation Functions That Aren’t Linear is the Linear Acti-
vation Function. We have employed ReLU as our activation
function.

b: ReLU

ReLU is a simple, non-linear, and efficient activation func-
tion that helps in addressing some of the common issues
in neural networks. Its effectiveness in improving the learn-
ing process and accuracy of neural networks has made it a
popular choice in many applications. Rectified Linear Units,
or ReLU. A two-hidden layer feedforward neural network
with ReLU is NP-hard to train, according to Agarap [52],
[53]. ReLU is a common activation function that is used in
a variety of contexts. Despite being widely used, the issue of
how challenging it is to train a multi-layer fully-connected
ReLU neural network has not been settled. The ReLU

27769

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

! Frame the Problem EYIN

Target Projects

Plan Elicitation

for EJ

[}

i

|

!)

: -
: vt

i

i

|

Seclecting the Appropiate Expert

_______@;_______
T

FIGURE 5. Expert Judgement Base Model 3 (BM3).

activation function was developed by Agarap [52], and it
is founded on sound biological and mathematical concepts.
It was shown to be helpful in deep neural network training in
2011. By setting the threshold to zero, f(x) = max, it operates
(0, x). Succinctly summarized, when x is zero, it outputs 0;
when x is more than zero, it outputs a linear function.

f (x) = max (0, x)

Rectified Linear Unit (ReLU) is a popular activation func-
tion used in Artificial Neural Networks (ANN) and has gained
popularity due to its effectiveness in improving the learning
process and accuracy of neural networks. Here are some rea-
sons why ReLU is preferred over other activation functions:

o Simplicity: ReLU is a simple function, and its imple-
mentation is straightforward. The function is linear for
all positive input values, which means that its computa-
tion is fast and efficient.

o Non-linearity: ReLU is a non-linear function, and it
can help to model complex non-linear relationships in
the data. Non-linear activation functions are essential in
neural networks because they allow the network to learn
non-linear decision boundaries.

o Sparsity: ReLU has a sparsity property, which means
that some of the neurons in the network may output zero
values. This sparsity can help in reducing the number
of parameters in the model and also help in preventing
overfitting.

o Gradient vanishing: ReLU helps in addressing the gra-
dient vanishing problem, which is a common issue in
deep neural networks. The gradient vanishing problem
occurs when the gradient of the cost function becomes
very small as it is propagated through multiple layers.
ReLU has a constant gradient of 1 for all positive input

27770

Check Lists

I

I

I

I

I

I

Estimated :

A% N Effort E3 :
Experince of the !
Past Projects :
I

I

I

I

I

I

I

I

BASE MODEL 3 (BM3)

values, which helps to maintain the magnitude of the
gradient during backpropagation.

o Large learning rates: ReLU allows for the use of large
learning rates, which speeds up the learning process, as it
has a constant gradient of 1 for all positive inputs.

« Simplicity: ReLU is a simple function that requires only
one mathematical operation, which makes it easy to
implement and optimize.

o Empirical performance: Empirical studies have shown
that ReLLU generally performs better than other acti-
vation functions in deep neural networks for various
tasks, such as image recognition, speech recognition,
and natural language processing.

The reasons why we use ReLLU as an activation due to its
popularity as an activation function used in ANN as com-
pared to other activation functions are its ability to introduce
sparsity, computational efficiency, non-linearity, ability to
avoid vanishing gradient problem, ability to use large learning
rates, simplicity, and empirical performance. ReLU has been
shown to perform better than other activation functions such
as sigmoid and tanh in many applications. This is because
ReLU can help in faster convergence of the network.

L. EXPERT JUDGEMENT (EJ)

The most popular methods for predicting software develop-
ment effort are those that rely on expert judgment and it
is our Base Model(BM3). Experts engaged in expert esti-
mating use their knowledge and prior experience to subjec-
tively analyze a range of elements to estimate the devel-
opment job. The fifth edition of A Guide to the Project
Management Body of Knowledge (PMBOK® Guide) by
far lists expert judgment as the tool or approach the most
frequently. According to Jorgensen [54], professionals use

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

intuition as a ‘“‘non-explicit and non-recoverable reasoning
process” to reach this judgment. Jorgensen [13] suggests
employing a variety of approaches when producing estimates
for expert-based estimating. The process of expert estimating
is straightforward and doesn’t require a ton of documenta-
tion. COCOMO and other algorithmic estimate techniques
pale in comparison. These qualities of expert estimation are
aligned with agile processes, which give more importance
to interactions between people than to technologies and pro-
cesses. Without formalism, an expert estimation can have
several problems; without a defined structure, an expert esti-
mation can become haphazard. Experts may ignore crucial
jobs and activities (such as testing efforts or non-functional
needs), which leads to an overestimation of development
time. We chose Expert Judgment(EJ) as the foundation model
for our ensemble estimation model for a variety of reasons.
The findings of empirical investigations contrasting estimates
of expert and model-based software development efforts
appear to be significant, according to Jorgensen [54]. It is
generally impossible to determine whether estimate models
or expert estimation is more accurate. Expert estimates, on the
other hand, seem to be more accurate when key information
is left out of the estimation models, when there is a high
level of estimation uncertainty because of unaccounted-for
environmental changes, or when straightforward estimation
techniques result in reasonably accurate estimates. For this
study, we have employed eight industry experts from different
software organizations as shown in Figure 5. We are not
disclosing the identity of personnel or organizations’ names
due to ethical reasons. To make sure that the right experts are
available for the software company’s effort calculation, the
experts’ demographic data is collected and examined using
a checklist fill-in approach. It was difficult to approach the
specialists because of many organizational laws and regu-
lations. The software requirement specification (SRS) doc-
ument, progress report (used for a real amount of effort),
software design document, case selection, UCP size, and
checklist were all used by the experts. Figure 6 presents our
proposed ensemble model. We are going to predict the efforts
of the target projects. As one can observe, each base model
(BM1, BM2, and BM3) yields their respective efforts and
then these efforts are combined using the rules to predict the
combined results.

VIi. HETEROGENEOUS ENSEMBLE MODEL

We have combined all three base models i.e. Base Model 1
(UCP) as in Figure 2, Base Model 2 (ANN) as in Figure 3 and
our Base Model 3 (EJ) as in Figure 5. Each Base Model has
yielded a separate effort. These efforts are combined using the
combination rules as shown in Figure 6 inspired by Figure 1.

VIIl. RESULTS AND FINDINGS

A. ML ALGORITHMS AND PERFORMANCE MEASURES
This section is comprised of three different sub-sections
which exclusively present Machine Learning predictions on

VOLUME 11, 2023

the primary sources and benchmark datasets i.e. ISBSG
dataset and industrial case studies.

1) Results of Standalone Models.

2) Results of Ensemble Models (Heterogeneous Ensem-
ble Model and Machine Learning Ensemble Model).

3) Comparative Analysis on Ensemble Approaches with
rest of Standalone Algorithms

We have used five algorithms for our experiments i.e.
SVR, Linear Regression, k-NN, XGBoost Regressor, and
ANN. To estimate accuracy, we have employed accuracy
metrics that include MMRE, MAE, MdAMRE, MDAE, and
PRED(25). Mean Magnitude of Relative Error (MMRE) (also
known as mean absolute relative error) currently uses the
most reliable and accepted measures, such as MMRE and
PRED at power levels of 0.25, 0.50, and 0.75, respectively.

Results of Standalone Models - ISBSG Dataset: We car-
ried out our experiments on ISBSG dataset. For experiment,
we have incorporated famous machine leaning algorithms
such as Support Vector Regressor (SVR), Linear Regression,
K-Nearest Neighbor (k-NN), XGBoost Regressor and Arti-
ficial Neural Network (ANN). We are going to use different
variation of datasets to avoid biasness in results. For instance
we have used ISBSG in following manners:

o Applying all features on ISBSG dataset.

« Using selected features on recommendation of Nassif
et al. [46]

« Applying Results of Statistical Feature Selection.

1) RESULTS OF STANDALONE MODELS USING ALL
FEATURES SELECTION OF ISBSG DATASET

We have used all of the ISBSG dataset’s features in our
first experiment. All ML, methods have been applied to all
ISBSG Dataset features. In comparison to SVR, LR, k-NN,
and XGBoost Regressor, ANN have demonstrated promising
outcomes.

Models for estimating effort are evaluated using metrics
(criteria metrics). Prediction at Level 1 (Pred (1)), Magnitude
of Relative Error (MRE), and Mean Magnitude of Relative
Error(MMRE) are most commonly used in the literature [10],
[55], [56], [57].

The MMRE (Mean Magnitude Relative Error), Pred(),
and MAE measurements have been used to assess perfor-
mance and compare the proposed EEE model to conven-
tional models that have previously been published in the
literature [10], [55] [56]. Similar to this, Pred(25) is the
main precision indicator used by the MMRE [10]. According
to Kemerer [58], MMRE can be overestimated as well as
underestimated.

The diagonal line, which indicates the real effort input,
can be used to deduce the interpretation of Figure 10 of
All Feature ISBSG. Since the real input value is placed
on x and vy, i.e., Xx=y, we obtain the red line in diagonal
form.

Now, we can see that scatter plots have developed in
Figure 10, of All Feature ISBSG. The values of the actual

27771

lEEEACC@SS S.S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

USE CASE POINT
Use Case
j Transaction

Use Case |

— A=
-

Unadjusted
Use Case Point

UML MODEL 2.

- UCP Size

Estimated :
Effort E1

Technical
Complexity Factor

SYSTEM

Productivity

Proposed ANN

TARGET PROJECTS Hidden Layers............ccu...ws Hidden Layer Hidden Layer

|

B}

A ‘\\

i \\\}@ > Estimated Effort E2 }—; L
i A i
o | N |
i %\\\ _ '
| \ - :
. \ - ;
: \ BASE MODEL 3 (BM3) I
|
i 1
i 1
i 1
i 1
T P | !
H o) \
i i
i i
i i
! . i
H -~ n I
! Experince of the I
Past Projects i
: e = 5
: Seclecting the Appropiate Expert BASE MODEL 3 (BM3) :
i i
]
! i
: Effort Estimation E
M v —— o —_ —_ A S _—_— S——"_ —_—__t—
FIGURE 6. Hetrogeneous ensemble effort estimation model.
and expected effort are used to construct the data points In contrast to the other ML models, ANN clearly lies on the
on the scattered plot. For instance, the values on the x-axis line i.e. close to the actual effort, as seen in Figure 10, of All
correspond to the actual effort. Feature ISBSG. According to the graph, ANN has produced
The anticipated effort datapoints are shown on the excellent results and outperformed other ML algorithms.
y-axis. k-NN Regressor have shown good results as compared

27772 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

TABLE 10. Standalone ML Model All Feature ISBSG.

Training time(s) MMRE MAE MdMRE MdJAE PRED(25)
SVR 7387.36 0.35 476.01 0.080 155.45 0.8014
Linear Regression 145.89 1.28 969.66 0.217 342.62 0.54
k-NN 0.095 0.49 684.96 0.0915 144.33 0.786
XGBoost Regressor 10.73 0.745 985.57 0.102 189.86 0.782
ANN 436.409 0.06 302.78 0.0298 21.72 0.948

to Linear Regressor (LR) and XG-Boost. However, k-NN
Regressor datasets fail to produce good results as compared
to SVR and ANN.

