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ABSTRACT Over the last several decades, many algebraic generalized families and classes of statistical
distributions have been developed. This research aims to construct a new cotangent exponentiated general-
ized and generator of distributions with support on the real line. After that, two novel families of distributions
incorporating the cotangent function are proposed: one called the cotangent exponentiated generalized
(CE-G) family, and the other called the logistic cotangent exponentiated generalized (LCE-G) family.
A comprehensive analysis of the mathematical and structural properties of the recently suggested G-family
and a Burr-based novel model (LCEB) is presented here. The maximum likelihood method estimates model
parameters and evaluates model performance in Monte Carlo simulation studies. These tasks are carried out
using the maximum likelihood technique. The statistical analysis on the survival and waiting times data sets
are carried out, and the outcomes confirm the competence, superiority, and utility of the suggested generator,
G-family, and novel distribution compared to similar and competing Burr-based models already well-known.

INDEX TERMS Exponentiated generalized family, cotangent trigonometric function, reliability and prob-
ability functions, maximum likelihood methodology.

I. INTRODUCTION
Generalized distributions are important in statistics and data
analysis. They are flexible and can model a wide range
of data shapes and characteristics. They can be used to
model data that does not fit well with traditional paramet-
ric distributions, such as the Normal or the Poisson dis-
tributions. Generalized distributions are often more robust
than traditional distributions. They can handle outliers and
heavy-tailed data better than some parametric distributions.
They often have closed-form expressions for moments, quan-
tiles, and other statistical properties, making them easier to
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work with and analyze. They often have clear interpreta-
tions for their parameters. For example, in the case of the
Student-t distribution, the degrees of freedom parameter can
be interpreted as the number of observations required to
estimate the population mean with a given level of con-
fidence. They have a wide range of applications in fields
such as finance, engineering, biology, and social sciences.
They are used to model phenomena such as financial returns,
earthquake magnitudes, gene expression levels, and social
network structures, among others. In summary, generalized
distributions are a powerful tool for statisticians and data
analysts, allowing them to model complex data shapes and
characteristics and to make more accurate inferences and
predictions.
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The flexibility of generalized distributions comes from
their ability to model a wide range of data shapes and
characteristics. Unlike traditional parametric distributions
that assume a fixed shape, generalized distributions can
accommodate a variety of shapes by introducing additional
parameters that control the distribution’s characteristics. For
example, consider the Normal distribution, which assumes a
bell-shaped curve. While the Normal distribution is appropri-
ate for many types of data, it may not be suitable for data that
is skewed or has heavier tails. In contrast, the Generalized
Extreme Value (GEV) distribution can model a wider range
of shapes, including both symmetric and asymmetric distribu-
tions with heavy or light tails. The GEV distribution includes
the Normal, the Logistic, and theGumbel distributions as spe-
cial cases. Similarly, the Generalized Pareto distribution can
model data with heavy tails, while the Beta distribution can
model data that is bounded between 0 and 1. The Student-t
distribution is another example of a generalized distribution
that can accommodate a wider range of shapes than the
Normal distribution. The Student-t distribution has heavier
tails than theNormal distribution and canmodel data that may
contain outliers. Overall, the flexibility of generalized distri-
butions allows them to model a wide range of data shapes and
characteristics, making them useful for modeling complex
real-world phenomena. The choice of a specific generalized
distribution depends on the specific characteristics of the data
being modeled and the research question being addressed.

Statistical distributions play a crucial role in data analysis
by providing a mathematical framework for describing the
behavior of data. They allow us to summarize, model, and
analyze data, making it easier to draw conclusions and make
predictions. Statistical distributions are used to describe the
probability of an event occurring, and the shape of the distri-
bution can provide insights into the underlying causes of the
data. For example, a Normal distribution may indicate that
the data is symmetric around a mean value, while a skewed
distribution may indicate that the data has a bias or preference
towards one side. Different statistical distributions are used
in different contexts depending on the type of data being
analyzed. For example, the Poisson distribution is commonly
used to model count data, while the Normal distribution is
often used to model continuous data. Statistical distributions
are also used in hypothesis testing, where the distribution of
the test statistic is compared to a known distribution to assess
the likelihood of the observed data under a specific hypoth-
esis. This allows researchers to draw conclusions about the
significance of their findings. The choice of a specific statis-
tical distribution depends on the characteristics of the data
being analyzed and the research question being addressed.
It is important to choose a distribution that best represents
the data in order to obtain accurate and meaningful results.
In summary, statistical distributions are important tools for
data analysis and provide a mathematical framework for
summarizing, modeling, and analyzing data. They are used
in a wide range of applications and help researchers draw
meaningful conclusions from their data.

TABLE 1. Recent generalized families with aims/methodology.

Using the aid of differential aligns [55] carried out some
of the initial studies on generalizing distributions. Several
approaches, including transformation techniques, transmuted
functions, compounding of discrete and continuous distri-
butions, production of skewed models, injection of the new
parameter(s), quantile technique, T-X generalizing system,
extended T-X method, T-RY methodology, and others, are
utilized in this context. etc.

