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ABSTRACT M-ary Aggregate Spread PulseModulation (M-ASPM) is the physical layer (PHY) modulation
technique that is well suited for use in low-power wide-area networks (LPWANs). Notably, M-ASPM com-
bines high energy-per-bit efficiency, robustness, resistance to interference, and a number of other favorable
technical characteristics, with the spread-spectrum ability to maintain the capacity of an uplink-focused
networkwhile extending its range. However, when allM-ASPMnodes transmit with the same average power,
implementation of such capacity-preserving range extension may become impractical in complicated prop-
agation environments with greatly varying path losses. Favorably, the efficiency of M-ASPM with constant-
envelope pulses can be maintained effectively the same as the efficiency of transmitting a continuous
constant-envelope waveform. Then the transmit power of different nodes can be adjusted, without sacrificing
the transmission efficiency, to compensate for differences in the path attenuation. This enables us to
significantly simplify planning and management of the network. In addition, such a variable-power approach
generally increases the network capacity and the average energy efficiency of the nodes, as compared with
the arrangement of the nodes with a constant transmit power. In this paper, we outline a practical approach to
implementing such an energy-efficient M-ASPM power control, that can be used for scaling LPWANs with
realistic desired and/or actual areal distributions of the uplink nodes under diverse propagation conditions.

INDEX TERMS Aggregate spread pulse modulation (ASPM), the Internet of things (IoT), LoRa, low-
power wide-area network (LPWAN), M-ary ASPM (M-ASPM), physical layer (PHY), spread spectrum,
time-bandwidth product (TBP).

I. INTRODUCTION AND MOTIVATION
The M-ary Aggregate Spread Pulse Modulation (M-ASPM)
is a physical layer (PHY) modulation scheme that combines
high energy-per-bit efficiency, and a number of other appeal-
ing technical aspects, with the ability to maintain the network
capacity while extending its range. It is a recently introduced
modulation technique, and many of its promising features
have not yet been explored and/or quantified. Its first descrip-
tion was given in [1], where the main goal was to examine the
spectral and energy efficiencies of coherent and noncoherent
M-ASPM variants, and evaluate the bit error probability for
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M-ASPM links in an additive white Gaussian noise (AWGN)
channel. Then in [2] the primary focus was on quantifyingM-
ASPM networks’ scalability, that is, on the spread-spectrum
properties of M-ASPM. In both [1] and [2] we also discuss in
passing such M-ASPM link properties as their resistance to
multipath delay and Doppler spreads, and to impulsive noise
commonly present in industrial environments.

In [2], we show that when M-ASPM is used as a
spread-spectrum technique (that is, when it operates at the
spectral efficiencies below the maximum for a given M ,
where log2M is the number of bits encoded in a single
pulse), its processing gain is proportional to the M-ASPM’s
average interpulse interval (IpI). As a result, this interval
directly affects such link properties as its time-on-air (ToA),
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the signal-to-interference ratio (SIR) margin and, for a given
transmit power, the link’s range. In particular, both the ToA
and the SIR margin are effectively proportional to the IpI,
while the range, if it is a monotonically increasing function
of the path loss, is a monotonically increasing function of
the IpI. This enables us to maintain the M-ASPM network’s
capacity while extending its range. Importantly, we demon-
strate that such capacity-preserving range extension can be
achieved for numerous desired and/or actual areal distribu-
tions of the uplink nodes.

But before addressing placement of the nodes at arbitrary
locations over a wide area, let us first revisit the simple case
when all nodes with equal transmit power are placed at a
given distance from the receiver (e.g., in the same physical
location), and adopt a number of simplifying idealizations.
Among those are the assumptions of the ‘‘data equality’’ of
the nodes (so that each node has the same data payload per
unit time), the same frequency band and the value of M for
all nodes, and a random access protocol. If we assume that
the path loss is a function of the distance only, then the nodes
can be placed along a circle centered at the receiver. We can
also quantify the constraint on the co-PSF collisions by α,
0 < α ≤ 1, where α is the product of the number of the
same-PSF nodes and the duty cycle of their transmissions.
Note that the case α = 1 would correspond to a continuous
transmission in a given PSF channel. For a random access
protocol, the value of α that maximizes the throughput would
be smaller than unity. For example, for the pure ALOHA [3]
the maximum throughput would be achieved for α = 1/2.
If the path loss is a function of the range only, then the total

number of end nodes that can be placed at the distance d from
the receiver can be expressed as

C(d) = m(d)C1(d), (1)

where C1(d) is the number of nodes for a single PSF chan-
nel (subject to the constrains on the co-PSF collisions) and
m(d) is the number of PSF channels that can be used without
causing unacceptable deterioration in the bit error rate (BER).

For an uplink node in a given PSF channel, the transmis-
sions from the nodes in all other (m − 1) channels produce
interference that will generally increase the BER. For the
increase in the uncoded BER to remain below a certain level,
the reciprocal of the average SIR for this interference should
not exceed the respective ‘‘SIRmargin’’1SIR. This constraint
can be expressed as

SIR−1
= (m− 1)α ≤ 1SIR. (2)

When an M-ASPM node transmits at the spectral efficiencies
below the maximum for a given M (that is, in the spread-
spectrum region), both its SIR margin and its range increase
with the IpI. Thus the SIR margin is an increasing function of
the range, and the value of m(d) in (1) can be obtained as

m(d) = 1 +
1SIR(d)

α
. (3)

FIGURE 1. Number of uplink end nodes that can be placed at given range
in M-ASPM and LoRa, and number of M-ASPM PSF channels that can be
used at this range. AWGN channel, noncoherent detection, random access
protocol, and power-law path loss model with path-loss exponent γ are
assumed. In LoRa, SF = 6 through SF = 12 are used, and inter-SF
collisions are ignored. In M-ASPM, number m of employed PSF channels
varies according to SIR margins 1SIR(r ) for BER′/BER = 10−3/10−4.
Vertical dashed lines (blue for 16-ASPM and red for 64-ASPM) indicate
ranges below which M-ASPM’s ToA per payload remains smaller than that
for LoRa with SF = 12.

For convenience, let us allow the number of the PSF chan-
nels m(d) resulting from (3) to take non-integer values.
We can then assume that ⌊m⌋ channels are ‘‘fully’’ utilized
(i.e., operating at the co-PSF constraint α), and one channel
is only ‘‘partially’’ utilized, so that the product of the number
of nodes in this channel and their duty cycle is below α.
Let us also assume that the payload overhead (e.g., for the

header and synchronization) uses the same number of pulses
for each payload. Then, for a constant-size data payload, the
transmission ToA is proportional to the IpI, and the number of
nodes per channel is inversely proportional to the IpI. Further,
if the SIR margin is defined as in [2] (also in Section II-C of
this paper), 1SIR is proportional to the IpI. This leads to

C(d) =

(
1 +

1SIR(d)
α

)
C1(d) = C1(d) + Clim, (4)

where Clim = 1SIR(d)C1(d)/α, and to

C(d → ∞) = Clim = const. (5)

Thus, if there is no constraint on the maximum ToA of a
payload, extending the range beyond a sufficiently large d
can be performed without a significant decrease in the total
capacity (the number of nodes). This is quantitatively illus-
trated in Fig. 1, for a power-law path loss with the path-loss
exponent γ [4].

The physical ranges and the capacities in Fig. 1 are shown
in reference to LoRa (short for ‘‘Long Range’’), a popu-
lar modulation technique for low-power wide-area networks
(LPWANs) [5], [6]. For a given number of bits per waveform,
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LoRa has the same energy-per-bit efficiency as M-ASPM.
(In LoRa, this number is represented by the ‘‘spreading fac-
tor’’ (SF), which can typically take values from 6 to 12.)
Thus, when operating under effectively the same physical
conditions (e.g., the same physical frequency band, transmit
power, antenna gains, and various system attenuations such as
insertion, path, and matching losses, etc.), LoRa represents a
suitable benchmark for M-ASPM.