In addition to the findings, the training time had a sig-
nificant impact on the ML algorithm’s effectiveness. SVR
has produced positive results, but this ML model took the
longest time to run the experiment. Compared to other ML
algorithms, SVR has more than 7387.36 seconds (to be pre-
cisely), as shown in Figure 8. On the contrary ANN, which
have shown the best results was nearly took half time i.e.
436.409 seconds, to produce the best results among rest of
the ML Algorithms. k-NN produce the results with the least
time taken i.e. 0.095 seconds and the results were the third
best among the other ML Algorithm. Other model such as
XG-Boost, Linear Regressor completed their experiments in
145.89 and 10.73 seconds respectively.

The precision of a software estimating model’s predictions
is a crucial consideration. The mean magnitude of relative
error (MMRE), MAMRE, MAE, MdAE, and Pred(25) are
used to calculate the effort prediction accuracy and compare
the performance of multiple ML models. The estimation is
more precise if the value of the MMRE is lower. Pred(25) dis-
plays the proportion of forecasts with errors that are smaller
than 25% of the true value. The estimation would be more
accurate the greater the Pred(25) [59]. The mean/median
MRE (MMRE/MedMRE) and prediction at level p (Pred(p)),
which counts the number of observations when an SDEE
technique produced MREs that were fewer than p, are two
of the most often used SDEE accuracy metrics. Although
we have calculated MAE, MdAMRE, and MdAE. However,
when it comes to Software Development Effort Estimation
(SDEE), MMRE and Pred(25) have been extensively used by
the research community.

As we can see in Figure 9, the radar plot clearly shows
the MMRE and Pred(25) of all ML algorithms. Typically,
25% is the ideal MMRE target number. This implies that
the accuracy of the existing estimation models would nor-
mally be less than 25%. Better estimates are produced by
software effort estimation models with lower MMRE val-
ues than models with larger values [60], [61]. During our
experiments ANN have the lowest MMRE i.e. ANN(0.06)
followed by SVR(0.35), XG-Boost(0.745), k-NN(0.49) and
Linear Regression(1.28). The highest value of MMRE was
generated by Linear Regression(1.28), which is not consid-
ered as optimal. Better estimates are produced by software

VOLUME 11, 2023

effort estimation models with lower MMRE values than
models with larger values [62]. On the other hand, the radar
plot shows that ANN(0.948) outperformed all the other ML
algorithms. The Pred(25) values of the rest of the algorithms
are SVR(0.8014), Linear Regression (0.54), k-NN(0.786)
and XG-Boost Regressor(0.782). The recommended estimate
accuracy indicator is PRED (25). PRED determines the per-
centage of predictions that are 25% or less of the actual
number (25).

The interpretation that a significant estimating error
is a sign of poor estimation skills is not always cor-
rect. Alternative, competitive, or supplemental variables
include things like poor project cost control, difficult
development work, and more functionality provided than
anticipated.

2) RESULTS OF LITERATURE-BASED FEATURES SELECTION
ON ISBSG DATASET

To perform the comparison between different machine learn-
ing algorithms, we have done feature selection on the ISBSG
dataset based on suggestions presented in the literature [46].
We used the ISBSG Release 11 industrial datasets to fairly
compare machine learning models. There are more than
5000 cross-company efforts from all across the world in the
ISBSG Release 11 database. The main characteristics and
issues with ISBSG datasets are different platforms, program-
ming languages, and software development life cycle models
were used to construct ISBSG projects. Different measure-
ments for program size are used. They consist of SLOC,
IFPUG, and COSMIC. Each project is given an “A,” “B,” or
“C” grade depending on its quality. According to the ISBSG
guideline, projects with a rank other than “A” and “B”
should be terminated. There are many rows (projects) with
blank data. More than 100 columns (features) are present;
some of them, such as the project number and project date, are
not linked to the output (software effort). Statistical analysis
revealed that although some of the traits are connected, they
are statistically insignificant. Only project ranks “A” and
“B”” were considered for the experiments. The followings are
the primary characteristics and problems of ISBSG datasets
as identified by Nassif et al. [46], [63]:

1) ISBSG projects were built using a variety of platforms,
programming languages, and software development
life cycle models.

27773

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

k-NN Regressor Linear Regression Support Vector Regressor

Predicted NWE (log1o)

Predicted NWE (logso)

Predicted NWE (log1o)
w

o] o
0 1 2 3 4 5 6 0 1 2 3 a 5 6 1 2 3 a 5 6
Actual NWE (logio) Actual NWE (logio) Actual NWE (logio)
(a) (b) (c)
XGBoost Regressor ANN
6 6
54 5]
14 1]
0 01
0 1 2 3 a 5 6 0 1 2 3 a 5 6
Actual NWE (log10) Actual NWE (log10)
(d) (e)
FIGURE 7. Results of all features ISBSG dataset.
TABLE 11. Results of Literature-Based Features Selection on ISBSG Dataset.
Training time(s) MMRE MAE MdMRE MdAE PRED(25)
SVR 0.47 1.01 3716.99 0.38 1123.19 0.37
Linear Regression 0.0069 1.1509 3503.81 0.408 1479.13 0.34
k-NN 0.0085 1.73 4462.60 0.46 1500.33 0.29
XGBoost Regressor 0.035 0.53 838.11 0.127 382.50 0.74
ANN 20.53 0.22 1950.16 0.051 159.21 0.74

2) There are several different metrics used to gauge pro- 5) More than 100 columns (features) are present; some

3)

4)

27774

gram size. Some of these are COSMIC, SLOC, and
IFPUG.

A, B, or C grades are assigned to each project based on
its calibre. Projects with ranks other than “A”” and “B”
are advised to be cancelled, according to the ISBSG
advice.

Numerous rows (projects) have empty values.
Usually, such an occurrence can be replaced by
different techniques as suggested by the
literature.

6)

7)

of them, such as the project number and project date,
are not linked to the output (software effort). Statistical
analyses show that although some of the traits are
connected, they are statistically insignificant.

In a new version of ISBSG 11, two types of develop-
ment are new development and enhancement.

Even when utilising the same size metric, productivity
(the ratio between software work and size) varies sub-
stantially because of the dataset’s tremendous variety.
The productivity, for projects of metric size IFPUG, for

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

[7387.367
8000 -
2000 &
o 000951 O 10.73 O 145.8977 4?6'409
- - — 7 e (3
k-NN XGBoost Support Linear ANN
Regressor ¥ Regressor * Vector Regression *

Regressor *

FIGURE 8. Training Time All Features ISBSG (Standalone ML-Model).

k-NN Regressor *

14
12

1
0.8
06

ANN XGBoost Regressor *

Linear Regression *

Support Vector
Regressor *

——~MMRE ——PRED(25)

FIGURE 9. RADAR Graph: Results for all ISBSG Features Standalone
Algorithm.

instance, ranges from 0.1 to 621. For instance, the time
required to produce a project of 100 units can vary from
10 hours (assuming productivity of 0.1) to 6210 hours
(if productivity is 621). This is a significant problem
that requires attention.

We developed a scalable approach to filter the ISBSG
Release 11 and generate five subsets based on the aforemen-
tioned ISBSG features (datasets). The ISBSG’s suggestions
were used to divide the general population into five sub-
groups. The first things we settled on were IFPUG adjusted
function points (AFP), the development type ‘“new devel-
opment,” the development platform, the language type, the
resource level, and the normalised work effort. The model’s
output is the latter (normalised work effort), while its inputs
are the other attributes. It is important to note that only
the software size (AFP) is a continuous variable among the
model’s inputs, whilst the others are categorical variables.
Only projects with quality ratings of “A” or “B”’ and no miss-
ing data were taken into consideration, as advised by ISBSG.
Based on the productivity value, five different subsets were
chosen to address the problem raised in issue 7 above. When
the range of the productivity values is from 0 to 4.9 inclusive,
the first subset is selected. The second one occurs when

VOLUME 11, 2023

productivity levels range from 5 to 9.9, and so forth. Each
dataset is split into a training dataset and a testing dataset after
five datasets have been prepared.

The projects are arranged in the datasets according to the
dates on which they were completed, with the oldest 30% of
the projects being utilised for testing and the oldest 70% for
training. This strategy is comparable to how previous projects
are utilised to prepare current ones and forecast their effort in
the real world. This method is reproducible and the splitting is
not random, so please be aware that it differs from the random
70/30 per cent stated above.

a: SELECTION ON THE BASIS OF DATA QUALITY RATING

As suggested by literature [46], we filter the dataset based
on the data quality. A, B, or C grades are assigned to each
project based on its caliber. Projects with ranks other than
“A” and “B” are advised to be canceled, according to the
ISBSG advice. We left with 7780 total results.

b: SELECTING FEATURES

As discussed in the literature we have selected features pre-
scribed by the literature. Since these features are the ones that
help predict effort. Therefore, we are cleansing our datasets
of irrelevant features. We have selected attributes such as
Adjusted Function Points (column G), Normalised Work
Effort (Column J), Development Type (column AF), Devel-
opment Platform (column BQ), Language Type (column BR),
and Resource Level (Column CU). Please note that Nor-
malised Work Effort is the output of the model (Dependent
Variable) where the other attributes are the input of the model
(independent variables). Please also note that Development
Type will not be input because all projects have the same
development type. After this selection, we have 6015 rows
and 6 columns.

¢: DROPING MISSING VALUES

Missing values always create problems in terms of analysing
the dataset. These values has no meaning therefore can have a
false impact on the results. After dropping the missing values
we have 3432 records left in the dataset.

d: SELECTION OF PRODUCTIVITY ANALYSIS

After dropping values we tend to select the development type.
We opted new development type for the productivity analysis.

e: SEPARATING INPUTS AND OUTPUTS

For implementation we need to select the input variables and
output variable. For input data we have selected Adjusted
Function Points, Development Platform, Language Type,
Resource Level and Productivity. Similarly for the output we
need only one variable i.e. Normalized Work Effort.

f: TRANSFORMATION OF NOMINAL DATA INTO NUMBERS

Our dataset is consisting of diverse input. For analysis of
dataset we need to have similar datatype of all the input
i.e. numbers so that our results are more understandable

27775

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

k-NN Regressor

Linear Regression

Support Vector Regressor

5.0 1 5.0

4.5 4.5
4.0 4.0
3.59 3.51
3.04 3.0

2.59 2.51

Predicted NWE (logio)
Predicted NWE (logio)

2.0

1.54

1.01

o
o

>
o

»
o

3.5

Predicted NWE (log1o)
w
°

1.0 15 20 25 3.0 35 40 45 50 1.0 15 20 25

Actual NWE (log10)

(a)

XGBoost Regressor

30 35 40 45 50 1.0 15 20 25 30 35 40 45 50
Actual NWE (log10)

Actual NWE (logio)

(b) ()

ANN

wooow s
5 G b5

Predicted NWE (log1o)

N
o

5.0

4.5

4.0

3.59

3.01

2.54

Predicted NWE (log1o)

2.04

1.5

1.04

15 2.0 25 3.0 3.5 4.0 4.5 5.0
Actual NWE (log10)

(d)

FIGURE 10. Results of ISBSG Dataset Literature-Based Feature selection.

and meaningful. Use the Nominal to Numerical operator to
change non-numeric properties into a numeric kind. In addi-
tion to changing the type of the attributes, this operator
changes all values for the selected attributes to numeric
values. The values of a binary attribute are represented by
the integers 0 and 1. The numerical input properties of the
Example Set remain unchanged. Using this operator, there
are three ways to go from nominal to numeric. This mode
is managed by the coding type argument.