The following Table 1 presents some recent important
examples of generalized families of distributions, along with
their aims or adopted methodologies:

The research that has been done in the field of generalized
probability models has uncovered the following features,
which will serve as the foundations of this article: (i) An over-
whelming number of statistical families andmodels distribute
algebraic generators (ignoring the non-algebraic especially
trigonometric generators). (ii) Because researchers wanted to
model directional-proportional data, they turned to trigono-
metric function-based models, which are better equipped to
deal with such data sets. These models were developed as a
result. (iii) The mixture and hybrid generalizers are neither
investigated nor the algebraic nor trigonometric functions.
(iv) By using the exponentiated cotangent generalizer that
has been presented, it is possible to translate any traditional
distribution into its corresponding trigonometric form easily.

Table 2 offers the previously conducted study on
trigonometrically-based families and distributions, which
served as the impetus for the inspiration behind the presen-
tation of this paper.

The following is a list of the primary reasonswhy this study
was carried out: being inspired by these concepts and being
content with the results of the flexibility and the goodness-of-
fit (gof), both of which are highly fulfilling.

• presenting an original distribution generator known as
the CE-G that is based on the cotangent function.

• presenting a new distribution generator that is based
on the cotangent exponentiated function and which at
the same time incorporates the algebraic function, the
algebraic generator, and the cotangent function.

• Introducing a new G-family termed the LCE-G (short
for logistic cotangent exponentiated-G family of distri-
butions) in the LehmannAlternative-1 and trigonometric
case;

• The suggested class has several benefits, such as sim-
plicity and the absence of non-identifiability problems;
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TABLE 2. Generalized Classes and Distributions Adopting Trigonometric
Functions.

• The new CDF has the capability of improving flexibility
and goodness of fit owing to the inclusion of the cotan-
gent function and one more shape parameter, which
eventually leads in models that are one of a kind, more
flexible, and more effective;

• Practically, for all base models, the new density also
adopts bimodal shapes, and the hazard function adopts
all monotone and non-monotone forms.

The primary motivations for introducing CE-G, LCE-G fam-
ilies, and LCEB model are:

• An exponentiated version of the cotangent-G family is
developed by simultaneously disbursing the cotangent
trigonometric function and the exponentiated families
(EF) procedure.

• The proposed families (CE-G, LCE-G) utilize the expo-
nentiated mixed algebraic and trigonometric generator
of distributions, which has not been previously studied.

• Due to the addition of the cotangent function and one
additional shape parameter, the new CDF improves the
flexibility, accuracy, and gof, leading to the creation of
new flexible and effective models.

• The numerical outcomes demonstrate the capability,
superiority, and usefulness of the proposed generator, the
G-family, and the novel distribution.

• Using the suggested extension allows for a straightfor-
ward rollback of any G-class or classical model.

A novel exponentiated trigonometric G-family of distribu-
tions, which the authors of this paper refer to as the new
logistic cotangent exponentiated generalized family of distri-
butions, is presented here. It has symmetrical, unimodal, and
bimodal tails, in addition to a particular member that is pred-
icated on the Burr distribution. Our goal is to provide proof
that the LCEB model that has been proposed has excellent
simulation qualities in addition to outstanding capacity to fit
not only the survival data set but also the real data set.

The following is the order in which the paper should be
folded. In Section II, the proposed exponentiated trigonomet-
ric family is described, whereas, in Section III, the family
characteristics are discussed. Special models are presented
with their graphs in Section IV. In Section V, the unique

TABLE 3. The LCEG family members with essential description.

member based on Burr distribution is discussed in detail,
while Section VI focuses on the estimate of parameters by
employing the maximum likelihood method, conducting a
simulation exercise, and applying the results to two different
data sets. A few concluding feedback ends this study in
Section VIII.

II. THE CE AND LCE GENERALIZED FAMILIES
A. DEVELOPMENT OF COTANGENT EXPONENTIATED-G
(CE-G) FAMILY
Suppose r(t) is the density of a r.v. T ∈ [a, b] for −∞ ≤ a <

b < ∞. The suggested generator W [L(X )] is a link function
that satisfies the T-X family’s required conditions. The main
functions(cdf and pdf)of CE-G family, respectively, are:

N (x) =

∫ (− cot(π Lα(x)))

−∞

r(t) dt. = R
(
− cot

(
π Lα(x)

))
(1)

n(x) = π α L(X ) [L(X )](α−1) csc2(π (L(X ))α)

× r
[
− cot(π (L(X ))α)

]
(2)

1) COTANGENT REPRESENTATION OF THE LCE-G
suppose that T is considered as a logistic r.v. and placing
W [L(X )] = − cot[π(L(X ))α)] in logistic cdf =

(
1 + e−t

)−1,
then new cdf and pdf of LCE-G, respectively, are:

N (x) =
1

1 + exp(cot(π(L(X ))α))
(3)

n(x) = π α [L(X )]α csc2(π (L(X ))α) e−(− cot(π (L(X ))α))[
1 + e−(− cot(π (L(X ))α))

]−2
(4)

The above central functions of LCE-G can be presented in
tangent form simply using the trigonometric relationships.