To obtain the numerical results presented in Fig. 1, the
same constraint (α = 1/2) is used for the co-SF (in LoRa)
and co-PSF (in M-ASPM) collisions, and we neglect the
increase in the payload overhead in LoRa for larger SFs.
The maximum LoRa ranges for each SF are for the uncoded
AWGNBER = 10−4, and in the calculation of the total LoRa
capacities the interference among the channels is completely
ignored. ForM-ASPM, the SIRmargins are calculated for the
increase in the uncoded bit error rates in an AWGN channel
from BER = 10−4 to BER′

= 10−3.
As can be seen in the upper panel of Fig. 1, the number of

M-ASPM nodes that can be placed at the range for LoRa with
SF = 12 is only about 20% smaller than the number of nodes
at the range for SF = 7. This is in contrast with LoRa, for
which such a range extension leads to a more than an order of
magnitude (approximately 40 times) reduction in the number
of nodes. As a result, for example, for ranges beyond that of
LoRa with SF = 11, 16-ASPM offers about 40 times more
nodes than LoRa, and for 64-ASPM this difference increases
to almost 50-fold.

Without a constraint on the maximum ToA of a payload,
the M-ASPM range can be extended far beyond that of LoRa,
even for relatively small values of M . However, a maximum
allowed ToA (and thus a minimal data rate) for a given
frequency band can impose a practical limitation on the
M-ASPM range. For example, for noncoherent detection the
maximum spectral efficiency of M-ASPM is the same as
LoRa’s with SF = log2M . Then, if the minimal allowed data
rate is equal to that of LoRa with a given SF, the effective
range ofM-ASPMwith log2M < SFwill be smaller than that
for LoRa. As an example, the vertical dashed lines in Fig. 1
(blue for 16-ASPM and red for 64-ASPM) indicate the max-
imum M-ASPM ranges if the ToA per payload must remain
smaller than that for LoRa with SF = 12. Nevertheless, the
M-ASPM maximum range under the ToA constraint can be
further extended, to approach that of LoRa, by increasingM ,
while still providing much higher capacity than LoRa’s at this
range.

While the simple case of all nodes placed at the same
distance from the gateway provides insights into maintain-
ing the M-ASPM network’s capacity while extending its
range, it does not address a practical case of the end nodes
placed over a wide area. In [2], we demonstrate that such
capacity-preserving range extension can be achieved for
numerous desired and/or actual areal distributions of the
uplink nodes. To maintain the focus on the most essential
scaling properties of M-ASPM networks, in [2] we have
made a number of simplifying assumptions. In particular,

we assumed transmissions with a constant average power,
without discussing the effect of different PSFs on the peak-
to-average power ratio (PAPR) of the modulated signal, and
thus the efficiency of the power amplifier (PA). For such a
constant-power transmission the range is controlled, for a
given M , by the IpI (and thus the data rate) only. However,
adapting to any change in the areal distribution of the nodes
and/or in the propagation conditions in order to maintain
the network capacity would require not only changes in the
data rates of individual nodes, but also changes in the total
number of the PSF channels and the number of nodes per
channel. Thus a practical administration of such a network
can be rather complicated, and it may become infeasible for
complicated propagation environments with greatly varying
path losses.

In contrast, we can greatly simplify the network planning
and management if we adopt the same constant (minimal)
data rate for all uplink nodes and instead control the range
by changing the nodes’ transmit power. Thenwe canmaintain
the total number of the PSF channels, the number of nodes per
any PSF channel, as well as the total number of nodes, for any
areal distribution within a given range and for various path-
loss conditions. This is illustrated by the toy example below.
Further, in the subsequent sections of this paper we demon-
strate how such power control can be implemented, without
sacrificing the PA efficiency, through the M-ASPM pulse
shaping, thus enabling highly practically scalable LPWANs.

A. TOY EXAMPLE OF AREAL COVERAGE
In a wide areal coverage, different nodes may be located at
substantially different distances from the gateway. For a toy
example of such coverage, let us place a κ-th fraction of the
nodes at distance d1, and the rest of the nodes at d2 > d1.
Then 

Ctot = m1 C1(d1) + m2 C1(d2)

m1

m2
=

κ

1 − κ

C1(d2)
C1(d1)

,
(6)

where Ctot is the total number of nodes, C1(d) is the number
of nodes at the range d in a single PSF channel, and m1 =

m(d1) and m2 = m(d2) are the numbers of the PSF channels
at ranges d1 and d2, respectively, that can be used under the
SIR constraint SIR−1

≤ 1SIR for any node.
Note that, for a given transmit power, the range d for

spread-spectrum M-ASPM operation (i.e., for a sufficiently
large d) is a monotonically increasing function of the IpI.
In particular, for a power-law path loss with the path-loss
exponent γ [4], dγ is proportional to the IpI. At the same
time, (i) under a given constraint on the co-PSF collisions,
the maximum number of nodes in a single PSF channel is
inversely proportional to the IpI, and (ii) if the SIR margin
1SIR is defined as in [2] (also in Section II-C of this paper),
1SIR is proportional to the IpI. Then C1(d) ∝ 1/dγ and
1SIR(d) ∝ dγ .

As a result, if all nodes transmit at the same power,
C1(d2)/C1(d1) = 1SIR(d1)/1SIR(d2) = (d1/d2)γ and,
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to comply with the SIR constraint SIR−1
≤ 1SIR for any

node, (6) can be rewritten as

Ctot = m1 C1(d1) + m2 C1(d2)

m2 = (1 − κ)
(
1 +

1SIR(d2)
α

)
m1 =

(
d1
d2

)γ
κ

1 − κ
m2.

(7)

Predictably, when the κ-th fraction of the nodes is moved
from d2 to a shorter range d1, the number of the nodes
remaining at d2 and the number of the PSF channels deployed
for those nodes is simply the (1 − κ)-th fraction of the
nodes and channels originally deployed at d2. However, the
number m1 of the PSF channels at d1, as well as the num-
ber C1(d1) of the nodes per channel at d1 (i.e., the data rates)
vary greatly with the distance d1 and the value of the path-
loss exponent γ . In addition, even for a given d1 and stable
propagation conditions, the total number of the PSF channels
(m1+m2) varies with the fraction κ of the nodes moved to d1.
If, instead, we use the same interpulse interval for the nodes

at d1 as at d2 > d1, but reduce the transmit power of the nodes
at d1 by the factor (d1/d2)γ , then

Ctot = (m1 + m2)C1(d2)

m2 = (1 − κ)
(
1 +

1SIR(d2)
α

)
m1 =

κ

1 − κ
m2,

(8)

and the total number of the PSF channels (m1 + m2), the
number of nodes per any PSF channel C1(d2), as well as the
total number of nodesCtot remain constant for any value of d1,
any fraction κ of the nodes placed at d1, and for any given
value of the path-loss exponent γ .
Note that both the equal-power and the equal-IpI

approaches in this toy example result in the same total num-
ber of the nodes Ctot and, if there is no efficiency penalty
for controlling the transmit power, in the same total energy
consumption of the nodes. However, maintaining a constant
IpI while controlling the transmit power enables us to signif-
icantly simplify the management of the network in response
to changes in the areal distribution of the nodes and/or in the
path attenuation.