Filtering is the process in which we make our data more
meaningful. For instance, we have eliminate the tuples which
are meaningless. Similarly, the empty column were replaced
by the mean of the column.

All ML techniques have been applied to every feature of
the ISBSG Dataset. If ANN is compared against SVR, LR,
k-NN, and XGBoost Regressor, it has showed good out-
comes. The diagonal line, which represents the actual effort
input, can be used to infer ISBSG. Due to the fact that the true
input value is centred on x and y, i.e., X=y, we obtain the red
line in diagonal form.

This particular feature selected was based on the
literature-based as shown in Figure 10. The datapoints on
the scattered plot are built using the values of the actual
and predicted effort. The values on the x-axis, for instance,

27776

1.0 15 20 25 30 35 40 45 50
Actual NWE (log10)

()

k-NN Regressor *
2

* Support Vector

XGBoost Regressor
Regressor * *

ANN * Linear Regression *

——MMRE ——PRED(25)

FIGURE 11. RADAR Graph: Results for All ISBSG Features Standalone
Algorithm.

represent the real effort. The y-axis displays the datapoints
representing the expected effort.

ANN produce better result in terms of scattered plaot in
Figure 10. Majority of ANN datapoints lies on the red diag-
onal line. The x and y represent the values of Actual Effort
(x) and Predicted Effort (y). However, other ML algorithm

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

[7387367
000 =
2000 o
. 0 0.0951 0 10,73 O 145.8977 4?5A09
~ -—— — e
k-NMN XGBoost Support Linear ANMN
Regressor * Regressor * Vector Regression *

Regressor *

FIGURE 12. Training Time Literature-Based Features Selection on ISBSG
(Standalone ML-Model).

were average in terms of lying on the diagonal line nearer to
the actual effort. XG-Boost have shown good results even the
datapoints were closer to the diagonal line. However, k-NN,
Linear Regression and SVR datapoints/resulted scattered plot
were not impressive as of ANN and XG-Boost. Therefore,
in literature-based feature selection ANN and XG-Boost
have performed well as compared to k-NN, Linear Regres-
sion and SVR

The fact that MMRE is frequently used in scenarios involv-
ing software effort estimation may be due to the fact that
people believe it to be the mean absolute percentage error.
Since MMRE is scale-free, estimation errors from all sizes of
software development projects can be combined using it. The
MMRE has no upper score limits for overestimation, but an
underestimating of effort can never result in a score higher
than one. Despite this scoring asymmetry restriction, MMRE
(MAPE) may be the most widely used estimation error metric
in research and industry [54].

The MMRE of ANN(0.22) was more better than the other
ML algorithms as shown in Figure 11 XG-Boost (0.53) stands
second best, SVR (1.01) third best, Linear Regression (1.15)
fourth best and finally k-NN (1.73). These results show that
ANN outperformed other ML algorithm when it comes to
MMRE analysis. ANN also produce great results in terms of
PRED(25). Comparison of ANN with other ML techniques
with respect to MMRE and PRED(25) can be observed un
RADAR plotin Figure 11 The higher the Pred value the better
model is considered. ANN and XG-Boost were better in terms
of PRED(25). While k-NN ranked second. Linear Regression
produce better results as compared to SVR which has the
accuracy of (0.37). Higher PRED(25) shows that its derived
estimates are more accurate than other models.

Figure 12, contrasts the execution times of several mod-
els (in s). Compared to other algorithms, the ANN algo-
rithms’ training process takes a long time (SVR,LR, k-NN
and XG-Boost). We can see that less complex algorithms take
less time to train than simple ones like Linear Regression
(LR) and £-NN (values can be interpreted from Table). When
combining the execution times for training and testing, LR is
one of the quickest algorithms.

VOLUME 11, 2023

3) RESULTS OF STATISTICAL BASED FEATURES SELECTION
ON ISBSG DATASET
a: F- REGRESSION
Whether a characteristic is chosen manually or automatically
depends on how important it is to prediction variable or
desired result. Model may learn based on irrelevant features
in the given data, which could result in a reduction in model
accuracy.
Following is the equation of F- Regression Model. F-
Regression ranks features based on its weight(importance).
Equation of F- Regression ranks features:

FRFeature = {{f1, score), {f>, score),, {fy, score)} (16)
Sort with respect to the score:

FRsoring = {{f], score), (f5, score), ..., (f,, score)} (17)
such that:

fi i score < f; : score, f, : score

<fy iscore,....... fo i score < f < score (18)
Finally:
FRTopQSFeature = FRSortea' [_25 :] (19)

The stages of feature extraction and selection are now
required for ‘“low loss dimension reduction.” These fields—
machine learning, data mining, and pattern recognition—all
make use of this paradigm. In machine learning, a set of
pertinent target features must be preprocessed, and to reduce
dimensionality, the most suitable feature subset must be cho-
sen for the classification task. As we have already covered the
literature-based feature selection and all features selections.
Now we are moving toward to our third feature selection
method. This methods is being chosen on the basis of its
results.

The choice of filter features typically depends on statistical
assessments of correlation between input and output vari-
ables. Therefore, the types of variable data have a signifi-
cant impact on the choice of statistical measures. The more
details that are known about the data type of a variable, the
simpler it is to choose an appropriate statistical measure for a
filter-based feature selection strategy. Input and output are the
two main categories of variables to take into account, as well
as the two main types of variables: categorical and numerical.
Input variables are the variables that are utilised as inputs in
a model. When selecting features, we want to use as few of
these variables as possible.

Response variables are typically used to refer to the
variables that a model is meant to predict, also known as
the output variables. The type of response variable typi-
cally determines the specific predictive modelling task under
consideration. A problem with regression predictive mod-
elling is indicated by a numerical output variable, for exam-
ple, and a problem with classification predictive modelling
by a categorical output variable. Typically, the target vari-
able is utilised to construct the statistical measures used in

27777

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 12. Statistical based Feature Selection.

Training time(s) MMRE MAE MdMRE MdJAE PRED(25)
SVR 3.55 0.15 445.65 0.059 62.18 0.80
Linear Regression 0.14 1.28 969.186 0.216 343.96 0.54
k-NN 0.0046 0.276 601.53 0.055 85.16 0.86
XGBoost Regressor 0.515 0.513 885.17 0.085 159.02 0.814
ANN 161.36 0.06 291.18 0.031 62.75 0.953

filter-based feature selection one input variable at a time.
They are known as univariate statistical measures as a result.
This could imply that the filtering procedure does not take
into account any input variable interactions.

As mentioned in the previous two section the formation
of the diagonal line in Figure 13, depend on the input of
actual effort which is used to plot the diagonal line. ISBSG
may be deduced from the diagonal line, which depicts the
actual effort input. We get the red line in diagonal form
because the true input value is centred on X and y, i.e., X=Yy.
As we have previously observed in All features selection
and Literature-based features selection, ANN has again out-
performed other ML algorithm in statistical based features
selection. The datapoints of ANN stick on the actual effort
diagonal line which means that ANN predicted result were
closer to the actual effort as compared to other ML algo-
rithms. k-NN and SVR results were better after ANN results.
Linear Regressor results were disperse across the actual effort
diagonal line. XG-Boost few datapoints were scattered away
from the actual effort. However, rest of the datapoints lie on
the actual efforts diagonal line.

Training time consider to be an important aspect when we
compare different Ml algorithm. Some models tends to have
long training time. On the contrary, some models execute
the experiment within no time. Training time is also plays
a significant role in decisive of the optimal model. However,
there are other factors which also constitute to make a model
an optimal solution. As Figure 14 indicate that ANN has taken
the most time to run its experiment. During our statistical
based Feature Selection, ANN consume the maximum time
to train its model on our dataset i.e. 161.36. However, ANN
produced the best statistical based feature selection results as
compared to other algorithm but it also consume the max-
imum training time among all of the models. Although the
result on the scattered plot of ANN was far better than the
other ML Algorithm. Other Algorithm which include SVR
(3.55s), Linear Regression (0.14s), XG-Boost(0.515).k-NN
(0.0046s) has taken the least time to execute statistical based
feature selection experiment.

Radar plot in Figure 15 clearly shows that MMRE of
ANN(0.06) was the least among all the other ML algorithms.
Other algorithms such as SVR tends to have (0.15) MMRE
and position second as the lowest MMRE. The model have

27778

the least MMRE are considered to be the best. Apart from
that k-NN prove to the third best producing (0.276) MMRE.
However, XG-Boost produce (0.513) MMRE forth best and
Linear Regression has produced the worst among all, produc-
ing (1.28) MMRE.

B. RESULT OF STANDALONE ALGORITHMS ON CASE
STUDIES

We have gathered eight case studies from the software indus-
try. These initiatives are genuine industry projects. In this
section, we will try to predict the effort of our collected case
studies using our trained machine learning algorithms (SVR,
LR, k-NN, XGB, and ANN). As was mentioned in the pre-
vious section, our ML models were created utilizing ISBSG
datasets, and they have shown some positive results. We will
now use the pickled model to anticipate case studies. The
objective is to assess the error between the amount of effort
used in the case studies and the amount of effort estimated by
our trained ML models.

1) RESULTS: ML ALGORITHMS ON CASE STUDIES (ALL
FEATURES)

Results from the Table 13, according to All Features,
ML techniques were applied to the case studies, and the
associated effort was calculated. The quantitative measure-
ments we employed to quantify our experiment were MMRE,
MAE, MdMRE, MdAE, and PRED (25). Pred(25) deter-
mines the proportion of an estimate that is within a 25%
range of the true value. Pred(25) provides the closest and
frequently most accurate result as a result. A good esti-
mation model tries to increase PRED while attempting to
decrease MMRE (25). A combination of MMRE and PRED,
the evaluation function (EF) might be the third evaluating
component (25).

The result in Table 13 shows that XGBoost and ANN
yield to produce better results with respect to Pred(25) i.e.
1. However, SVR was not far behind with 0.875. k-NN and
Linear Regression tend to produce 0.5. On the contrary, with
respect to MMRE ANN lead all the other ML techniques
by producing 0.0022. On the other hand, SVR(0.07) was the
second, however LR(0.30) and k-NN failed to produce good
results.

VOLUME 11, 2023

S.S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy IEEEACCGSS

k-NN Regressor Linear Regression Support Vector Regressor
6 6 6
54 5 54
S 4 S 4+ S 4
g g g
) w w
2 39 2 34 z 3
o ° o
1 O I3
S S S
T 21 ® 27 ? 21
T & &
14 14 14
04 04 04
0 1 2 3 4 5 6 0 1 2 3 2 5 6 0 1 2 3 4 5 6
Actual NWE (logio) Actual NWE (logio) Actual NWE (logio)
(a) (b) (c)
XGBoost Regressor ANN
6 6
5 5
3 aq S 44
o o
S k]
I%I w
2 34 z 3
e el
g g
S S
? 21 B 21
o o
14 1
04 04
0 1 2 3 a 5 6 0 1 2 3 2 5 6
Actual NWE (log1o) Actual NWE (log10)
(d) (e)
FIGURE 13. Results of ISBSG dataset statistical based features selection.
* k-NN Regressor *
[161.3683 A0
T 12000
1.0000
0.8(
* ANN * * XGBoost Regressor *
20.0000 O 0.0046 0.5156 10.1443 [3.5538
NNNNN AT AT S —
* k-NN * XGBoost * Linear * Support * ANN * * Support Vector . . -
Regressor* Regressor* Regression * Vector Regressor * Linear Regression
Regressor *
FIGURE 14. Training Time Statistical Based Features Selection on ISBSG ~~MMRE ---PRED(25)

(Standalone ML-Model).
FIGURE 15. RADAR Graph: Results for Statistical Based Features Selection
(Standalone Model) Algorithm.