2) MEMBERS OF LCEG FAMILY
Prominent members of the LCEG family are listed in Table 3.
In Section V, the Burr L(X ) user will be the focus of all
discussion.

III. CHARACTERISTICS OF LCEG FAMILY
Major characteristics of LCEG are presented in this section.

A. RELIABILITY AND NON-RELIABILITY FUNCTIONS

Survival function=S(x)=1−

[
1

(1 + e−(− cot(π (L(X ))α)))

]
=

e−(− cot(π (L(X ))α))

1 + e−(− cot(π(L(X ))α))

Hazard rate function=h(x)=π α
[
1+e−(− cot(π (L(X ))α))

]−1

[L(X )](α) csc2(π (L(X ))α) (5)
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Cumulativehazardrate = H (x) = e−(− cot(π (L(X ))α))

+ ln
[
1 + e−(− cot(π(L(X ))α))

]
(6)

B. QUANTILE AND QUANTILE DENSITY FUNCTION
You may find the quantile function, also known as the qf,
by immediately inverting the distribution. (3) as

Q(u) = QG (v) = G−1(v), (7)

such that v =

[
1
π
cot−1

(
−(− ln

[
(1−u)
u

]
)
)] 1

α . If u follows
a uniform U (0, 1) distribution, then the density function in
(4) is present in the solution of the nonlinear align X =

Q(u). The crucial uses of Eq. (7) are: (1). For example,
substituting the Burr baseline model, we can use Eq. (7) to
simulate 1000 LCEB (1.5,2.0) occurrences and onward,many
useful graphical measures and respective graphs for these
simulated data can be obtained. (2). Eq. (7) can be used to
findmedian=Q(1/2), Bowley’s skewness andMoors kurtosis.
After differentiating Q(u) with respect to u, one may derive
the quantile density function (qdf) of X :

qdf = D′(t) =

1
π
cot−1

(
−

(
− ln (1−t)

t

))( 1−α
α

)

π α t (1 − t)
(
1 + (−(− ln( (1−t)t )))

) (8)

C. LINEAR REPRESENTATION OF NEW CDF
We can rewrite the cdf of LCEG (3) as

N (x) =

[
1 + ecot(π (L(X ))α)

]−1

Since (1 + et )−1
= 1 − (1 + e−t )−1,then N (x) is

N (x) = 1 −

[
1 + e− cot(π (L(X ))α)

]−1

by the following two expansions (1+ v)−1
=
∑

∞

h=0(−1)h vh

for |v| < 1 and ex =
∑

∞

j=0
xj
j! , respectively, we have

proposed model cdf as follows.

N (x) =

∞∑
i=1

∞∑
j=0

(−1)i+j+1 [i cot π (L(X ))α]j

j!

We know [cot π (L(X ))α]j =

[
1

cot π (L(X ))α

]j
. Using the

power series [tan(x)]j =
∑

∞

k=0 ak (j)(x)
2k+j, where a0(j) =

1, a1(j) = −j/3, a2(j) = j(5j− 7)/90,etc.
Hence, [cot(π (L(X ))α)]j =

∑
∞

k=0 bk (j) (π)
2k+j (L(X ))α(2k+j)

where bk (j) =
1

ak (j)
. Finally,

N (x) =

∞∑
j,k=0

W(i,j)Hk,j(x)

such that Hk,j(x)) is the distribution function with power
parameter that is exponentiated α(2k + j)

W(i,j) =

∞∑
i=1

(i)j(−1)(i+j+l)

j!
bk (j) (π)2k+j

Hk,j(x)) = (L(X ))α(2k+j).

whereas

n(x) =

∞∑
j,k=0

vi,j h(α (2k+j))(x) (9)

here h(α(2k+j))(x) a pdf of the exponentiated distribution with
parameter (α(2k + j)) in the power,

vi,j =

∞∑
i=1

(i)j(−1)(i+j+l)

j!
bk (j) (π)2k+j

a0(j) = 1, a1(j) = −j/3, a2(j) = j(5j− 7)/90, etc.

and

h(α (2k+j))(x) = α (2k + j)L(X ) (L(X ))(α (2k+j))−1

D. MATHEMATICAL DERIVATION OF MOMENTS, AND
OTHER PROPERTIES
We can represent the nth moment of X by the aid of equation
(9) as below:

E(Xn) =,

∞∑
j,k=0

vi,j E(Y nα(2k+j)), (10)

Formally speaking, the definition of the probability-
weighted moment (PWM) of our proposed model is defined
as follows:

ρr,s =

∫
∞

0
xr N (x)s n(x) dx, r ≥ 1, s ≥ 0. (11)

We consider

N (x)s = [(1 + ecot[π (L(X ))α])−1]s

Putting the pdf of the LCEG family(given below)

n(x)=παPL(X ) (L(X ))(α−1) csc2(π (L(X ))α)e−(− cot(π(L(X ))α))[
1 + e−(− cot(π (L(X ))α))

]−2

in (11), then using the binomial expansion and exponential
series, PWM = ρr,q may also be interpreted as

ρr,q=

∞∑
i,j=0

πα

(
−(s+2)

i

)
(i+ 1)j

j!