B. BEYOND TOY EXAMPLE
In a more realistic scenario, a large number of nodes would be
distributed over multiple locations. If all nodes transmit with
the same average power, a change in the areal distribution
of the nodes and/or in the propagation conditions would
generally impact both the signal-to-noise ratio (SNR) and the
SIR of the mutual interference for each node. To maintain the
target BER, we would then need to adjust the nodes’ IpIs.
However, such adjustment changes not only the nodes’ SIR
margins (and thus the impact of the mutual interference), but
it also affects the SIR values themselves (by changing the ToA

and thus the channel utilization, i.e., the values of α, for each
node).

If the path loss for each node can be obtained fairly accu-
rately, then, by solving a system of nonlinear equations and
inequalities representing the interdependencies among the
above quantities, we can reconfigure the network in a manner
that maximizes its capacity, that is, so that all PSF channels
are fully utilized. Note that it would generally require mod-
ifications in the data rates of individual nodes (i.e., in their
IpIs), an update to total number of the PSF channels, and a
change in the number of nodes per channel.

In contrast, if we somehow manage to adjust the transmit
powers of the nodes so that their received powers remain
unchanged, then the SNR and the SIR values, the SIR mar-
gins, the data rates, and the channel utilization for each node
all remain the same. Consequently, there are no other changes
to the network, beyond the adjustment in the nodes’ transmit
power.

If we are not concerned with the energy efficiency of
transmissions, then the transmitted M-ASPM waveforms can
be rather arbitrary. This allows us to use different IpIs and/or
transmit powers for different nodes in the the same PSF
channel. In practical implementations, however, we may
want the signal transmitted from any node to consist of
constant-envelope pulses with the same amplitude. Then,
if the ‘‘idle’’ (i.e., for the zero-amplitude intervals between
pulses) power consumption during the transmission of such a
signal is negligible, then the efficiency of this transmission
will be effectively the same as the efficiency of transmit-
ting a continuous constant-envelope waveform with the same
amplitude.With such a constraint on theM-ASPMwaveform,
only one IpI value per PSF channel can be used for constant-
power transmissions, and only one transmit power setting per
PSF channel can be used in the equal-IpI case. Nevertheless,
for a large total number of the PSF channels, this constraint
does not severely limit the effectiveness of controlling the
transmit power of the M-ASPM nodes.

Our main goal in the rest of the paper is to outline a prac-
tical approach to implementing such an energy-efficient M-
ASPM power control, that can be used for scaling LPWANs
with realistic desired and/or actual areal distributions of the
uplink nodes under different propagation conditions.

In Section II, we describe the noncoherent single-sideband
M-ASPMwith constant-envelope pulses, which is used in the
subsequent sections of the paper. We analyze the M-ASPM’s
spectral efficiency, its uncoded BER performance in an
AWGN channel, and the range control by the IpI when
operating in the spread-spectrum region. We then discuss the
SIR margins for mutual interference of multiple M-ASPM
transmitters with different PSFs, and the relation of these
margins to the spectral efficiency, the IpI, and the range.

In Section III, we address the M-ASPM’s range and power
control by changing pulse duty cycles of transmissions, and
discuss the physical range comparison between LoRa and
M-ASPM. We then proceed to wide areal coverage with
equal-IpI M-ASPM, providing several illustrative examples
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FIGURE 2. Illustration of single-sideband M-ary ASPM link with constant-envelope pulses and noncoherent detection.

and simulations for mutual interference of multiple transmit-
ters. Further, to simplify optimization of the transmit and the
received parameters of individual nodes according to their
spatial locations, we introduce the node density functions
for areal distributions. Such a density function characterizes
the aggregate of multiple discrete node locations in terms of
two continuous coordinates, for a polar coordinate system
centered at the gateway.

In Section IV, we examine, for both the equal-power and
the equal-IpI approaches to M-ASPM network management,
how the total throughput of the uplink nodes distributed over
a wide area can be maximized while M-ASPM transmissions
remain constant-envelope. Further, for a uniform areal cover-
age beyond some range d0 within a hexagonal cell with the
circumradius dmax, which is a basic unit for wide-area cellular
coverage, we make quantitative comparisons between the
equal-power and the equal-IpI arrangements. In particular,
for the power-law path loss, we examine how (i) the total
number of the PSF channels, (ii) the distribution of the nodes
among these channels, (iii) the total number of nodes within
the coverage area, and (iv) their energy efficiency, are affected
by the changes in d0, dmax, and/or in the value of the path-loss
exponent.

In Section V, we illustrate the contrast between LoRa
and equal-IpI M-ASPM when both are used for wide areal
coverage. Specifically, when the path loss increases with the

distance from the gateway, we show that M-ASPM enables
noticeably larger effective range than LoRa, combined with
the flexibility of achieving various node distributions within
the maximum range.

We conclude the paper with the discussion in Section VI,
where we also outline a basic procedure that can be used for
managing the equal-IpI M-ASPM networks without reliance
on the physical location of the nodes and the path-loss
models.

Henceforth, whenever we compare M-ASPM and LoRa,
we assume identical physical parameters of the links. For
example, we assume the same physical frequency band, trans-
mit power, antenna gains, and various system attenuations
such as insertion and matching losses, etc. Further, while
the PSF length and the IpI in M-ASPM are integers, their
practical values are rather large, and we routinely treat them
as continuous variables, in particular, when relating them to
other continuous quantities (e.g., the range).

II. NONCOHERENT SINGLE-SIDEBAND M-ASPM WITH
CONSTANT-ENVELOPE PULSES
For convenience of the reader, let us first briefly describe a
particular version of an M-ASPM link. This link is illustrated
in Fig. 2, and it will be used in the rest of the paper. A more
detailed and general M-ASPM PHY description can be found
in [1], [2], and [7].
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We can encode information in the ‘‘arrival times’’ kj of
the pulses in a digital ‘‘pulse train’’ x̂[k], where only rela-
tively small fraction of samples have non-zero values. Such
a ‘‘designed’’ pulse train (an example shown on the left of
Fig. 2(I)) can be expressed as

x̂[k] =

∑
j

Jk=kjK (−1)j, (9)

where k is the sample index, kj is the sample index of the
j-th pulse, and J . . . K is the Iverson bracket [8] which is equal
to 1 if the expression inside is true and 0 if it is false. The
alternating signs of the pulses in (9) simply ensure that x̂[k]
is a zero-mean signal. This helps to eliminate a direct current
(DC) bias in the modulating signal, which is convenient but
not strictly necessary.

For the arrival times in (9) one can use, for example,

kj = jNp + 1N + 1k[mj], (10)

whereNp = ⟨kj−kj−1⟩ is the average interpulse interval (IpI),
1N is an integer, mj ≤ M is a positive integer, and 1k[m] is
an integer-valued invertible function such that 0 ≤ 1k[m] <

Np and 1k[m] ̸= 1k[l] for m ̸= l. The average ‘‘pulse
rate’’ fp in such a train is fp = Fs/Np, where Fs is the sample
rate. For mj ∈ {1, 2, . . . ,M} this pulse train encodes log2M
bits per pulse, and thus the raw bit rate fb is fb = fp log2M .
In the example of Fig. 2, M = 8 and x̂[k] encodes 3 bits per
pulse. The corresponding 3-bit binary numbers are indicated
for each pulse. Note that the peak-to-average power ratio
(PAPR) of the designed pulse train x̂[k] is rather large, as it
is equal to the IpI Np ≫ 1, and this train would be unsuitable
for modulating a carrier.

However, the high-PAPR train x̂[k] given by (9) can be
‘‘reshaped’’ by linear filtering, creating a lower-PAPR modu-
lating signal. In particular, the impulse response ζ̂i[k] of such
a ‘‘pulse shaping’’ filter (PSF) can be a nonlinear chirp with
the desired autocorrelation function (ACF), e.g.