2) RESULTS: ML ALGORITHMS ON CASE STUDIES

LITERATURE-BASED FEATURES SELECTION

Similarly, we have run the ML trained algorithm(precisely 3) RESULTS: ML ALGORITHMS ON CASE STUDIES BASED

on the literature based learning variation). As mentioned ON F-REGRESSION FEATURES SELECTION

earlier, the literature based feature selection was done to avoid Following the procedure which we have obtained in the

irrelevant data from the dataset to produce good results. previous two subsections, we have applied our trained ML

VOLUME 11, 2023 27779

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 13. Results: ML Algorithms on Case Studies (All Features).

ISBSG_ALL k-NN ISBSG_ALL LR

ISBSG_ALL_SVR

ISBSG_ALL_XGB ISBSG_ALL_ANN

CS1 2682.3333 3097.0452
CS2 899 1642.069
CS3 2700.6666 515.9201
CS4 1690 489.5411
CS5 899 1535.6108
CS6 1964 938.5012
CS7 3449 5179.1144
CS8 3064.3333 2238.4011
MMRE 0.34049 0.3092
MAE 591.0 603.5421
MdMRE 0.2313 0.2704
MdAE 475.0 634.289
PRED(25) 0.5 0.5

3242.45 3080.30 2973.610
1588.8743 1644.6914 1541.8499
827.3412 1497.7968 1361.0531
1349.5646 1661.9857 1446.5652
1380.7577 1314.8732 1250.3455
1086.6939 1474.5128 1456.4803
4610.9200 3963.8464 4217.909
2786.9095 3150.7168 3376.0957
0.1503 0.0734 0.02208992
304.46838 149.6523 36.236023
0.0991 0.06601 0.0023
275.3794 125.05096 3.522
0.875 1.0 1.0

TABLE 14. Results: ML Algorithms on Case Studies.

ISBSG _NASIF _k-NN ISBSG_NASIF_LR

ISBSG _NASIF_SVR

ISBSG_NASIF_XGB ISBSG _NASIF _ANN

CS1 1571.666667 143911.6638
Cs2 2472.666667 7475.628471
cs3 5326 5404.340488
Cs4 6279.333333 36851.02618
Css 4695.666667 6711.33265
Cs6 4024.333333 19924.0852
Cs7 13961.66667 46712.18928
cs8 8119.333333 73944.71011
MMRE 1.94728 15.8806
MAE 3941.7916 40402.74702
MdMRE 2.12991 11.83807
MdJAE 3706.83333 26980.0556
PRED(25) 05 05

46763.43734 4309.826 54586.234
3936.636449 10121.08 8846.0205
3412.235908 6524.895 6947.7163
12292.7161 6732.8193 12731.928
5239.724358 3155.4863 1606.744
6313.109243 9251.575 9391.158
15005.10133 15245.863 33336.645
24521.86921 10676.566 32851.258
5.079647 3.11088 6.900151
12471.4787 6038.1389 17823.086
3.4083 3.1297 6.393572
7868.60528 6281.69287109375 9654.043
0.875 1.0 1.0

algorithms on our case studies using F-Regression feature
selection.

Previously, in Table 12, ML algorithms tend to produce
good results on simple ISBSG dataset. Lets compare these
results with the results on Case Studies as mentioned above
in Table 15. On both occasion, ANN and SVR produced good
result, but on the basis of overall performance ANN have
produced best results (PRED - ISBSG = 0.953 and Case
Studies = 1) and (MMRE ISBSG = 0.06 and Case Studies
= 0.03). Among ML, worst results was produced by Linear
Regression (PRED - ISBSG = 0.5 and Case Studies = 0.5)
and (MMRE - ISBSG = 1.28 and Case Studies = 1.28).

IX. RESULTS OF HETEROGENEOUS ENSEMBLE MODELS
The acquired information will be applied to the proposed
model, and the measurement of the solution will be evaluated
to ascertain the anticipated effort. To do a comparative anal-
ysis, four machine learning models—Support Vector Regres-
sor (SVR), Linear Regression, K-Nearest Neighbor (k-NN),
XGBoost Regressor, and Artificial Neural Network (ANN)—
have been introduced.

The estimation of software work is a regression problem in
the context of ML. Given a history of correlation between the
two variables, the regression algorithms are an equation that
seeks to estimate the value of a variable (y) based on one or
more independent variables (x). The goal of the function is to
create a linear relationship between X and Y so that X’s value
can be determined from Y’s value [64].

27780

A. RESULTS OF USE CASE POINTS FOR EFFORT
ESTIMATION (UCP)

1) COMPUTE UNADJUSTED ACTOR WEIGHT

During this phase, the unadjusted actor weight is calculated
over eight case studies. Unadjusted Actor Weight is the
sum of all actor weights stated in Table 16. Three complex
actors, one average actor, and two simple actors are among
the 15 unadjusted actor weights in the case study (CS1).
Similar results are obtained for CS2, which has 3 average
and 2 complicated players, CS3, which has 1 simple and
1 difficult actor, and CS4, which has 2 complex actors, which,
respectively, equal to 12, 4, and 6 UAW.

2) ESTIMATE THE UNADJUSTED USE CASE WEIGHT

The unadjusted use case weight at this level was calculated
using data from four case studies. The total use case weights
listed in Table 17 make up the unadjusted use case weight
(UUCW). The calculated unadjusted use case weights for
cases (CS1, CS2, CS3, CS5, CS6, CS7, and CS8) are 195,
70, 120, 130, 75, 90, 200, and 130, respectively.

3) ESTIMATION OF THE UNADJUSTED USE CASE POINT
(uucp)

The Unadjusted Use Case Point (UUCP), also known as
the Unadjusted Use Case Points (UUCP) given in Table 18,
is created by adding the Unadjusted Actor Weight (UAW) and
Unadjusted Use-Case Weight (UUCW).

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

TABLE 15. Results: ML Algorithms on Case Studies - F-Regression.

ISBSG_STATS K-NN ISBSG_STATS IR

ISBSG_STATS SVR

ISBSG_STATS XGB ISBSG_STATS ANN

CS1 3113 3024.071459 3219.5 3084.6802 3031.651
CS2 1372.333333 1570.397974 1394.8 1556.179 1601.0916
CS3 773.6666667 443.6380079 980.23 1487.0033 1418.8856
CS4 1921.666667 416.152838 1627.3 1672.8125 1470.8054
CS5 1274.666667 1461.55463 1311.1 1436.6188 1291.2676
CS6 1537 866.2283226 1238.2 1529.8557 1467.7188
CS7 4014.666667 5111.351389 4253.8 4052.6697 4324.029
CS8 3131 2163.557731 2857.9 3324.4053 3425.283
MMRE 0.15897 0.32437 0.12212 0.0882 0.03563077
MAE 274.70833 622.25032 235.1922 150.5895 66.44356
MdMRE 0.1020 0.287639 0.1075 0.09194 0.0293
MdJAE 233.16666 697.06153 213.39423 157.5756 61.26825
PRED (25) 0.75 0.5 0.875 1.0 1.0
TABLE 16. Unadjusted Actor Weight (UAW).
Case ID Actor Type and Weight Number of Actors Product UAW
Simple Average Complex SA AA CA
CS1 1 2 3 2 1 3 1x2 + 2x1 + 3x3 13
CS2 1 2 3 1 0 1 1x1 + 2x0 + 3x1 4
CS3 1 2 3 0 3 2 1x0 + 2x3 + 3x2 12
CS4 1 2 3 1 0 1 1x1 + 2x0 + 3x1 4
CS5 1 2 3 2 0 1 1x2 + 2x0 + 3x1 5
CS6 1 2 3 1 1 0 1x1 + 2x1 + 3x0 3
CS7 1 2 3 3 2 2 1x3 + 2x2 + 3x2 13
CS8 1 2 3 0 0 2 1x0 + 2x0 + 3x2 6
TABLE 17. Use Case Weight (UUCW).
Case ID Use Case Type and Weight = Number of Use Cases Product UUCW
Simple Average Complex | SUC | AUC CcucC
CS1 5 10 15 23 5 5x23 1 10x5 | 15x2 195
CS2 5 10 15 2 5 4 5x2 + 10x5 + 15x4 120
Cs3 5 10 15 2 3 2 5x2 + 10x3 + 15x2 70
CS4 5 10 15 3 2 2 5x3 + 10x2 + 15x2 65
Cs5 5 10 15 3 3 2 5x3 + 10x3 + 15x2 75
Cs6 5 10 15 4 2 2 5x4 + 10x2 + 15x2 90
Cs7 5 10 15 18 6 2 5x18 + 10x6 + 15x2 200
Cs8 5 10 15 3 7 3 5x3 + 10x7 + 15x3 130
TABLE 18. Unadjusted Use Case Point (UUCP).
Case ID UAW UUCW UUCP = UAW + UUCW
CS1 13 195 208
CS2 4 120 124
CS3 12 70 82
Cs4 4 65 69
CS5 5 75 80
CS6 3 90 93
Cs7 13 200 213
CS8 6 130 136

4) COMPUTING TECHNICAL COMPLEXITY FACTORS

The technical complexity factors, which have values rang-
ing from O (completely inconsequential) to 5, characterize
the non-functional project needs (very relevant). The author
provided these components to the creators of the chosen
instances in order for them to achieve the appropriate value

VOLUME 11, 2023

(RV) against 13 technical characteristics. It is crucial to
remember that separate teams built the target instances with
various requirements and scopes, which results in a range of
associated values. The values shown in Table and Figure were
created by the developers of the selected instances using
their prior development experience. The technical factors

27781

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

(T1-T13) are multiplied by their corresponding weights to
produce the technical factor (TFactor), which is then calcu-
lated by adding up all the resulting values. Equation 12 is used
to compute the TCF. The TCF for (CS1, CS2, CS3, CS5, CS6,
CS7, and CS8) is, respectively,.89,.93,.95, and.92.

5) COMPUTING ENVIRONMENTAL COMPLEXITY FACTORS
The effects of environmental circumstances on production
are calculated using eight environmental parameters (E1-ES8).
According to these criteria, the initiatives are graded from
value (completely unimportant) to 5. (very relevant). This
study employed the expertise of experts from six software
sectors to compute the related value (RV) against eight envi-
ronmental elements in order to prevent bias in the outcomes
of these aspects. In addition, four experts who each work in
a different area of the software industry provided the values
for CS1 and CS2 (expert 1 for CS1 and expert 2 for CS2,
respectively). The data are then combined to improve the
values’ accuracy. However, for CS3 and CS4, the expertise
of two professionals working in two separate software busi-
nesses is utilized. It is crucial to keep in mind that because
different teams generated the target instances, the associated
values are diverse. The values presented in Tables 27 and
Table 26 were recommended by the experts based on their
prior development experiences(Please refer to Appendix A
for all the Tables!).