∫
∞

−∞

xr L(X ) (L(X ))(α−1)

(
csc(π (L(X ))α)

)2 [cot(π (L(X ))α)
]j dx. (12)

For [cot(π(L(X ))α)]j, we used the following expansion
[cot(x)]s =

∑
∞

k=0 ak (s)(x)
2k−s, where a0(s) = 1,

a1(s) = −s/3,a2(s) = s(5s − 7)/90,etc. and similarly for
[csc(π (L(X ))α)]2 =

∑
∞

l=0 cl(2)(x)
2l−2,we get

ρr,q =

∞∑
i,j,k,l=0

(
−(s+ 2)

i

)
(i+ 1)j

j!
α π (2(k+l)−(j+2))−1

ak (j) cl(2)
∫

∞

−∞

xr L(X ) [L(X )](α (2k+2l+1)−(j+3)) dx
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ρr,q=

∞∑
i,j,k,l=0

Ui,j,k,l

∫
∞

−∞

xr (α(2k + 2l + 1) − (j+ 3))L(X )

[L(X )](α(2k+2l+1)−(j+3)) dx

where Ui,j,k,l =
(−(s+2)

i ) (i+1)j
j! π (2(k+l)−(j+2)−1) ak (j) cl (2)
(α(2k+2l+1)−(j+3)) . The

corresponding moment-generating function is:

MX (t)

= E(et x) =

∫
∞

−∞

(et x) n(x) dx

=

∫
∞

−∞

(et x)
∞∑

j,k=0

vi,j (α (2k + j))(L(X ))(α(2k+j)−1) L(X ) dx.

E. STOCHASTIC ORDERING
As the following theorem demonstrates, the LCEG family of
distributions, denoted by the letter (α), is ranked according to
the ‘‘likelihood ratio’’ ranking deemed the most authoritative.
This demonstrates the adaptability of the parameter set used
by the LCEG family of distributions.

Theorem. Let X follows LCEG(α1) and Y follows
LCEG(α2).
If α1 ≥ α2 then

X ⩽lr (Y ),X ⩽hr (Y ),X ⩽mrl (Y )andX ⩽st (Y ) .
Proof. We can easily write the ratio of the likelihood as

shown at the bottom of the page. Now if α1 > α2 then

d
dx log fX (x)

fY (x)
≤ 0 , it suggests that X ⩽lr (Y ) and hence

X ⩽lr (Y ),X ⩽hr (Y ),X ⩽mrl (Y ),X ⩽st (Y )

IV. LCEG FAMILY’s SPECIAL MODELS
Here, famous baseline models are utilized to develop
the LCEG family’s special models, which are under
the:

A. THE LOGISTIC COT EXPONENTIATED EXPONENTIAL
(LCEE) DISTRIBUTION
Using exponential as baseline with pdf L(X ) = λ e−λ x and
cdf L(X ) = 1− e−λ x . Then, the cdf of the LCEE distribution
is:

N (x) = (1 + e−(− cot[π9α]))−1, 9 = 1 − exp[−λ(x)].

(13)

and its pdf is:

n(x) = π λα exp[−λ(x)][1 − e−λ x](α−1)

[csc2(π (1 − exp[−λ(x)]α))](e−(− cot[π9α]))

(1 + e−(− cot[π9α]))−2

and its hz is:

h(x) = π λα exp[−λ(x)][1 − exp(−λ x)](α−1)

[csc2(π (1 − exp[−λ(x)]α))](1 + e−(− cot[π9α]))−1

fX (x)
fY (x)

= α1L(X )α1−α2 sin
(
πL(X )α2

)
ecot(πL(X )

α1 )(
ecot(πL(X )

α1 ) + 1
)
csc (πL(X )α1)

α2ecot(πL(X )
α2 )
(
ecot(πL(X )α2 ) + 1

)
d
dx

log
fX (x)
fY (x)

= πα1L(X )α1−1L(X )
(
− cot

(
πL(X )α1

)
−
ecot(πL(X )

α1 ) csc2 (πL(X )α1)
(
ecot(πL(X )

α1 )
)′ (

ecot(πL(X )
α1 ) + 1

)
ecot(πL(X )α1 )

(
ecot(πL(X )α1 ) + 1

) )
+ πα2L(X )α2−1L(X )(
ecot(πL(X )

α2 ) csc2 (πL(X )α2)
(
ecot(πL(X )

α2 )
)′ (

ecot(πL(X )
α2 ) + 1

)
ecot(πL(X )α2 )

(
ecot(πL(X )α2 ) + 1

) )
+ πα2L(X )α2−1L(X )

(
cot

(
πL(X )α2

))
+ πα1L(X )α1−1L(X )

(
−ecot(πL(X )

α1 )
)

(
csc2 (πL(X )α1)

) (
ecot(πL(X )

α1 ) + 1
)

ecot(πL(X )α1 )
(
ecot(πL(X )α1 ) + 1

)
−

(
ecot(πL(X )

α2 )
+ 1

)
(
πα2L(X )α2−1L(X )

(
−ecot(πL(X )

α2 )
)
csc2 (πL(X )α2)

)
ecot(πL(X )α2 )

(
ecot(πL(X )α2 ) + 1

)
+

(α1 − α2)L(X )
L(X )
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FIGURE 1. The LCEE (a) density (b) hazard function plots.