ζ̂i[k] = ĝi[k] + i ĥi[k] =
1

√
Li

J0≤k<LiK exp (i8i[k]) ,

(11)

where 8i[k] is the phase and Li is the ‘‘duration’’ (length)
of the chirp in samples. In (11), the imaginary part of ζ̂i[k]
is the discrete Hilbert transform of its real part, i.e.,
ĥi[k] = H

{
ĝi[k]

}
[9], [10]. For the i-th PSF ζ̂i[k], we will

denote its matched filter ζ̂ ∗
i [−k] = ĝi[−k] − i ĥi[−k] by

removing the overhead hat symbol, as ζi[k] = ζ̂ ∗
i [−k].

Filtering the designed train x̂[k] with the PSF ζ̂i[k] creates
the digital modulating signal zi[k] (‘‘reshaped train’’)

zi[k] =

√
Li (x̂ ∗ ζ̂i)[k] =

√
Li
∑
j

ζ̂i[k−kj], (12)

where ζ̂i[k] is given by (11) and the asterisk denotes convo-
lution. Since in Fig. 2 we show only a single PSF channel,
in the figure we omit the subscript i, and also denote the real
and imaginary parts of z[k] as xg[k] and xh[k], respectively.

After digital-to-analog (D/A) conversion, the real and
imaginary parts of zi(t) can be used for quadrature amplitude
modulation of a carrier with frequency fc, providing the trans-
mitted waveform Re(zi(t)) sin(2π fct) + Im(zi(t)) cos(2π fct).
Since ĥi[k] is the Hilbert transform of ĝi[k], this wave-
form will occupy only a single sideband with the physical
bandwidth B equal to the baseband bandwidth of ζ̂i[k] [9].
In addition, if the chirps in (12) do not overlap (i.e., Li ≤

Np − maxm(1k[m])), then

|zi[k]| =

∑
j

J0≤k−kj<LiK, (13)

and, as illustrated in Fig. 2(II), the transmitted signal will
consist of constant-envelope pulses. Note that the variance of
such a reshaped train is equal to Li/Np, and thus, for a given
IpI Np, the average power of zi[k] is proportional to Li.

For noncoherent (‘nc’) detection (Fig. 2(III)), in the
receiver’s (Rx) quadrature demodulator the noisy passband
signal is multiplied by the orthogonal sinusoidal signals from
a local oscillator, lowpassed, and converted to the in-phase
and quadrature digital signals I [k] and Q[k]. We can then
use the matched filters g[k] and h[k], as shown in Fig. 2(III),
to obtain the high-peakedness pulse train ync[k] correspond-
ing to the designed pulse train. Note that after synchronization
we would need to obtain only M = 8 samples per pulse, i.e.,
we can use g[k] and h[k] as decimation filters. Out of each
8 samples of ync[k], the position of the sample with the largest
magnitude will correspond to the position of the respective
pulse in the designed train.

A. M-ASPM SPECTRAL EFFICIENCY
Without noise, the received pulse train ync[k] will be propor-
tional to the convolution of the designed train x̂[k] with the
ACF of the PSF. Thus, as discussed in [1] and [2], a good
choice for the ACF would be a pulse that combines a small
time-bandwidth product (TBP) [11], [12] (e.g., close to that
of a Gaussian pulse) with a compact frequency support.
An example of such ACF would be a raised-cosine (RC)
pulse [13] with a sufficiently large roll-off factor 0 ≤ β ≤ 1.
Then the sample rate Fs in the digital waveforms can be
chosen as Fs = 2 sB, where 1 ≤ s = 2/(1+β) < 2 is
the oversampling factor.

From now on, to distinguish between the respective quan-
tities for LoRa and M-ASPM, let us mark those for LoRa
by overhead tildes. Then the spectral efficiency of LoRa
modulation is

η̃ = η̃
(
M̃
)

=
log2 M̃

M̃
. (14)

If we use PSFs with RC ACFs, and the sample rate Fs =

4B/(1 + β), then for M-ASPM operating in the spread-
spectrum region

η = η
(
M ,Np

)
=

4 log2M
(1+β)Np

= η̃(M )
4M

(1+β)Np
, (15)

and, for a givenM , the spectral efficiency is inversely propor-
tional to the IpI Np. For example, with β = 1/3, η = 12/Np
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FIGURE 3. Uncoded BER vs Eb/ 0 performances of LoRa (dashed lines)
and single-sideband M-ASPM (solid lines) for noncoherent detection in
AWGN channel.

for M = 16, and η = 24/Np for M = 64. The minimum Np
value that can be used in noncoherent M-ASPM is 4M , and
thus the maximum spectral efficiency of M-ASPM is

ηmax = η (M , 4M) = η̃(M )/(1+β). (16)

Note that, when β = 0 (sinc function ACF), it is equal to the
spectral efficiency of noncoherent LoRa with M̃ = M .

B. UNCODED BER PERFORMANCE OF M-ASPM IN AWGN
CHANNEL AND RANGE CONTROL BY IpI
While AWGN is only a ‘‘background’’ noise in most practical
LPWAN applications, the performance in an AWGN channel
provides a suitable benchmark for the M-ASPM’s overall
efficiency assessment and for examining its main scaling
properties.

As a reminder (see [1], [2]), for noncoherent M-ASPM the
bit error probability Pb in AWGN channel can be expressed
as

Pb = Pb

(
0

η

)
=

1
2(M−1)

M∑
k=2

(−1)k
(
M
k

)
exp

(
−
k−1
k

0

η
log2M

)
,

(17)

where
(n
m

)
=

n!
(n−m)!m!

is the binomial coefficient, 0 is the
SNR, and η = fb/B is the spectral efficiency. The SNR can
be further expressed as 0 = (Eb/ 0) × (fb/B), where Eb is
the energy per bit and 0 is the (one-sided) power spectral
density (PSD) of the noise. Notably, as illustrated in Fig. 3,
the AWGN bit error probability for M-ASPM is the same as
for noncoherent LoRa whenM = 2SF [6].
If we desire to achieve the same BER performance at the

same range (i.e., at the same 0) for LoRa (with a given M̃ )
and M-ASPM (with a givenM ), the value of η (and thus Np)
can be obtained as a solution of the equalities

Pb
(
0;M ,Np

)
= P̃b

(
0; M̃

)
= BER. (18)

FIGURE 4. Uncoded BER vs SNR performances of LoRa (dashed lines),
single-sideband 16-ASPM (solid lines), and single-sideband 64-ASPM
(dotted lines) for noncoherent detection in AWGN channel.

FIGURE 5. Spectral efficiency vs range for LoRa and M-ASPM
(noncoherent detection).

An example is given in Fig. 4 for M-ASPMwithM = 16 and
M = 64, and BER = 10−4.

Normally, the received power decreases with the distance d
between the transmitter and the receiver, and the SNR is a
decreasing function of d . For example, for the power-law
path loss 0 ∝ d−γ , where γ is the path-loss exponent. For
free-space path loss γ = 2, and it can be 2-3 times larger
for harsh environments [14], [15], [16], [17]. Then, from the
condition 0/η = const it follows that, for the power-law
path loss, the M-ASPM range d ∝ η−1/γ

∝ Np
1/γ . This

is in contrast with LoRa, where LoRa’s spectral efficiency is
constant for a given spreading factor. While Np is an integer,
it is rather large (Np ≥ 4M for noncoherent M-ASPM) and,
for a sufficiently large M (e.g., M ≥ 16), the M-ASPM’s
spectral efficiency can be treated as a continuous quantity.
For example, Fig. 5 illustrates M-ASPM’s spectral efficiency
vs. range under power-law path lossmodel, at AWGNBER =

10−4, as compared with LoRa. For M-ASPM, for the spectral
efficiencies larger than (log2M )/M the value of η is obtained
as the solution of the equality Pb (d;M , η) = BER. For
LoRa, the spectral efficiency is the maximum value of η̃

satisfying the inequality P̃b (d; η̃) ≤ BER.