The computations for the environmental factor (EFac-
tor) and environmental complexity factor (ECF).2 Table 19
reveals that the average ECF for CS1, CS2, CS3, CS4, CSS5,
CS6, CS7, and CS8 is, respectively, 0.755, 0.5525, 0.62,
0.5825, 0.8675, 0.8, 0.83, and 0.8525.5.

a: COMPUTING ADJUSTED USE CASE POINT (AUCP) AND
ESTIMATED EFFORT

The size figure for the chosen situations is provided by the
AUCP. The productivity factor is a crucial component of
estimating software effort because it helps translate size into
human work. It is described as a ratio of effort to area.
After the corrected UCP has been calculated, productivity
is multiplied. The estimated and actual effort of the selected
situations are shown in Table 20 and Figure 18.

Karner’s first calculation of the number of man hours
required for each AUCP was twenty. the notion that environ-
mental factors should be taken into account when calculating
the number of work hours needed for each use case point. The
number of environmental factors with scores between one and
three in categories E1 through E6 is tallied and added to the
factors with scores between three and eight in categories E7
through E8, according to Schneider and Winters [65]. if more
than two are united. If there are three or four UCPs, use
28 man hours per UCP instead of the typical advice of 20.
If there are more than five use case points, it is frequently

IPlease refer Appendix for Table 25 consist of Technical Complexity
factors of selected case studies.

2Please refer Appendix section for Table 27 consist of environmental
values assigned by experts of case studies.

27782

suggested to consider budget 36 man hours for each one.
So, we applied the Schneider and Winters [65] approach to
calculate the productivity factor. But using this method results
in a productivity factor of 20 man-hours for each use case
point for all of the selected examples.

B. EFFORT ESTIMATION USING EXPERT JUDGEMENT

One of the most widely used estimation strategies is effort
estimation by expert judgment. Many sectors rely on the
expert opinion when estimating a project’s cost, the number
of people needed, and how the tasks will be distributed among
them. The level of effort in the selected situations is esti-
mated using the experts’ expertise. The experts’ demographic
information is obtained and analyzed using a checklist fill-in
method to ensure that the appropriate specialists are acces-
sible for the software company’ effort calculation. Due to
various organizational laws and regulations, approaching the
specialists may be a challenging task. Although the expert
may be extremely skilled and knowledgeable and able to
complete the assignment in a field closely connected to it,
accurate estimation may be difficult.?

The primary determinants of effort are the target instances’
functional requirements. The analysts were able to identify
the most likely attempt in each instance using the checklist’s
A and B. Before estimating the time needed to accomplish the
functional needs of the projects, the specialists were aware
of the technical and environmental factors* present in the
target scenarios. For the four case studies, there are a total of
28, 11, 23, and 34 functional criteria, respectively. Different
professionals have different levels of prejudice, which are a
product of both conscious and unconscious processes. The
average of each expert’s unique estimations, which are added
together to create a single estimate, is taken into consideration
to lessen the amount of bias. The time experts estimate it will
take to develop the target cases.

X. COMPARATIVE ANALYSIS, RESULTS AND DISCUSSION
A. RESULTS OF BASE MODELS BM1, BM2 AND BM3

We are going to show the outcomes of the UCP, ANN, and EJ
in this part. Additionally, the actual outcome will be shown
for comparison. Table 22 shows the efforts of BM1, BM2,
and BM3 with regard to their case study.

a: RQI1: DOES A HETEROGENEOUS ENSEMBLE EFFORT
ESTIMATION MODEL USING UCP, ANN AND EJ PRODUCED
BETTER RESULTS AS COMPARED TO STANDALONE ML
MODELS?

To answer RQ1, lets first have a brief review of the exper-
iments. Machine learning models were trained using the
benchmark datasets ISBSG and UCP. Eight case studies from
the software industries were gathered, and these ML meth-
ods were then used on them in real-world scenarios. The

3Please refer Appendix for Table 28 consist of Feedback given by Experts.

4Please refer Appendix-A for Table 26 for Environment Complexity
Factor.

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy IEEEACCGSS

® Case_Study 1 ®Case_Study 2 ® Case_Study 3 ®Case_Study 4 ® Case_Study 5 ® Case_Study 6 ® Case_Study 7 ® Case_Study 8

Easy to change

End user efficiency

Includes special security features

Response time or throughput performance objectives
Special user training facilities are required

Easy to install

Easy to use

Description

Complex internal processing

Provides direct access for third parties
Code must be reusable (reusability)
Concurrent

Distributed System

Portable

o

FIGURE 16. Graphical representation TCF.

TABLE 19. Average ECF of Case Studies.

10 20 30 40
Case_Study 1, Case_Study 2, Case_Study 3, Case_Study 4, Case_Study 5 Case_Study 6, Case_Study 7 and Case_Study 8

Case ID EFactor ECF Average
ECF
Expert 1 | Expert 2 | Expert 1 | Expert 2
Cs1 21 22 0.77 0.74 0.755
CS2 29.5 27 0.515 0.59 0.5525
CS3 23.5 28.5 0.695 0.545 0.62
Cs4 25.5 29 0.635 0.53 0.5825
CS5 17 18.5 0.89 0.845 0.8675
CS6 19.5 20.5 0.815 0.785 0.8
Cs7 19 19 0.83 0.83 0.83
CS8 17.5 19 0.875 0.83 0.8525

TABLE 20. Estimated effort using UCP method.

1D Uycp TCF ECF AUCP Productivity Effortest (man-hours) Actual Effort

AUCP X Productivity

CS1 208 0.87 0.755 136.62
CS2 124 0.93 0.5525 63.71
CS3 82 0.93 0.62 47.28
CS4 69 0.925 0.5825 37.17
CS5 80 1 0.8675 69.4

CS6 93 0.93 0.8 69.192
CS7 213 0.95 0.83 167.95
CS8 136 0.99 0.8525 114.71

2732.4 2970
1274.2 1545
945.6 1358
743.4 1450
1388 1250
1383.84 1365
3359 3259
2294.2 2640

assessment standards for our findings were carried out by
PRED. The PRED value with the highest value was selected
using the combination rule of the Ensemble model. All of
the ML models were applied to the case studies, and the ML,
models were then integrated by averaging the highest PRED
score.

VOLUME 11, 2023

Table 23 compares Heterogeneous Proposed Ensemble
with stand-alone algorithms. The Heterogeneous Ensemble
outperforms the Standalone Algorithm during our experimen-
tation as one can observed in the cell with the darkest colour,
as seen in Table 23. This would be seen as the ensemble’s
most noticeable improvement over the stand-alone method

27783

IEEEACC@SS Y S.S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

35

30

25

20

15

10

-10

W E1 Familiar with the project ® E2 Application experience E3 Object-oriented experience
M E4 Lead analyst capability B E5 Motivation B E6 Stable requirements
m E7 Part-time staff | E8 Difficult programming

FIGURE 17. Graphical representation ECF.

Actual Effort and Effortest (man-hours) AUCP X Productivity by 1D

@ Actual Effort @Effortest (man-hours) AUCP X Productivity
3500

2500

2000

1500

1000

Actual Effort and Effortest iman-hours) AUCPE X Productivity

500

Cs7 Ccs1 Ccs8 Cs2 C54 Cs6 cs3 Cs5

FIGURE 18. Estimated effort using UCP method.

27784 VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

TABLE 21. Results: Expert Judgement - Effort Estimation.

1D Expert-1 Expert-2 Effort (man-hour) Actual Effort (man-hour)
CS1 2815 3065 2940 2970
CS2 2105 2215 2160 1545
CS3 1415 1615 1515 1358
CS4 1855 1805 1830 1450
CS5 1120 1090 1105 1250
CS6 1075 1195 1135 1365
CS7 3635 3470 3580 3259
CS8 2895 3050 2972.5 2640
TABLE 22. Hetrogeneous Model Results.
Actual Effort ucCPp EJ ANN
CS1 2970 2732.4 2940 2973.6108
CS2 1545 1274.2 2160 1541.8499
CS3 1358 945.6 1515 1361.0531
CS4 1450 743.4 1830 1446.5652
CS5 1250 1388 1105 1250.3455
CS6 1365 1383.84 1135 1456.4803
CS7 3259 3359 3580 4217.909
CS8 2640 2294.2 29725 3376.0957

as Heterogeneous Ensemble outperformed XG-Boost Stan-
dalone in all areas of the ISBSG dataset by 78%. Second,
the findings of the heterogeneous ensemble model exceeded
those of the k-NN by a factor of 70.45%. (ISBSG Dataset
on Literature-Based Feature Selection). Table 23 shows
that the Heterogeneous Ensemble likewise performed well
on SVR by 62.7% and LR by 65.45%(ISBSG Dataset on
Literature-Based Feature Selection).

B. ML ENSEMBLE MODEL VS. STANDALONE ML MODEL
RQ2: Does Ensemble Model Produced Better Results as
Compared to Machine Learning Model?: ML Ensemble
models have improved Standalone Model results on k-NN by
55%. (ISBSG Dataset with Literature-Based Feature selec-
tion). The ML Ensemble has also delivered successful results
on SVR by 47% and LR by 50% with light-darker shading
(ISBSG Dataset with Literature-Based Feature selection).

The cell with the white shade, on the other hand, shows
that there was no appreciable difference between the perfor-
mance of the ML Ensemble model and that of Standalone
Models, including the variants of Standalone models LR and
XG-Boost. The negative numbers show that the Standalone
models’ values were bigger than those of the ML Ensemble,
which skews the findings in that way.

C. RESULTS BASED ON FEATURE SELECTION

RQ3: Does the Variation in Feature Selection of the Dataset
Have Any Impact on Result Accuracy: In our study we have
used feature selection not only to avoid the irrelevant infor-
mation. Nevertheless, it also help us to avoid the biasness of
the results. We have used three variation in our experiment
just to make sure that we have fully grasp the understanding
of the implementation of the ML technique and our proposed
model on our datasets.

VOLUME 11, 2023

The feature selection process is one of the crucial steps
in a feature engineering process. This technique involves
reducing the amount of input variables to produce a predic-
tive model. Feature selection procedures are used to reduce
the number of input variables by eliminating unused or
duplicated characteristics. The most crucial features for the
machine learning model are then eliminated from the list of
features. In machine learning, a feature selection aim chooses
the most advantageous set of characteristics that can be used
to build powerful models of the phenomenon being studied.

Lets compare the results of ANN algorithm in different
feature selection setups i.e. all features, selection based on
literature and on F-Regression. The training time of ANN in
All features was (436.409), in literature based selection ANN
spend (20.53), while on F-Regression ANN yield (161.36).
As we can observe that with all the irrelevant features, ANN
tends to take enormous time. Simply including all features
tends to waste time and eventually the results would not be
optimal. Hence we can say that feature selection not only
provide optimal results but also save a lot of precious time.

The MMRE of ANN in All features was (0.06), in literature
based selection ANN spend (0.22), while on F-Regression
ANN yield (0.06). However, PRED(25) of ANN in All fea-
tures was (0.948), in literature based selection ANN spend
(0.74), while on F-Regression ANN yield (0.953). Conclud-
ing the results based on precision metrics, we can say that
ANN has produced better results on feature selection.