FIGURE 2. The LCEGa (a) density (b) hazard function plots.

B. THE LOGISTIC COT EXPONENTIATED GAMMA (LCEGa)
DISTRIBUTION
Exercising the gamma distribution as baseline in Eq. (3), the
main functions of LCEGa are produced.

N (x) =

(
1 + e−(− cot[π( γ (λ,β x)

0(λ) )α])
)−1

n(x) = π α
βλ

0(λ)
xλ−1 e−βx

(
γ (λ, β x)

0(λ)

)(α−1)

[
csc2(π

(
γ (λ, β x)

0(λ)

)α

)
] (

ecot(πL(X )
α2 )

+ 1
)

e
−

(
− cot

[
π
(

γ (λ,β x)
0(λ)

)α]) (
1 + e

−(− cot
[
π
(

γ (λ,β x)
0(λ)

)α]
)
)−2

h(x) = π α
βλ

0(λ)
xλ−1 e−βx

(
γ (λ, β x)

0(λ)

)(α−1)

[
csc2(π

(
γ (λ, β x)

0(λ)

)α

)
](

1+e
−(− cot

[
π
(

γ (λ,β x)
0(λ)

)α]
)
)−1

C. THE LOGISTIC COT EXPONENTIATED Weibull(LCEW)
DISTRIBUTION
Disbursing Weibull as base model with cdf L(X ) = 1 −

exp[−λ(x)β ] and density L(X ) = λβxβ−1 exp[−λ(x)β ] The
two-parameter LCEW having the following main functions is
produced.

N (x) = (1 + e−(− cot[π8α]))−1, 8 = (1 − exp[−λ(x)β ]).
(14)

n(x) = πα (λβ xβ−1 exp[−λ(x)β ])8(α−1)

[csc(π8α)]

FIGURE 3. The LCEW’s plots for (a) density and (b) hazard rate function.

FIGURE 4. The LCEB’s plots for (a) density (b) density.

e−(− cot[π8α])(1 + e−(− cot[π8α]))−2

h(x) = πα (λβ xβ−1 exp[−λ(x)β ])8(α−1)

[csc(π8α)](1 + e−(− cot[π8α]))−1 (15)

V. THE LCEB DISTRIBUTION
Here, a new distribution logistic cot exponentiated
Burr(LCEB) is proposed. Firstly, its cdf, pdf, and hazard
functions are derived then graphs of the pdf and hazard are
presented with possible shapes to testify to the flexibility
present in the model.

A. METHODOLOGY
L(X ) be the Burr cdf with λ > 0 and β > 0, L(X ) =

1 −
(
1 + xλ

)−β
, x > 0 λ, β > 0. with density

L(X ) = λβ(x)λ−1(1+ (x)λ)−(β+1) it follows three-parameter
LCEB whose cdf, pdf, and hazard function, respectively,
are:

N (x) =

(
1 + e−(− cot(π1α))

)−1
, 1 = 1 −

(
1 + xλ

)−β
.

n(x) = π α (λβ(x)λ−1(1 + (x)λ)−(β+1))1(α−1)(
csc2(π1α)

)
e−(− cot(π1α))(

1 + e−(− cot(π1α))
)−2

h(x) = π α (λβ(x)λ−1(1 + (x)λ)−(β+1))1(α−1)(
csc2(π1α)

)
(
1 + e−(− cot(π1α)

)−1
(16)
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FIGURE 5. The LCEB’s plots for (a) density and (b) hazard rate.

FIGURE 6. The LCEB’s plots for (a) hazard (b) hazard rate.

B. CHARACTERISTICS OF LCEB DISTRIBUTION
This section deduces the LCEB’s reliability properties,
as well as its residual and reverses residual life, quantile
function, moments, generating functions, entropies, order
statistics, and other relevant mathematical aspects.