C. SIR MARGINS FOR MUTUAL INTERFERENCE OF
M-ASPM TRANSMITTERS WITH DIFFERENT PSFs
When considering the impact of mutual interference of mul-
tiple M-ASPM transmitters, we shall recall that different
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FIGURE 6. For sufficiently different Li and Lj , cross-correlations of ĝi [k]
and ĝj [k] for constant-envelope PSFs given by (11) will have large TBPs.

M-ASPM transmitters can employ substantially different
PSFs, in a manner similar to using different spreading
sequences in asynchronous code-division multiple access
(CDMA) [18].

As discussed in [2], one can construct many PSFs, ζ̂1[k],
ζ̂2[k], and so on, with large-TBP components ĝi[k] such that
they have the same small-TBP ACF w[k], i.e., (ĝi ∗ gi)[k] =

w[k] for any i, while the convolutions of any ĝi[(t)]k] with
gj[(t)]k] for i ̸= j (cross-correlations) have large TBPs.
Then the impact of the interference from transmitters with
ζ̂j[k] ∈ {ζ̂2[k], ζ̂3[k], . . . } (i.e., when j ̸= 1) on the signal
from the transmitter with ζ̂1[k] would be akin to the impact
of a noise with relatively low PAPR and the power equal to
the combined power of the interfering signals at the receiver.
While such noise is non-Gaussian in general, its Gaussian
approximation would be mostly adequate for the assessment
of its effect on the BER, especially at low SNRs [19].

In particular, let us consider constant-envelope PSFs with
the impulse response expressed by (11). Then, for sufficiently
different Li and Lj (e.g., for |Li − Lj| ≫ s, where s is
the oversampling factor), cross-correlations of ĝi[k] and ĝj[k]
will always have large TBPs. This is illustrated in Fig. 6.
If the interference with a given SIR can be treated as Gaus-

sian contribution to the noise, then its impact can be quanti-
fied by the deterioration (increase) in the AWGNBER from a
given BER value to BER′ > BER, when the SNR 0 becomes
the signal-to-interference-plus-noise ratio (SINR) 0′ < 0:

Pb

(
0

η
;M

)
= BER = Pb

(
0′

η
;M

)
BER
BER′

. (19)

By solving (19) for the given M , BER, and BER′, we can
obtain the (constant) values of 0/η and 0′/η. Consequently,
for a given spectral efficiency η, we can express the SIR
margin 1SIR as

1SIR =
1
0′

−
1
0

=

( η

0′
−

η

0

)
η−1

= η−1
× const, (20)

and thus the SIR margin for M-ASPM is inversely propor-
tional to its spectral efficiency or, equivalently, to the IpI:
1SIR ∝ η−1

∝ Np. For M = 16 and M = 64, Fig. 7 illus-
trates the range of values for the product η 1SIR, in relation
to the chosen constraints on BER and BER′.

FIGURE 7. Product η 1SIR in relation to chosen constraints on BER and
BER′ .

FIGURE 8. SIR margins for inter-PSF interference in M-ASPM scale as
1SIR ∝ η−1 ∝ Np, and for power-law path loss as 1SIR ∝ dγ .

Further, when an M-ASPM node transmits at the spec-
tral efficiencies below the maximum for a given M (that
is, in the spread-spectrum region), both its inverse spectral
efficiency η−1 and its range d increase with the IpI Np.
In particular, for a power-law path loss with the path-loss
exponent γ [4], dγ is proportional to the IpI. Then

1SIR ∝ η−1
∝ Np ∝ dγ . (21)

This is illustrated in Fig. 8 for M-ASPM with M = 16 and
M = 64, for BER′/BER = 10−3/10−4.

III. RANGE AND POWER CONTROL BY PULSE DUTY
CYCLE
For a given pulse amplitude, the average transmit power of
an M-ASPM signal with constant-envelope pulses is propor-
tional to L/Np, where L is the length of the pulse andNp is the
IpI. We shall call the ratio D = L/Np < 1 a pulse duty cycle,
and thus the average transmit power is proportional to D.
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If the ‘‘idle’’ (i.e., for the zero-amplitude intervals between
pulses) power consumption during the transmission of such a
signal is negligible, then the efficiency of this transmission is
effectively the same as the efficiency of transmitting a contin-
uous constant-envelope waveform with the same amplitude.
Therefore, for a given peak transmit power of an M-ASPM
signal, the average transmit power can be controlled by the
pulse duty cycle without sacrificing the transmission effi-
ciency.

As follows from (17), for a given M , the same uncoded
BER in an AWGN channel for two M-ASPM transmitters
will be achieved when 01/η1 = 02/η2, where, respectively
for the first and the second transmitter, 01 and 02 are the
SNRs, and η1 and η2 are the spectral efficiencies. Then, for
two otherwise identical transmitters (i.e., having the same
PSF ACF and operating in the same frequency band, with the
same antenna gains, various system attenuations, etc.) that
are placed at the distances d1 and d2 from the receiver and
transmit with different average powers, the same BER will
be achieved when

P1(d1)
P2(d2)

=
η1

η2
=
N2

N1
, (22)

where P1(d1) and P2(d2) are the respective received powers,
and N1 and N2 are the respective IpIs.
Note that in the absence of noise the equal-BER condition

expressed by (22) signifies the equality of the magnitude of
the pulses in the received pulse trains y2nc[k] for the first and
the second transmitter. When the noise is present, we can
transmit a payload comprising a sufficiently long sequence
of pulses with the same position offsets. Then, for the time
interval specific to transmitting such a ‘‘gauge’’ payload,
the magnitude of the ‘‘noise-free’’ pulses can be accurately
measured by using themodulo power averaging (MPA) func-
tion described in [20], where it is used for reliable, even at
extremely low SNRs, synchronization of the pulse trains in
the receiver. Consequently, by measuring the received pulse
magnitudes for a pair of nodes placed at different locations,
we can determine the relative path loss for these nodes
and monitor its time fluctuations in dynamically changing
propagation conditions. As demonstrated in [20], the MPA
also allows to directly obtain the receiver’s baseband SINR,
with the accuracy not significantly affected by the co-PSF
collisions.

Such measurements of the received pulse magnitudes can
be performed for multiple nodes, with the node locations
and the frequency of the measurements depending on the
complexity of the environment and the desired precision.
These measurements can then be extrapolated to ‘‘map’’ the
path loss for the area specific to the gateway. Throughout
this paper, however, we use the simple power-law path loss
model, which is adequate for illustration of the main scaling
properties of M-ASPM, and for its comparison with LoRa.

For the power-law path loss with the path-loss exponent γ ,
the average received power P at a distance d from the

transmitter can be approximated as

P(d) = P(d0)
(
d0
d

)γ

, (23)

where P(d0) is the power received at a reference point in
the far field region at the distance d0 from the transmitter.
With (23), the condition (22) can be rewritten as

P1(d1)
P2(d2)

=
P1(d0)
P2(d0)

(
d2
d1

)γ

=
N2

N1
. (24)

Since the received powers P1(d0) and P2(d0) are for the same
distance d0 from the transmitters, their ratio is identical to
the ratio of the respective transmit powers. Consequently, the
same BER in an AWGN channel will be achieved for the
transmitters placed at the distances d1 and d2 when(

d1
d2

)γ

=
D1 N1

D2 N2
, (25)

where D1 and D2 are the pulse duty cycles for the first and
the second transmitter, respectively.