In our concluding remarks we can say that feature selection
increase accuracy. It also enhances the algorithms’ capacity to
predict results by concentrating on the most crucial variables
and eliminating the unnecessary ones. it minimizes the over-
fitting, improve accuracy and reduce training time. Decisions
are less likely to be based on noise when there are fewer
redundant data points. Less data allows algorithms to operate
more rapidly.

27785

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

TABLE 23. Results Comparation of (Hetrogen) Proposed Ensemble Model VS ML Standalone Models.

(Hetrogen) Proposed Ensemble vs. ML Standalone Algorithms

k-NN SVR LR XGB ANN (Hetrogen.)
Proposed Ensemble
ISBSG_ALL CS 0.2137 0.1985 0.4534 [0.7821 | 0.0515
ISBSG_LR CS 0.7045 0.6273 0.6545 0.2545 0.2545
on case studies ISBSG_FS CS 0.1356 0.1174 0.4546 0.1858 0.0466 1
TABLE 24. Results Comparison of ML Ensemble Model VS ML Standalone Models.
ML Ensemble Model VS ML Standalone Models
K-NN SVR LR XGBoost ANN ML Ensemble
ISBSG _ALL CS 0.0637 0.0485 0.3034 0.0679 -0.0985
ISBSG_LR CS 0.5545 0.4773 0.5045 0.1045 0.1045
on case studies ISBSG FS CS -0.0144 -0.0326 = 0.3046 0.0358 -0.1034 0.8500
TABLE 25. Technical complexity factors of selected cases T1 - T13.
Factol] Description Weight (W) Related Value (RV) 0-5 | Impact
I =W x RV)
CS1 | CS2 | CS3 | CS4 | CS5 | CS6 | CS7 | CS8 | CS1 | CS2 | CS3 | CS4 CS5 | CS6 | CS7 | CS8
T1 Distributed 2 0 0 0 0 1 0 0 3 0 0 0 0 2 0 0 6
System
T2 Response time 1 3 4 3 4 3 4 4 4 3 4 3 4 3 4 4 4
or throughput
performance
objectives
T3 End user effi- 1 5 5 5 4 5 3 5 5 5 5 5 4 5 3 5 5
ciency
T4 Complex inter- 1 1 2 4 3 4 2 3 1 1 2 4 3 4 2 3 1
nal
processing
T5 Code must be 1 0 1 1 1 1 3 2 1 0 1 1 1 1 3 2 1
reusable
(reusability)
T6 Easy to install 0.5 5 5 5 4 4 5 5 4 2.5 2.5 2.5 2 2 2.5 2.5 2
T7 Easy to use 0.5 5 5 5 5 4 5 5 4 2.5 2.5 2.5 2.5 2 2.5 2.5 2
T8 Portable 2 0 1 1 1 2 1 1 0 0 2 2 2 2 2 2 0
T9 Easy to change 1 5 5 4 4 3 5 5 3 5 5 4 4 3 5 5 3
T10 Concurrent 1 0 0 0 0 2 1 1 2 0 0 0 0 2 1 1 2
T11 Includes 1 3 3 2 3 5 3 3 5 3 3 2 3 5 3 3 5
special
security
features
T12 Provides direct 1 1 2 4 3 4 2 3 1 1 2 4 3 4 2 3 1
access for third
parties
T13 Special user 1 3 2 3 4 5 3 2 5 3 2 3 4 5 3 2 5
training
facilities
Technical Fac- 27 33 33 32.5 40 33 35 39
tor (TFactor)
Technical 0.87 | 0.93 | 0.93 | 0.925 1 0.93 | 0.95 | 0.99
Complexity
Factor (TCF)

XI. LIMITATION OF THE PROPOSED HETEROGENEOUS
ENSEMBLE MODEL
Heterogeneous ensemble models combine different types of

base

models, such as decision trees, neural networks, and

support vector machines, to improve the overall performance
of the ensemble. However, these models also have several
limitations, including:

Complexity: Our proposed Heterogeneous ensemble
model can be more complex than homogeneous ensem-
ble models because they combine different types of
models with different parameters, architectures, and
hyper-parameters. This can make it difficult to interpret
the results and diagnose problems with the model.

27786

o Over-fitting: Our proposed Heterogeneous ensemble

model can be prone to over-fitting, if the base models
are not diverse enough or if the ensemble is too complex.
This can lead to a decrease in performance on new data.

o Computational cost: Heterogeneous ensemble models

can be more computationally expensive than homoge-
neous ensemble models because they require training
multiple types of models with different parameters
and architectures. In our case we tried different
cleaned datasets but still a lot of training was served.
It would be interesting to see how proposed model
react when encounter a diverse, large and complex
dataset.

VOLUME 11, 2023

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

€G°0 | 9690 | GPS°0 | S69°0 | 650 | SIS0 | #4°0 | LL°0 (IDH) 10308 Ayxo[duio)) [RYUDUIHOIIATL]
6¢ §'4¢e G'8¢ R4 LG G'6¢ (44 1¢ (10300]) 10908, [RJUSTUUOIAU
agengue|
Surmurerdoad
¢ € 0 ¢ G- 0 ¢ € ¢ € 0 4 4 0 4 € 1- HOWIg 84
1- 0 0 T1- T1- 0 0 0 T 0 0 T T 0 0 0 I- Jeis sminy-jred Ld
syuow
0T 8 8 0T 0T 0T 9 8 g i i g q g € ¥ 4 -oambar s[qelg 94
g q i € g v q € g g i € q ¥ g € T UOTYRATIOIN GH
Aypiqedes
G'c 4 4 4 4 g'c g1 4 g i i i i g € ¥ g0 isArewre pear] i%C!
douaLIedxo
pojusLIO
G v G G v G iz G ¢ | v S| ¢ | V|9 |¥V| G T -122[qQ ed
9ouaLIodxo
¢ a1 (4 (4 a1 (4 G1 g1 ¥ € i % € ¥ € € g0 uoryentddy ¢d
posn
St
ey
[Ppow
100lo1d o1y
gL 9 gL v gl 9 9 @y g 4 g € g ¥ 4 € a1 UHM TRTTUIR{ JiC!
(4 ! (4 1 (4 1 4 1 1 1 (4 ! 4 1 (4 1
-dxrq | -dxyq | -dxyq | -dxyp |-dxqq | -dxyq |-dxy |-dxq Fdxyq |dxy Fdxo Fdxog Fdxy Fdxop -dxog Fdxy
SO SO ¢SO SO 7SO €SO (40) SO
(AT XM =1
joeduy G-0 (AY) enreA porey | (M) 1USom uondrsa(| 10908

*(403) 10124 Ayxajdwo) jejuswuoAUz 9T T1AVL

27787

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

-oouaLIadxe SHOV] S[OUYM © S® WRDY OYT, (g JO 0100F
‘reak ouo se yous ‘eousiiadxe Bur

-avy oSvjusorod Aury © A[UO (LM ‘SOOIAOU DIB WESG DY} JO [N OUL f 91008
“odustIadxa paulq
-W0O Jo IVOA T UTYY OIOW OATVY SIOQUIDUI WEDY OYI JO KIIOfRW OYL g 91008

~ » -oousLIadxs Jo sIwak ¢ URY) slow sey S[0UM © st dnoid oy, g 91098
» \ ~ » » » ‘S189A OM) UBY) 103E0IB S| S[OYM T SE WEI) 9Y) JO 2INUY OFVIGAT O, i 9100§
» » ~ » ~ » A A ‘srowrmresBoad pouoseos ore wIwed oYy UL [y (0 2108

‘ofengue| Surmuressord JNOWIP © ST 8H

qof ewry-jaed © Sy IOQUISW WIed) YORF (g JO 2100F
-szowrry-jaed JO SSISUOD WEDY OYY JO JIOH F-§

» » » » » » » » s1o310m oury-daed jo roquInu (%40g) [[BWS ¥ g-T 91058
» » » » » » » » ‘ouou oaw s1oy [, sjutod 0107

yeis owry-gred LW

A ~ A A A » » A s ‘Jnoysnoiyy suoryeoyoads JUSISISUOD G D100
~ » » » » » » poamboi ore sjuLWIISN[pE IOUI "PUNOIL [[B AN[IRIS Tp—g 91008

‘SouIr} JUOIOPIP JB SJUOUIISNIPE SNOIOWNU $3SoNDOI I19UIOSTD oY,
SUOIIPUOD B[qRISU[) ig-T 240DS

‘SurSueyo sAemfe ‘sjuouwrorrnbor drjelIe A[OUIIIXF () 91098
SUOIYIPUOD B[qeIS 19F

» » » ~ ~ » » » ‘pajearjow pue peardsur A[ySiy st dnoid oy, :g 01098
» » » A » » » [[om wiojrod 03 WSAWIP ST dNoIF oY, ip—€ I00g
» UOIRAIJOW JUSIILYNSU] (g-T 210G

‘uorjeAriowr ou spenbe sjurod
uorgeardsuy - ¢E

s990l01d SNOLIRA UO BUIIOM 00ULLIOdXD JO OIOWI 10 SI1L0K DOIYL, g OI00F

2ousrIadxo JO SIRaK OM) ISEO[4B JO 9SIN0D OUY 1940 £300[0id [RIDADS (p-g 2100F

SIMEIXH

s900fo1d moj & woxy eBpa[mous] ig-1 2100g peoustiadxour st sA[eur pea| oY, :0 0100 JsA[eue peal oy Jo Ayriqeden pE

» ~ ~ » A ‘(s1wek g ueyy siow) jusserd [[e oie siodoeasp pedusiredxy ¢ 2100
» » ~ » » » » » +90UBIIOdXD JO SI1E0K OM) UBY) SIOUWI SARY SIDqUIDW JO AJLIOfRU §,UIwd) oY, if 21008
» A » “odusiIadxa JO SIRAA JIRY B PUE SUO PUR DUO USOMID] SARY SIOQUIDW WD) [[V £-g 2109

‘0dusIIadX0 JO 10K B UBY) SIOW SBY WD) OY) UO 9UO ON T 2100g
“AVOO 3o e8paimous| totad ou sey penbs oy, :0 21008
$1920qO UITM eouLLIOdXE ‘EH

» A » ‘G Jo 21008 © Burules ‘9ousIIadXe JUTAS[PL SEY IDqUWDUW WES) YOBE
» » » s » A A oouatrodxo JO YIOM SIBOA OM) SBY WED) oY) Jo AJIIOofRUI OY T, if 01008
~ ~ ~ ~ A » ‘oousrIadxe JO SIRAA C'] JSEA[3 SR UIES) OUI JO IOQUISW YORF IE 210G

‘o8parmouy 1o1ad Aue SAR—oduULIIOdXD JO SIRAA JlRY-e-pUR

~ueAs[® 0 OUO UM 0sOY) ‘O[dwEXe 10j SIOqUIDW WD) Md) € A[UQ ig-T 9100G
‘9ousIadX0 SYOR] S[OYM © S UIED) ST, (0 PI00F

oousrredxoe worjeoridde [[BI0AO TH

» » »~ » ‘s190f01d jo oBues & 03 poyrew oy parfdde oAvy SIOqUISW Wed) [[Y G JO 2100
» » » » » » » » » » » A “s300f01d 10130 03 AF03wr)s oy porjdde ALY SIOqUIDW WED) OYJ JO JIRY ISELD[JV JRYJ DIVIIPUL F 03 § JO S2100G
‘ABoyeI)s O Posn A[[RUOISEOO0 SR I10QUIDWI UIES) UO JSLI] 1B YY) MOYS £-7 JO S21008
-0 Juowido[oasp moy jo dseis [enjdoouod v sey dnoid oy, :sjutod |