1) RELIABILITY MEASURES

S(x) =
(
1 + exp(cot(π1α))

) [
1 −

(
1 + exp(cot(π1α))

)]−1

h(x) = π α (λβ(x)λ−1(1 + (x)λ)−(β+1))

1(α−1)
(
csc2(π1α)

)(
1 + e−(− cot(π1α))

)
2) QUANTILE FUNCTION, SIMULATION, SKEWNESS, AND
KURTOSIS
The qf of LCEB is:

X = DF (t) =

(1 −

(
1
π

cot−1
(
(1 − t)
t

)) 1
α

) 1
−β

− 1


1
λ

(17)

The median of the LCEB (λ, β, α) distribution is given by

Med = QF (0.5)

=

(1 −

(
1
π
cot−1

(
(1−0.5)
0.5

)) 1
α

) 1
−β

− 1


1
λ

3) RESIDUAL AND REVERSE RESIDUAL LIFE
The LCEB random variable X ’s residual lifetime, indicated
by the symbol Rt (x), is obtained as shown at the bottom of
the next page. In addition, many scholars have recently been

interested in the reversed hazard rate function R̄t (x). Shaked
and Shanthikumar (1), for example. is created as shown at the
bottom of the next page.

4) SUB-MODELS OF LCEB

TABLE 4. Some sub-models of LCEB distribution.

VI. LCEB AND STATISTICAL INFERENCE
A. METHODS OF PARAMETER ESTIMATION
Let x1, . . . , xn represent a sample of size n taken from the
LCEB distribution represented by (16). The vector of parame-
ters2 = (α, λ β)⊤ may be modeled using the log-likelihood
function as described in the following sentence.

ℓ =

n∑
i=1

log
(
csc2

(
π
(
1 −

(
xλ
i + 1

)
−β
))

α
)

+

n∑
i=1

cot
(
πα
(
1 −

(
xλ
i + 1

)
−β
)

α
)

+

n∑
i=1

log
(
ecot

(
πα
(
1−
(
xλ
i +1

)
−β
)
α
)
+ 1

)
(18)

The score vector U (2)’s components are provided by

Uα =

n∑
i=1

log
(
1 −

(
xλ
i + 1

)
−β
)
+
n
α

(19)

Uβ =(α − 1)
n∑
i=1

(
xλ
i + 1

)
−β log

(
xλ
i + 1

)
1 −

(
xλ
i + 1

)
−β

−

n∑
i=1

log
(
xλ
i + 1

)
+
n
β

(20)

Uλ =(α − 1)
n∑
i=1

βxλ
i log (xi)

(
xλ
i + 1

)−β−1

1 −
(
xλ
i 1
)

−β

− (β + 1)
n∑
i=1

xλ
i log (xi)

xλ
i + 1

+

n∑
i=1

log (xi) +
n
λ

(21)

The MLEs of the model parameters are produced by setting
these aligns to zero and concurrently solving them. Following
are the results of the observed Fisher information matrix:

Uα α = −
n
α2

Uβ β = −
n
β2 + (α − 1)

n∑
i=1

(
−

(
xλ
i + 1

)
−2β log2

(
xλ
i + 1

)(
1 −

(
xλ
i + 1

)
−β
)
2

−

(
xλ
i + 1

)
−β log2

(
xλ
i + 1

)
1 −

(
xλ
i + 1

)
−β

)

Uλ,λ = (α − 1)
n∑
i=1

(
−

β2x2λi log2 (xi)
(
xλ
i + 1

)
−2β−2(

1 −
(
xλ
i + 1

)
−β
)
2
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+
βxλ

i log
2 (xi)

(
xλ
i + 1

)
−β−1

1 −
(
xλ
i + 1

)
−β

)
−

n
λ2

+ (α − 1)
n∑
i=1

βxλ
i log (xi)(

xλ
i (−log (xi))

(
xλ
i +1

)
−β−2

−βxλ
i log (xi)

(
xλ
i +1

)
−β−2

)
1−

(
xλ
i + 1

)
−β

− (β + 1)
n∑
i=1

(
xλ
i log

2 (xi)

xλ
i + 1

−
x2λi log2 (xi)(
xλ
i + 1

)
2

)

Uα,β =

n∑
i=1

(
xλ
i + 1

)
−β log

(
xλ
i + 1

)
1 −

(
xλ
i + 1

)
−β

Uα,λ =

n∑
i=1

βxλ
i log (xi)

(
xλ
i + 1

)
−β−1

1 −
(
xλ
i + 1

)
−β

Uβ,λ = (α − 1)
n∑
i=1

(
xλ
i log (xi)

(
xλ
i + 1

)
−β−1

1 −
(
xλ
i + 1

)
−β

−
βxλ

i log (xi)
(
xλ
i + 1

)
−β−1 log

(
xλ
i + 1

)
1 −

(
xλ
i + 1

)
−β

)

−

n∑
i=1

xλ
i log (xi)

xλ
i + 1

− (α − 1)

n∑
i=1

(
βxλ

i log (xi)
(
xλ
i + 1

)
−2β−1 log

(
xλ
i + 1

)(
1 −

(
xλ
i + 1

)
−β
)
2

)
.