Therefore, for transmission with a constant peak power and
a given IpI, the average transmit power is proportional to the
pulse duty cycle D, and the range d increases with D (e.g.,
as d ∝ D1/γ for the power-law path loss).

A. PHYSICAL RANGE
Since the path loss is highly dependent on the environment,
a generic value for the communication range cannot be given.
Instead, we can quantify a physical range of an M-ASPM
transmitter in terms of the range of some ‘‘standard’’ (bench-
mark) transmitter operating under effectively the same phys-
ical conditions. For example, we can use LoRa with SF = 7
(M̃ = 27 = 128) as a particular choice of such benchmark
transmitter. In fact, the range of LoRa with SF = 7 has been
used as the benchmark ‘‘intermediate’’ range in our preceding
discussions of the M-ASPM range-related properties (e.g.,
in Figs. 1, 5, and 8). We shall denote this range as δ̃0.
For the subsequent numerical results of this paper, we will
use an AWGN channel and calculate δ̃0 for the uncoded
BER = 10−4. Further, we will still assume the power-law
path loss, and thus δ̃0 is a function of the path-loss exponent,
δ̃0 = δ̃0(γ ).
With this, the range of an M-ASPM transmitter can be

expressed as

d =

(
D

η0

η

)1/γ

δ̃0(γ ), (26)

where D is the pulse duty cycle, η is the spectral effi-
ciency, and the value of η0 can be obtained by solving
Pb (0;M , η0) = P̃b (0; 128) = BER. For example, as can
be seen in Fig. 4, η0 = 1/27.1 for 16-ASPM, and η0 =

1/20.25 for 64-ASPM.
Note that in Figs. 1, 5, and 8, as well as in the remainder of

this paper, the LoRa ranges for other spreading factors (i.e.,
SF ̸= 7) are also expressed in relation to δ̃0(γ ).
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B. WIDE AREAL COVERAGE WITH CONSTANT IpI
As illustrated in the toy example of Section I-A for two
distinct ranges, we can significantly simplify themanagement
of an M-ASPM network if we maintain the same IpI for
all nodes and, instead, adjust the nodes’ transmit power to
ensure the equality of the received powers for all nodes.
In this example, however, for a large total number of the
PSF channels, multiple PSF channels are deployed at a given
range. Unfortunately, the same range for a given IpI suggests
the same average transmit power. Therefore, if we require
the same amplitude of constant-envelope pulses, we cannot
deploy multiple (i.e., more than two) PSF channels at the
same range.

Favorably, in a practical wide area network, the number
of nodes greatly exceeds the number of the PSF channels,
and the nodes are distributed over multiple distances from the
gateway. Thus we can use the same IpI for all nodes, yet dif-
ferent PSF channels for different ranges. Then, as discussed
below, we can control the transmit power by adjusting the
channels’ pulse duty cycles, while preserving the amplitude
of the received pulses.

For a given IpI Np (and thus the data rate) of an
M-ASPMwith constant-envelope pulses, themaximum range
is achieved for the maximum pulse duty cycle Dmax = 1 −

maxm(1k[m])/Np (see the PSF description in Section II). For
the nodes placed at shorter distances from the receiver, the
pulse duty cycles can be reduced, while still satisfying the
constraint on the maximum allowed uncoded BER. Then,
as discussed in Section II-C, for sufficiently different pulse
duty cycles the impact of the mutual interference among the
transmitters would be akin to the impact of a noise with a rela-
tively low PAPR and the power equal to the combined average
power of the received interfering signals. Consequently, the
number and the placement of the additional nodes within
the maximum range will be constrained by the requirement
that the inverse SIR of any node remains below the SIR
margin 1SIR (which is the same for all nodes with the same
IpI).

In order to increase the maximum range under a given
constraint on the transmit power, we need to increase the
IpI, and thus proportionally reduce the data rate. However,
since 1SIR is proportional to the IpI, the reduction in the
data rate of the nodes can be counteracted by the respective
increase in the number of additional nodes placed at shorter
ranges, thus approximately preserving the total throughput of
the network. This is illustrated in Fig. 9, where the reduction
in the data rate in order to extend the range is accompanied
by the increase in the number of additional nodes placed at
smaller distances within the range (i.e., by the increase from
four to eight additional nodes).

In Fig. 9, we also illustrate the impact of mutual interfer-
ence for multiple equal-IpI M-ASPM transmitters, placed at
different distances from the receiver, on their received pulse
trains. To highlight the impact of the interference only, there
is no external noise, and thus SINR = SIR. For the specific
ranges shown in the figure, the free-space path loss (γ = 2)

FIGURE 9. Illustration of impact of inter-PSF interference for five and
nine 16-ASPM transmitters placed at particular distances from receiver.
Pulse duty cycles are chosen to ensure equality of received powers, and
thus for continuous transmissions SIR = −6 dB for five nodes and
SIR = −9 dB for nine nodes. Specific ranges shown are for free-space
path loss (γ = 2), and IpI for 9 nodes is twice that for 5 nodes.

is assumed. For this path loss and distances, the values of
the pulse duty cycles for the nodes are chosen in such a way
that the average powers of the received pulse trains, and thus
the magnitudes of the pulses in these trains, are identical in
the absence of interference. In particular, the values of the
pulse duty cycles and the distances from the receiver satisfy
the relation Di/Dj = (di/dj)γ for any pair of nodes. The
magnitudes of the interference-free pulses are indicated, for
each received train, by the horizontal dashed lines in the
right-hand side of the figure.

Since the average received powers are identical, the SIR
will be the same for all transmitters. For example, SIR =

−6 dB for five nodes (Fig. 9(I)), and SIR = −9 dB for nine
nodes (Fig. 9(II)). Further, for a given IpI the SIR margins for
the nodes are also identical. Consequently, as can be seen in
the figure, the mutual interference has similar impact on the
magnitudes of the pulses in the received pulse trains for all
nodes.

To generate the waveforms shown in Fig. 9, we used PSFs
with the ACF as an RC pulse with the roll-off factor β = 1/4,
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FIGURE 10. Impact of mutual interference on uncoded BER in AWGN
channel for arrangements shown in Fig. 9.

FIGURE 11. Using all ‘‘up’’ or all ‘‘down’’ chirps for PSFs with different
pulse duty cycles further increases impact of mutual interference,
as compared with its Gaussian approximation, and should be avoided.

and oversampling with s = 2/(1 + β) = 8/5. Further,
we used noncoherent 16-ASPM (M = 16), and thus η =

fb/B = 2 s log2M/Np = 12.8/Np. Specifically, to encode
4-bit sequences (a1b1c1d1 a2b2c2d2 . . . ajbjcjdj . . . ), we used
the designed pulse trains expressed by

x̂[k] =

∑
j

Jk= jNp + (8aj+ 4bj+2cj+dj)nK, (27)

where n = 4. With this, the maximum pulse duty cycle is
Dmax = 1 − 60/Np. For the particular IpI value Np used in
Fig. 9(I) η = 1/140, Dmax = 96.7%, and the SIR margin for
BER′/BER = 10−3/10−4 is 1SIR = 9 dB. In Fig. 9(II), η =

1/280, Dmax = 98.3%, and 1SIR = 12 dB. The minimum
range in Fig. 9 is d1 = δ̃0(2), for D1 = 20% in the upper
panel (I) andD1 = 10% in the lower panel (II). Themaximum
ranges are d5 = 2.2 δ̃0(2) in Fig. 9(I), and d9 = 3.1 δ̃0(2) in
Fig. 9(II), both for the pulse duty cycle 93.8%.