‘ss0001d quawdo[oAsp 213 JO BUIPURISIOPUN OU SEY WES BY) ‘() JO SIODS B UILM

posn Bureq ASojopoyseur juswdo[eAdp B3 INOQE S[qEESpPaIMOU : TH
T-dXd g-dX® I-dXH g-dXd I-dXd SIMAIXH
>

c-dXd T-dXd T-dXd
8 L z-sD 1-SD

T-dXd o-dXd T-dXd e-dXd T-dXd Z-dXd T-dXd o-dXd
-SD SO 9-5D S-SD ¥-SD €-SC

-uadx3 Aq pausissy sanjep [ejuswiuosiAaug LT 319VL

VOLUME 11, 2023

27788

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

(anoy
wely)
3IOPE IS

g-dxgg
85D

T-dxg

grtT
ket
S'L6
qTT
qzT
qTT
geT
qTtT
g8
get
o1tL

(anog
—urAL)
IOPH ISH

0eT

0zT

0ot

g-dxgg
180

ce9e
0Tt
S6
STL
0€T
091
0Tt
ovT
0zT
01T
0z
0€T
0ztT

]
=

0€T
0LT
0ST
0eT
01T
geT
ott
0€T

OWINOOOO0CO00000000000000Y
o
©

2
N
=

0z1
ovtT faas
01T gzeT
0eT gzal
01T <6
01T gzal
0€T S'L6
0zt S

(anog
“urAL)
T-dXE 3I0[HISH

6TT

06
ort
ort

ott
orT
0eT
<ot
geT
<ot
08

g-dxgg
95D

gL0T

T-dxg

pBgooccccoo000000cc0000y
o

)

(anogg
“urIAL)
OPH ISH

0601

g-dxgg
gsD

0zTT

ott

T-dxg

(anog
“uRIAL)
IOPH ISH

S08T

g-dxgg
SO

LR

T-dxg

=1
n
=

omooococooow

(anog
“urIAL)
OPH ISH

<191

eTPT

T-dxg

S'LS

(anog
“uRIAL)
OPH ISH

g-dxgg
[£5e)

T-dxg

0¥62 €90€ 182 TVLOL
0L 09 08 0€_¥d
ket 0€T 0zt 6T _Md
0€T 0zt ovL 8T _Md
qrt 0z1 0Tt Lz_¥d
e(0) 8 0z1 06 92 _Md
gzeT ovT gzt ¢z _ud
gzal 0eT qrt ve_ud
96 <ot a8 €¢_ud
gzal et 0Tt gz _ud
ott art <ot 12 _¥d
06 <6 <8 02 _¥d
G'L9 SL 09 61 _Mdd
G'LS <9 0g 8T_Md
06 00t 08 L1_Md
0L gL <9 91 _Hd
¢TIt 0zT g0t eT_ud
08 oL 06 PI_"d
gL9 7} 09 €T_"d
09 0g 0L cT_¥d
oL 09 08 IT_"da
STT 0zt 01T 0T Hd
<Sotr 0zt 06 6_Yd

gTeT ortT gz 8 M4

gzTl 0eT qrt L_Mda

<6 <0tT <8 9 ¥4

gzal et ottT §_"d

L6 <ot 06 v_ud

QLT i 0Tt €_"d

SL 0L 08 T_¥d

<9 ket SL T Y4

(anog-uepy)
FIOHH ISH g-dxg T-dxg
180 arxlole

Jpeqpaad s,iadx3 "8z 319Vl

27789

VOLUME 11, 2023

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

o Training data requirements: Heterogeneous ensemble
models require more training data than homogeneous
ensemble models because they have more parameters
and architectures to learn. This can be a problem if the
dataset is small or imbalanced. We faced similar problem
when applying to another benchmark dataset i.e. UCP
Dataset.

« Integration challenges: Heterogeneous ensemble models
can be challenging to integrate with existing systems
or workflows because they require different types of
models and may have different input and output formats.

XIl. CONCLUSION AND FUTURE DIRECTION

The primary goal of this research is to employ the ensem-
ble technique to improve the precision of performance esti-
mates for software development effort. For estimating soft-
ware effort, we provided a state-of-the-art, Heterogeneous
Ensemble model. To increase the efficiency and precision of
software development initiatives, a heterogeneous ensemble
model that combines artificial neural networks (ANN), use
case points (UCP), and expert judgement (EJ) is proposed and
implemented on benchmark dataset i.e. ISBSG and Industrial
case studies. We have used different variation in using the
dataset not only to avoid the biasness in results but also to
observe the difference in results. It was interesting to see how
machine learning algorithms react to different experimental
setups.

During our experiments, we have found that ensemble
models have produced better results as compared to stan-
dalone models on the benchmark datasets. On the other
hand, our proposed heterogeneous ensemble model have also
shown exceptional results on industrial case studies. We have
observed in the literature [10], [55], and [56] that ensemble
model have produce better results as compared to standalone
models. With our experiments, not only we have proved
the above said observations, but with our proposed hetero-
geneous model, it has open new dimensions of research.
In future, we are going to implement the same setup (or with
different combination rule) on some other datasets to observe,
does number of features has any impact on the observations?
does change in algorithms setup like changing the activation
function of Artificial Neural Network or combination rule,
have any impact on the heterogeneous ensemble model’s
results?. Moreover, we are planning to compare our heteroge-
neous ensemble model with different ensemble model setup
and try to observe, how we can improve the accuracy by tun-
ing the machine learning algorithms. It would be interesting
to see how heterogeneous ensemble models compete with
powerful ensemble models with respect to training time and
precision metrics.

Our proposed ensemble model can provide better perfor-
mance than a single model. However, it is arguable that a
heterogeneous ensemble model is the state of the art for all
problems. The choice of modeling approach depends on the
specific problem, the available data, and the desired out-
come. This is because different methods can capture different

27790

aspects of the data, and combining them can lead to a more
robust and accurate prediction.

In the specific case of software development effort esti-
mation, UCP is a widely used method for predicting the size
and complexity of a software project, while ANNs have been
shown to perform well in predicting software development
effort. Expert judgment can also provide valuable insights
and context-specific knowledge. Therefore, combining UCP,
ANN, and expert judgment in a heterogeneous ensemble
model for software development effort estimation can lever-
age the strengths of each method and lead to more accurate
and reliable predictions. However, the effectiveness of the
ensemble model also depends on how the individual models
are combined and how the weights are assigned to each
model.

APPENDIX A
TECHNICAL COMPLEXITY FACTOR
See Table 25.

APPENDIX B
ENVIRONMENTAL COMPLEXITY FACTOR (ECF)
See Table 26.

APPENDIX C
ENVIRONMENTAL VALUES ASSIGNED BY EXPERT
See Table 27.

APPENDIX D
EXPERT's FEEDBACK
See Table 28.

ACKNOWLEDGMENT

The authors would like to thank Dr. Yasir Mahmood (Univer-
siti Teknologi Malaysia), Dr. Yaseen Khan (Daraz-Alibaba
Group Inc.), and Dr. Salman Ahmed Khan (The University
of Lahore, Pakistan) for their sincere guidance. This research
work is dedicated to Dr. Chao Liu, who unfortunately passed
away before this study report was published. He was an
exceptional teacher, a supervisor, and a mentor. They all
grieve his passing deeply.

REFERENCES

[1] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A new approach

to software effort estimation using different artificial neural network

architectures and Taguchi orthogonal arrays,” IEEE Access, vol. 9,

pp. 26926-26936, 2021.

P. Rai, D. K. Verma, and S. Kumar, “A hybrid model for prediction of

software effort based on team size,” IET Softw., vol. 15, no. 6, pp. 365-375,

Dec. 2021.

[3] Z. Dan, “Improving the accuracy in software effort estimation: Using
artificial neural network model based on particle swarm optimization,” in
Proc. IEEE Int. Conf. Service Oper. Logistics, Informat. (SOLI), Jul. 2013,
pp. 180-185.

[4] CHAOS Report 2015, Standish Group Int., Boston, MA, USA, 2015, p. 13.

[5] The Standish Group CHAOS Report, Standish Group Int., Boston, MA,
USA, 2009.

[6] M. Jgrgensen, “Forecasting of software development work effort: Evi-
dence on expert judgement and formal models,” Int. J. Forecasting, vol. 23,
no. 3, pp. 449-462, Jul. 2007.

[2

—

VOLUME 11, 2023

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

IEEE Access

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Z. M. Hazil, M. N. Mahdi, M. S. M. Azmi, L. K. Cheng, A. Yusof,
and A. R. Ahmad, “Software project management using machine learning
technique—A review,” in Proc. 8th Int. Conf. Inf. Technol. Multimedia
(ICIMU), Aug. 2020, pp. 363-370.

S.-J. Huang and N.-H. Chiu, “Optimization of analogy weights by genetic
algorithm for software effort estimation,” Inf. Softw. Technol., vol. 48,
no. 11, pp. 1034-1045, Nov. 2006.

M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl, “Optimal
project feature weights in analogy-based cost estimation: Improvement and
limitations,” IEEE Trans. Softw. Eng., vol. 32, no. 2, pp. 83-92, Feb. 2006.
J.Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, ““Systematic literature review of
machine learning based software development effort estimation models,”
Inf. Softw. Technol., vol. 54, no. 1, pp. 41-59, Jan. 2012.

M. A. Ahmed, I. Ahmad, and J. S. AlGhamdi, ‘‘Probabilistic size proxy
for software effort prediction: A framework,” Inf. Softw. Technol., vol. 55,
no. 2, pp. 241-251, Feb. 2013.

H. Leung and Z. Fan, “Software cost estimation,” in Handbook of Software
Engineering & Knowledge Engineering. Hong Kong: The Hong Kong
Polytechnic Univ., 2002.

M. Jgrgensen, “Communication of software cost estimates,” in Proc. 18th
Int. Conf. Eval. Assessment Softw. Eng., Jul. 2014, pp. 1-5.

Y. Mahmood, N. Kama, and A. Azmi, “A systematic review of studies
on use case points and expert-based estimation of software development
effort,” J. Softw., Evol. Process, vol. 32, no. 7, Jul. 2020, Art. no. e2245.
T. K. Abdel-Hamid, “On the utility of historical project statistics for cost
and schedule estimation: Results from a simulation-based case study,”
J. Syst. Softw., vol. 13, no. 1, pp. 71-82, Sep. 1990.

B. W. Boehm and R. Valerdi, “Achievements and challenges in cocomo-
based software resource estimation,” IEEE Softw., vol. 25, no. 5,
pp. 74-83, Sep. 2008.

B. W. Boehm, Software Engineering Economics. Upper Saddle River, NJ,
USA: Prentice-Hall, 1981.

L. H. Putnam, “A general empirical solution to the macro software sizing
and estimating problem,” [EEE Trans. Softw. Eng., vol. SE-4, no. 4,
pp. 345-361, Jul. 1978.