B. SIMULATIONS
The accuracy of the maximum likelihood technique for esti-
mating the LCEB parameters is evaluated with the use of
Monte Carlo simulations, which may be found in the afore-
mentioned section. The simulation study consists of a total
of one thousand iterations, each of which uses a different
combination of sample sizes and parameter settings: n =

50, 100, 200, 300, and 500. I: α = 0.1,β = 0.3 and λ = 0.2,
II: α = 0.25,β = 0.75 and λ = 0.5, and III: α = 0.5,β =

0.35 λ = 0.25, . The mean square errors (MSEs), aver-
age widths (AWs), and average biases (Biases) of the 95%
confidence intervals for the parameters alpha and lambda
are all provided in Table 5 for various sample sizes. These
data indicate that the MLEs provide an accurate prediction
of the characteristics of the LCEB distribution. The biases,
MSEs, L.bounds, and U.bounds of X will all decrease as the

TABLE 5. Monte Carlo simulation results: Biasedness, Mean Square Error
(MSEs), Lower limit and Upper limit.

sample size n increases. In addition, the confidence limits’
critical points (CPs) are located within a close proximity to
the nominal 95 percent values. As a consequence of this,
it is feasible to estimate the model parameters and provide
confidence ranges for them by utilising the MLEs and the
discoveries on their asymptotic behaviour.

VII. DATA ANALYSIS TO THE PROPOSED DISTRIBUTION
This section covered the analysis of two real-life data sets
using many models, focusing on the LCEB model.

Rt (x) =

(
1 + e−(− cot(π(1−

(
1+x+tλ

)−β
)α))
)(

1 −

(
1 + e−(− cot(π(1−

(
1+xλ

)−β
)α))
))

[(
1 −

(
1 + exp(cot(π(1 −

(
1 + x + tλ

)−β
)α))

))(
1 + exp(cot(π(1 −

(
1 + xλ

)−β
)α))

)]−1

R̄t (x) =

(
1 + e−(− cot(π(1−

(
1+x−tλ

)−β
)α))
)(

1 −

(
1 + e−(− cot(π(1−

(
1+xλ

)−β
)α))
))

(
1 −

(
1 + e−(− cot(π(1−(1+x−tλ)

−β )α))
))(

1 + e−(− cot(π(1−(1+xλ)
−β )α))

)
35704 VOLUME 11, 2023



Y. Tashkandy et al.: Exponentiated Cotangent Generalized Distributions: Characteristics and Applications

FIGURE 7. For data set 1,(a) Histogram (b) TTT plot.

FIGURE 8. For data sets 1 (a) Boxplot (b) Normal Q-Q plot.

A. THE FIRST DATA SET
The first data set, which was compiled by Bekker et al.
(2000), includes the survival rates (measured in years) of a
group of patients who were treated with chemotherapy. The
following data set is presented: 0.047, 0.115, 0.121, 0.132,
0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458,
0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696,
0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553,
1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578,
3.658, 3.743, 3.978, 4.003, 4.033.
The histogram of data set 1 is shown in Figures 7 (a), which
also displays the TTT plot’s indication of a heavy right tail in
Figure 7 (b). Figure 8 (a) displays the boxplot of data set 1,
and Figure 8 (b) displays the Q-Q plot (b).

B. THE SECOND DATA SET
The second data are obtained from Gamma Frechet JSTA
May 2013 waiting times between 64 consecutive eruptions
of the Kiama Blowhole (Pinhoet al., 2012), which are 83, 51,
87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10,
35, 47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25,
68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18,
169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.
The summary statistics can be easily calculated, so we omit-
ted them Figures 9 (a) show a heavy right tail on the TTT
plot and the histogram of data set 2, which both indicate a
right tail. Shows a heavy right tail on the TTT plot and the
histogram of data set 2, indicating a right tail in Figure 9 (b).

FIGURE 9. For data sets 2 (a) TTT plot (b) Histogram plot.

FIGURE 10. For data sets 2 (a) Boxplot (b) Normal Q-Q plot.

FIGURE 11. (a) Estimated pdfs of data set 1, (b)Estimated pdfs of data
set 2.

The figure displays the box plot that was generated from data
set 2 can be found in 10 (a) and the QQ plot in Figure 10 (b).

1) RESULTS CONCLUDED FROM THE DATA ANALYSIS
We calculate certain well-known measures of goodness-of-
fit statistics, including the log-likelihood function assessed
at the MLEs (ℓ̂), Anderson-Darling (A∗), and Cramer-von
Mises (W∗), to investigate data sets 1 and 2 and compare
the fitted models. in [16], the statistics A∗ and W∗ are dis-
cussed in depth. With the aid of the R-software, the nec-
essary computations are performed. The better fit is shown
by lower A∗, W∗.
The model parameters MLEs and its standard errors (in
parentheses) are listed in Table 6 for Data Sets 1 and 2.
The LCEB model offers a better match than other models,

according to all of the Table 7 findings.

VOLUME 11, 2023 35705



Y. Tashkandy et al.: Exponentiated Cotangent Generalized Distributions: Characteristics and Applications

TABLE 6. MLEs and their standard errors (in parentheses) for the data
sets 1 and 2.

TABLE 7. The statistics ℓ̂, A∗, W ∗, for the data sets 1 and 2.

FIGURE 12. (a) Estimated cdfs of data set 1, (b) Estimated cdfs of data
set 2.