Further, for the arrangements shown in Fig. 9, Fig. 10 quan-
tifies the impact of the mutual interference on the uncoded
BER in an AWGN channel. In the simulations, the BER
for a given transmitter is determined by comparing the
bit sequences extracted from the ‘‘ideal’’ transmitted signal

(without noise and interference), and from the transmitted
signals affected by an AWGN only (black dots connected by
black solid lines), and by an AWGN and the signals from all
other transmitters (colored markers connected by solid lines).
As was discussed earlier, when different nodes employ

sufficiently different pulse duty cycles, a Gaussian approx-
imation for the mutual interference is adequate for a rough
assessment of its effect on the BER. These calculated Gaus-
sian approximations are shown in Fig. 10 by the black dashed
lines, and they indeed roughly correspond to the simulated
BER values. However, while the mutual interference is a
low-PAPR signal, it is still a super-Gaussian rather than a
Gaussian signal [19], which results in its somewhat higher
impact on the BER as compared to the impact of a Gaussian
noise. As a consequence, in Fig. 10 the simulated BER values
are much better approximated by the ‘‘effective’’ Gaussian
interference, which is about 1 dB higher in both cases of
four and eight interfering transmitters (green dashed lines in
Fig. 10).
In order to lower the peakedness of themutual interference,

and thus its excessive impact on the BER, we would want to
maximize the TBPs of cross-correlations for the PSF. Thus,
as a rule of thumb, we want to alternate ‘‘up-chirp’’ and
‘‘down-chirp’’ PSFs when reducing the pulse duty cycles for
the closer-range nodes. This was done in the examples of
Figs. 9 and 10. Using all ‘‘up’’ or all ‘‘down’’ chirps in the
PSFs with different pulse duty cycles would further increase
the impact of the mutual interference, as compared with its
Gaussian approximation. This is illustrated in Fig. 11, for the
nine-node arrangement shown in the lower panel (II) of Fig. 9.

C. NODE DENSITY FUNCTIONS FOR AREAL
DISTRIBUTIONS
In a design of a practical network, we may be given the
coordinates of the end nodes placed at the desired loca-
tions, e.g., sensors co-located with traceable physical assets.
In general, these coordinates can be time-variant, but we may
initially assume that they vary sufficiently slowly and can be
considered stationary during the ToA of any transmission.
For a given placement of a gateway, the locations of the end
nodes can be characterized by the distribution (density) func-
tion expressed in polar coordinates centered at the gateway,
8(ϕ, r), where ϕ is the angular coordinate and r > 0 is the
distance from the gateway [2]. It is convenient to normalize
8(ϕ, r) to unity as∫ 2π

0
dϕ

∫
∞

0
dr r 8(ϕ, r) = 1, (28)

and such normalization will be assumed in the rest of the
paper.
The main purpose for introducing such a density function

is to characterize the aggregate of multiple node locations by
a function of two continuous variables, ϕ and r . This simpli-
fies optimization of the transmit and received parameters of
the nodes according to their spatial positions. For example,
if f (ϕ, r) is a physical property of the node (e.g., its transmit

25652 VOLUME 11, 2023



A. V. Nikitin, R. L. Davidchack: M-ASPM With Pulse-Shaping Power Control for Highly Scalable LPWANs

or received power, ToA, data rate, etc.) that may depend on
the coordinates ϕ and r , then its average value within some
area A can be expressed as

⟨f (ϕ, r)⟩A =

∫∫
Adϕdr r f (ϕ, r)8(ϕ, r)∫∫

Adϕdr r 8(ϕ, r)
. (29)

The reason why a physical parameter of a node may depend
on the location is the path loss. For example, for a given trans-
mit power the received power depends on this loss. Or, for
a given maximum allowed uncoded BER, the IpI and/or the
pulse duty cycle can be adjusted according to the propagation
losses, thus making them dependent on the node’s placement.

In general, the path loss may depend on the angular coor-
dinate ϕ, as there may be obstacles in a certain direction from
the receiver, or different multipath conditions. It also may not
be a monotonic function of the distance from the receiver,
or even a single-valued function of the coordinates. For exam-
ple, for two transmitters in close physical proximity, one can
be indoors, and the other one outdoors, which may result in
significantly different path losses. However, for simplicity,
in this paper we assume that (i) the path loss is independent of
the directionϕ and is a function of only the distance r from the
gateway, and (ii) the path loss is a monotonically increasing
function of r . Then the physical parameters of a node also
will be functions of r only, and (29) simplifies to

⟨f (r)⟩i =

∫ di
di−1

dr f (r)φ(r)∫ di
di−1

dr φ(r)
, (30)

where the average is for the range interval [di−1, di], and
where φ(r) is the radial node density

φ(r) = r
∫ 2π

0
dϕ 8(ϕ, r). (31)

Note that in the toy example of Section I the radial density
function is

φ(r) = κ δ(r − d1) + (1 − κ) δ(r − d2), (32)

where δ(x) is the Dirac δ-function [21].

IV. CONTRAST BETWEEN EQUAL-POWER AND EQUAL-IpI
ARRANGEMENTS
Let us now examine, for both the equal-power and the equal-
IpI approaches to M-ASPM network management, how the
total throughput of the uplink nodes distributed over a wide
area can be maximized while M-ASPM transmissions remain
constant-envelope. We will assume that all nodes in a given
areal coverage carry the same data payload per unit time,
and are divided into m ‘‘PSF channels’’ such that, for any
‘‘channel index’’ i ∈ {1, 2, . . . ,m}, all nodes in the i-th
channel have the same settings (i.e., the same PSF, IpI, and
transmit power). Further, let all nodes be confined to the range
interval [d0, dmax], that is

φ(r) ≡ φ(r) Jd0 ≤ r ≤ dmaxK, (33)

and all nodes for the i-th channel be placed within the interval
[di−1, di], where d0 ≤ di−1 < di ≤ dm = dmax.
For equal-payload nodes with the co-PSF constraint α, and

the power-law path loss, the constraints on the impact of
inter-PSF collisions can be expressed as

⟨SIR⟩
−1
i =

∑m
j=1

Lj
Nj

〈
r−γ

〉
j

Li
Ni

〈
r−γ

〉
i

− 1 ≲
1SIR(Ni)

α
=

Ni
α N0dB

(34)

for any i ∈ {1, 2, . . . ,m}, where Ni is the IpI, Li is the length
of the PSF, the average is defined by (30), and where N0dB is
such that 1SIR(N0dB) = 1 (i.e., N0dB = 1−1

SIR(1)).
Further, to ensure that all m PSF channels are fully utilized

(i.e., they all operate at the co-PSF constraint α), for a given
radial node density φ(r) the following condition must be
satisfied:

Ni

∫ di

di−1

dr φ(r) = Nj

∫ dj

dj−1

dr φ(r) (35)

for any i, j ∈ {1, 2, . . . ,m}.
If all nodes transmit at the same average power, then Ni ∝

dγ
i and the condition (35) becomes

dγ
i

∫ di

di−1

dr φ(r) = dγ
j

∫ dj

dj−1

dr φ(r). (36)

By solving the system of nonlinear equations represented
by (36), we can then obtain the partition ranges di and the
interpulse intervals Ni. Note that a change in the value of the
path-loss exponent γ will result in a change in the partition
ranges, and thus in ‘‘reassignment’’ of some nodes to different
PSF channels. Further, for equal-power transmissions the
duty cycles Li/Ni for all channels are equal to each other, and
the inter-PSF constraint (34) can be expressed as