A. J. Albrecht, “Measuring application development productivity,” in
Proc. IBM Appl. Develop. Symp., Oct. 1979, pp. 83-92.

A.J. Albrecht and J. E. Gaffney, “Software function, source lines of code,
and development effort prediction: A software science validation,” IEEE
Trans. Softw. Eng., vol. SE-8, no. 6, pp. 639-648, Nov. 1983.

Users Manual El Segundo, SEER-SEM, Galorath, Los Angeles, CA, USA,
2001.

H. A. Rubin, “Interactive macro-estimation of software life cycle parame-
ters via personal computer: A technique for improving customer/developer
communication,” in Proc. Symp. Appl. Assessment Automated Tools Softw.
Develop. San Francisco, CA, USA: IEEE, 1983, pp. 44-54.

Y.-C. Ho and C. D. McDevitt, “‘Determination of optimal resource alloca-
tion for software development—An application of a software equation,”
Inf. Manage., vol. 18, no. 2, pp. 79-85, Feb. 1990.

F. J. Heemstra, “Software cost estimation,” Inf. Softw. Technol., vol. 34,
no. 10, pp. 627-639, Oct. 1992.

Y. Yang, B. Boehm, and B. Clark, “Assessing COTS integration risk using
cost estimation inputs,” in Proc. 28th Int. Conf. Softw. Eng., May 2006,
pp. 431-438.

J. Grenning, “Planning poker or how to avoid analysis paralysis while
release planning,” Hawthorn Woods, Renaissance Softw. Consulting,
vol. 3, 2002.

C. L. Martin, J. L. Pasquier, C. M. Yaiez, and A. T. Gutiérrez, ““Software
development effort estimation using fuzzy logic: A case study,” in Proc.
6th Mex. Int. Conf. Comput. Sci. (ENC), 2005, pp. 113-120.

C. E. Walston and C. P. Felix, “A method of programming measurement
and estimation,” IBM Syst. J., vol. 16, no. 1, pp. 54-73, 1977.

S. K. Rath, B. P. Acharya, and S. M. Satapathy, ““Early stage software effort
estimation using random forest technique based on use case points,” IET
Softw., vol. 10, no. 1, pp. 10-17, Jan. 2016.

D. Wu, J. Li, and C. Bao, “Case-based reasoning with optimized weight
derived by particle swarm optimization for software effort estimation,” Soft
Comput., vol. 22, no. 16, pp. 5299-5310, Aug. 2018.

J.-S. Chou and C.-C. Wu, “Estimating software project effort for manufac-
turing firms,” Comput. Ind., vol. 64, no. 6, pp. 732-740, Aug. 2013.

A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software
estimation using log-linear regression and a multilayer perceptron model,”
J. Syst. Softw., vol. 86, no. 1, pp. 144-160, Jan. 2013.

VOLUME 11, 2023

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(44]

(45]

[46]

[47]
(48]

[49]

[50]

[51]

(52]
(53]

(54]

[55]

[56]

[57]

(58]

F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software effort
estimation,” in Proc. 38th Int. Conf. Softw. Eng., May 2016, pp. 619-630.
M. Shepperd and G. Kadoda, “Comparing software prediction tech-
niques using simulation,” [EEE Trans. Softw. Eng., vol. 27, no. 11,
pp. 1014-1022, Nov. 2001.

E. Kocaguneli, A. Tosun, and A. Bener, “Al-based models for software
effort estimation,” in Proc. 36th EUROMICRO Conf. Softw. Eng. Adv.
Appl. (SEAA), Sep. 2010, pp. 323-326.

L. L. Minku and X. Yao, “Software effort estimation as a multiobjective
learning problem,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4,
pp. 1-32, Oct. 2013.

M. Azzeh, A. B. Nassif, and L. L. Minku, “An empirical evaluation
of ensemble adjustment methods for analogy-based effort estimation,”
J. Syst. Softw., vol. 103, pp. 36-52, May 2015.

A. Idri, M. Hosni, and A. Abran, “Improved estimation of software devel-
opment effort using classical and fuzzy analogy ensembles,” Appl. Soft
Comput., vol. 49, pp. 990-1019, Dec. 2016.

M. O. Elish, “Assessment of voting ensemble for estimating software
development effort,” in Proc. IEEE Symp. Comput. Intell. Data Mining
(CIDM), Apr. 2013, pp. 316-321.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 14,
no. 2, pp. 131-164, Apr. 2009.

L. Breiman, ‘“Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123-140, 1996. [Online]. Available: https://link.springer.com/article/
10.1007

Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative cor-
relation learning,” IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 380-387,
Nov. 2000.

M. Hosni, A. Idri, and A. Abran, “On the value of filter feature selection
techniques in homogeneous ensembles effort estimation,” J. Softw., Evol.
Process, vol. 33, no. 6, pp. 1-38, Jun. 2021.

E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1403-1416,
Nov. 2012.

M. Shepperd and C. Schofield, “‘Estimating software project effort using
analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736-743,
Nov. 1997.

A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models
for software development effort estimation: A comparative study,” Neural
Comput. Appl., vol. 27, no. 8, pp. 2369-2381, Nov. 2016.

K. Roy Clemmons, “Project estimation with use case points,” CrossTalk,
vol. 19, no. 2, pp. 18-22, 2006.

G. Karner, “Resource estimation for objectory projects,” Objective Syst.
SF AB, 1993.

C. Lépez-Martin and A. Abran, “Neural networks for predicting the
duration of new software projects,” J. Syst. Softw., vol. 101, pp. 127-135,
Mar. 2015.

D. R. Pai, K. S. McFall, and G. H. Subramanian, ““Software effort estima-
tion using a neural network ensemble,” J. Comput. Inf. Syst., vol. 53, no. 4,
pp. 49-58, Jun. 2013.

C. Banerjee, T. Mukherjee, and E. Pasiliao, “‘An empirical study on gener-
alizations of the ReL.U activation function,” in Proc. ACM Southeast Conf.,
Apr. 2019, pp. 164-167.

A. F. Agarap, “Deep learning using rectified linear units (ReLU),” 2018,
arXiv:1803.08375.

D. Boob, S. S. Dey, and G. Lan, “Complexity of training ReLU neural
network,” Discrete Optim., vol. 44, pp. 1-21, May 2020.

M. Jgrgensen, “Unit effects in software project effort estimation: Work-
hours gives lower effort estimates than workdays,” J. Syst. Softw., vol. 117,
pp. 274-281, Jul. 2016.

A.Idri, M. Hosni, and A. Abran, “Systematic literature review of ensemble
effort estimation,” J. Syst. Softw., vol. 118, pp. 151-175, Aug. 2016.

Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software
effort estimation accuracy prediction of machine learning techniques: A
systematic performance evaluation,” Softw., Pract. Exp., vol. 52, no. 1,
pp. 39-65, Jan. 2022.

S. S. Ali, M. S. Zafar, and M. T. Saeed, “Effort estimation problems in
software maintenance—A survey,” in Proc. 3rd Int. Conf. Comput., Math.
Eng. Technol. (iCoOMET), Jan. 2020, pp. 1-9.

C. F. Kemerer, “An empirical validation of software cost estimation mod-
els,” Commun. ACM, vol. 30, no. 5, pp. 416-429, May 1987.

27791

IEEE Access

S. S. Ali et al.: Heterogeneous Ensemble Model to Optimize Software Effort Estimation Accuracy

[59]

[60]

[61]

[62]

[63]

[64]
[65]

Z. Li, “Intelligently predict project effort by reduced models based on
multiple regressions and genetic algorithms with neural networks,” in
Proc. Int. Conf. E-Bus. E-Government (ICEE), May 2010, pp. 1536-1542.
A. Idri, I. Abnane, and A. Abran, “Evaluating Pred(p) and standardized
accuracy criteria in software development effort estimation,” J. Softw.,
Evol. Process, vol. 30, no. 4, pp. 1-15, Apr. 2018.

S.-J. Huang and N.-H. Chiu, “Applying fuzzy neural network to estimate
software development effort,” Int. J. Speech Technol., vol. 30, no. 2,
pp. 73-83, Apr. 2009.

S. H. S. Moosavi and V. K. Bardsiri, “Satin bowerbird optimizer: A new
optimization algorithm to optimize ANFIS for software development effort
estimation,” Eng. Appl. Artif. Intell., vol. 60, pp. 1-15, Apr. 2017.

F. Gonzilez-Ladrén-de-Guevara, M. Ferndndez-Diego, and C. Lokan,
“The usage of ISBSG data fields in software effort estimation: A system-
atic mapping study,” J. Syst. Softw., vol. 113, pp. 188-215, Mar. 2016.
W. D. O. Bussab and P. A. Morettin, Estatistica Bdsica, 2010, pp. 16-540.
G. Schneider and J. P. Winters, Applying Use Cases: A Practical Guide.
India: Pearson, 2001.

SYED SARMAD ALI received the bachelor’s
degree in computer engineering from Sir Syed
University of Engineering and Technology
(SSUET), Pakistan, and the M.S. degree from
Coventry University, Coventry, U.K., in 2012.
He is currently pursuing the Ph.D. degree in
software engineering with the Software Engineer-
ing Institute (SEI), Beihang University, Beijing,
China.

Apart from working in the industry, he served

as an Assistant Professor for ten years at different universities. His research
interests include data science and machine learning, deep learning, ensemble
models (heterogeneous and homogeneous), and MOEAs using co-evolution
in search-based software engineering, under the supervision of Prof. Chao
Liu, Prof. Ren Jian, and Prof. Ji Wu (Beihang Software Testing and Evolution
Laboratory—BHSTEL).

JIAN REN received the dual M.Sc. degrees from
the Queen Mary University of London and Kings
College London and the Ph.D. degree in computer
science from the University College London. He is
currently an Assistant Professor with the School
of Computer Science, Beihang University, Beijing.
His research interests include search-based soft-
ware engineering, software project planning and
management, requirements engineering, and evo-
lutionary computation.

27792

KUI ZHANG received the master’s degree in
information management and information sys-
tems from the Beijing Institute of Technology,
Beijing, China, in 2010, and the Ph.D. degree
from the Software Engineering Institute (SEI),
Beihang University. His research interests include
model-driven engineering, model-based real-time
analysis, airworthiness certification, model-based
safety analysis, and general model-based software
engineering.

JI WU received the M.S. degree from the Second
Research Institute, China Aerospace Science and
Industry Group, in 1999, and the Ph.D. degree
from Beihang University, in 2003. He is currently
an Associate Professor of software engineering
with Beihang University. His research interests
include embedded systems and software modeling
and verification, software requirement and archi-
tecture modeling and verification, safety and reli-
ability assessment, and software testing.

CHAO LIU received the M.S. degree in computer
software and theory and the Ph.D. degree from
Beihang University. He is currently a Professor
of software engineering with Beihang University.
In the last ten years, he mainly focuses on the
modeling and verification of safety-critical soft-
ware and systems, including safety requirement
modeling and analysis, evidence-based software
safety analysis and evaluation, software safety and
reliability analysis based on the software devel-

opment process, and model-driven software testing. His research interests
include software quality engineering, software testing, model-driven soft-
ware development, and software process improvement.

VOLUME 11, 2023