As we can easily see from Figures 11, and 12, that proves
to be the greatest among competitors and visually appeal-
ing. Not to mention, the LCEB model can provide greater
goodness-of-fits to more complex models, with three param-
eters or more.

VIII. CONCLUDING REMARKS
The literature has extensively examined the generalized con-
tinuous univariate distributions. The LCEG family of distri-
butions, which includes a four-parameter LCEB distribution
with monotone and non-monotone hazard rates, is a novel

class of distributions that we suggest. We examine a few of
the new family’s structural characteristics. In order to provide
an accurate estimate of the model parameters, the maximum
likelihoodmethod is used. AMonte Carlo simulation analysis
is given to confirm the accuracy of the estimations. We test
which distribution fits these data sets best using a variety of
goodness-of-fit measures. We have come to the conclusion
that these one-of-a-kind models often provide better matches
than competing models. We believe that the family that is
proposed, along with the models that it generates, will see
more use across a variety of domains.

APPENDIX A
A. SHAPES OF THE DENSITY FUNCTION
Forms of the density function may be characterized mathe-
matically, and the roots of the following equation represent
the critical points of the LCEG density function:

d log n(x)
dx

=
g′(x)
L(X )

+
(α − 1)L(X )

L(X )
− π α L(X )

L(X )(α−1)
[
2 cot(π(L(X ))α) + (csc(π(L(X ))α))2

−2
[csc(π (L(X ))α)]2 ecot(π(L(X ))

α)

1 + ecot(π(L(X ))α)

]
= 0 (22)

and there may be more than one root to (22). Let λ(x) =

d2 log[n(x)]/d x2 can be find very easily. As shown at the
top of the next page.

B. SHAPES OF THE HAZARD FUNCTION
The critical points of the hrf h(x) are obtained from the
following align:

g′(x)
L(X )

+
(α − 1)L(X )

L(X )
− 2παL(X )α−1L(X ) cot

(
πL(X )α

)
+

παL(X )α−1L(X )ecot(πL(X )
α) csc2 (πL(X )α)

ecot(πL(X )α) + 1
= 0 (23)

and there may be more than one root to (23). Let λ(x) =

d2 log[n(x)]/d x2. We have

λ(x)

=
g′′(x)
L(X )

−
g′(x)2

L(X )2
+

(α − 1)g′(x)
L(X )

− 2παL(X )α−1g′(x) cot
(
πL(X )α

)
+

παL(X )α−1g′(x)ecot(πL(X )
α) csc2 (πL(X )α)

ecot(πL(X )α) + 1
+ 2π2α2L(X )2α−2L(X )2 csc2

(
πL(X )α

)
+

π2α2L(X )2α−2L(X )2e2 cot(πL(X )
α) csc4 (πL(X )α)(

ecot(πL(X )α) + 1
)2

−
π2α2L(X )2α−2L(X )2ecot(πL(X )

α) csc4 (πL(X )α)

ecot(πL(X )α) + 1

−

(
ecot(πL(X )

α)
+ 1

)−1 [
2π2α2L(X )2α−2L(X )2ecot(πL(X )

α)
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λ =
g′′(x)
L(X )

−
g′(x)2

L(X )2
+

(α − 1)g′(x)
L(X )

− 2παL(X )α−1g′(x) cot
(
πL(X )α

)
− παL(X )α−1g′(x) csc2

(
πL(X )α

)
+

2παL(X )α−1g′(x)ecot(πL(X )
α) csc2 (πL(X )α)

ecot(πL(X )α) + 1
+ 2π2α2L(X )2α−2L(X )2 csc2

(
πL(X )α

)
+

2π2α2L(X )2α−2L(X )2e2 cot(πL(X )
α) csc4 (πL(X )α)(

ecot(πL(X )α) + 1
)2

−
2π2α2L(X )2α−2L(X )2ecot(πL(X )

α) csc4 (πL(X )α)

ecot(πL(X )α) + 1
+ 2π2α2L(X )2α−2L(X )2 cot

(
πL(X )α

)
csc2

(
πL(X )α

)
−

4π2α2L(X )2α−2L(X )2ecot(πL(X )
α) cot (πL(X )α) csc2 (πL(X )α)

ecot(πL(X )α) + 1

−
(α − 1)L(X )2

L(X )2
− 2π (α − 1)αL(X )α−2L(X )2 cot

(
πL(X )α

)
− π (α − 1)αL(X )α−2L(X )2 csc2

(
πL(X )α

)
+

2π (α − 1)αL(X )α−2L(X )2ecot(πL(X )
α) csc2 (πL(X )α)

ecot(πL(X )α) + 1

cot
(
πL(X )α

)
csc2

(
πL(X )α

) ]
−

(α − 1)L(X )2

L(X )2
−2π (α−1)αL(X )α−2L(X )2 cot

(
πL(X )α

)
+

π (α − 1)αL(X )α−2L(X )2ecot(πL(X )
α) csc2 (πL(X )α)

ecot(πL(X )α) + 1
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