Nm
Ni

⟨SIR⟩
−1
i =

∑m
j=1

〈(
dm
r

)γ 〉
j〈(

di
r

)γ 〉
i

−

(
dm
di

)γ

≲
Nm

α N0dB
(37)

for any PSF channel i ∈ {1, 2, . . . ,m}.
When all nodes operate with the same IpI Ni = Nm =

Lm + δN = const , where δN is the maximum pulse-position
offset in the encoding, then all PSF channels have the same
spectral efficiency η and the same SIR margin, and they each
support the same number of equal-payload nodes. With this,
the ranges d0 ≤ di−1 < di ≤ dm = dmax can be obtained
from the condition∫ di

di−1

dr φ(r) =
1
m

for any i ∈ {1, 2, . . . ,m}, (38)

subject to the constraints

⟨SIR⟩
−1
i =

∑m
j=1

〈(
dj
r

)γ 〉
j〈(

di
r

)γ 〉
i

− 1 ≲
Nm

α N0dB
. (39)
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Then, given the value Dm = 1 − δN/Nm for the nodes in the
outermost partition, the pulse duty cycles Di for the nodes in
the i-th partition (PSF channel) can be obtained as

Di =

(
di
dm

)γ

Dm. (40)

Note that, in contrast to the case of constant-power nodes,
the partition ranges obtained from (38) do not depend on
the value of the path-loss exponent γ . In fact, (38) simply
signifies the assignment of the PSF channels according to the
ranges between the adjacentm-quantiles [22] of the path-loss
values.

Next, let us make some quantitative comparisons between
the equal-power and the equal-IpI approaches to M-ASPM
network management. In particular, let us consider uniform
areal coverage beyond range d0 within a hexagonal cell with
the circumradius dmax = dm > d0. Note that, in order for
an M-ASPM with constant-envelope pulses to operate in the
spread-spectrum region, the equal-power node arrangement
is subject to an additional constraint N1 > 4(M −1)/(1−D),
where D is the pulse duty cycle. Thus, in the examples that
follow, the values of d0 are chosen to be sufficiently large,
so both the equal-power and the equal-IpI approaches can be
used and compared with each other.

A. IMPACT OF INTER-PSF INTERFERENCE ON NUMBER
OF PSF CHANNELS
First, let us assess the impact of the inter-PSF interference on
the total number of the PSF channels that can be used, under a
given constraint on the deterioration in the BER, for a desired
areal coverage.

1) NODES WITH EQUAL TRANSMIT POWER
Recall from our toy example in Section I that, for a given
maximum range d2, the total number of the PSF channels
(m1 +m2) for equal-power M-ASPM nodes depends on both
the propagation conditions (the value of γ ) and the shape
of the node distribution (the values of d1 and/or κ). Such
strong dependence is also apparent in Fig. 12, for the uniform
areal coverage beyond range d0 within a hexagonal cell. For
example, even for identical propagation conditions and thus
identical maximum physical range dm, the maximum number
of the PSF channels that can be deployed under a given SIR
constraint Nm/(α N0dB) noticeably decreases with d0, and
thus with the increase in the coverage area. As the SIR for
more remote nodes becomes larger with the relative increase
in the received power of the nodes close to the gateway,
the impact of inter-PSF interference on these remote nodes
becomes more severe with the decrease in d0 and/or the
increase in γ .

2) EQUAL-IpI NODES
In contrast, as can be seen in Fig. 13, for the equal-IpI nodes
the impact of the change in the areal distribution on the
maximum number of the PSF channels is insignificant, and
this number is also insensitive to variations in the value of γ .

FIGURE 12. Impact of inter-PSF interference of equal-power nodes for
uniform coverage beyond range d0 within hexagonal cell with
circumradius dm for m = 5, 10, 15, . . . of PSF channels.

FIGURE 13. Impact of inter-PSF interference of equal-IpI nodes for
uniform coverage beyond range d0 within hexagonal cell with
circumradius dm for m = 10, 20, 30, . . . of PSF channels.

Further, note that the TBP of the convolution of any PSF ζ̂

with its complex conjugate is always larger than the TBP of ζ̂ .
In particular, for ‘‘flip’’ PSFs such that ζ̂2 = ζ ∗

1 , the TBP
of ζ̂2 ∗ ζ1 = ζ ∗

1 ∗ ζ1 is about twice as large as the (already
large) TBP of ζ1. Thus a pair of ‘‘flip’’ PSFs can be used
for two different PSF channels. Since these two channels will
have the same duty cycle, they can be used in the same range
interval. For example, the i-th pair of ‘‘flip’’ PSFs can be used
for the range interval [di−1, di].

Form such pairs, the inter-PSF constraint can be expressed
as

⟨SIR⟩
−1
i = 2

∑m
j=1

〈(
dj
r

)γ 〉
j〈(

di
r

)γ 〉
i

− 1 ≲
Nm

α N0dB
(41)

for any pair index i ∈ {1, 2, . . . ,m}. The SIR impact of
the inter-PSF interference for equal-IpI ‘‘flip’’ PSF pairs is
quantified in Fig. 14.
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FIGURE 14. Impact of inter-PSF interference of equal-IpI ‘‘flip’’ PSF pairs
for uniform coverage beyond range d0 within hexagonal cell with
circumradius dm for m = 5, 10, 15, . . . of pairs.

As can be seen by comparing the interference impacts
shown in Figs 13 and 14, by using ‘‘flip’’ PSFs we can reduce
the number of the partition ranges and the pulse duty cycles
by half, with only insignificant decrease in the total number
of the PSF channels. As a bonus, using ‘‘flip’’ PSF pairs also
automatically implements the suggestion (see Section III-B)
to alternate ‘‘up-chirp’’ and ‘‘down-chirp’’ PSFs in order to
lower the peakedness of the mutual interference, and thus its
excessive impact on the BER, when reducing the pulse duty
cycles for the closer-range nodes.

B. RELATIVE NUMBER OF NODES PER PSF CHANNEL
The total number of nodes for m PSF channels used for the
areal coverage can be expressed as

C =

m∑
i=1

C1(Ni) = C1(Nm)
m∑
i=1

Nm
Ni

, (42)

where C1(Ni) is the number of nodes in a single PSF channel
with the IpI Ni. Then the relative number of nodes in the i-th
PSF channel is

C1(Ni)
C

=
N−1
i∑m

j=1 N
−1
j

=
1
m
N
Ni

, (43)

where N is the harmonic mean of N1,N2, . . . ,Nm.

1) NODES WITH EQUAL TRANSMIT POWER
For equal-power nodes,

C1(Ni)
C

=
1
m
N
Ni

=
1
m
dγ

dγ
i

, (44)

where dγ is the harmonic mean of dγ

1 , dγ

2 , . . . , dγ
m . Thus the

nodes are distributed very unevenly among the PSF channels,
and the relative number of nodes in a given channel varies
strongly with a change in the areal distribution and/or in the
propagation conditions. This is illustrated in Fig. 15.

FIGURE 15. Relative number of equal-power nodes per PSF channel for
uniform coverage beyond range d0 within hexagonal cell.

FIGURE 16. Relative number of equal-IpI nodes per PSF channel for
uniform coverage beyond range d0 within hexagonal cell.

2) EQUAL-IpI NODES
In contrast, as illustrated in Fig. 16, when all nodes use the
same IpI Ni = Nj = Nm, then

C1(Ni)
C

=
1
m

, (45)

and each PSF channel supports the same fraction of the total
number of nodes for any areal distribution and/or the value
of γ .

C. TOTAL NUMBER OF NODES WITHIN AREAL COVERAGE
The total number of nodes can be conveniently expressed in
relation to the value of Clim defined in (4), which is common
to all IpIs and thus all ranges:

Clim = C1(Ni)
Ni

α N0dB
= C1(Nm)

Nm
α N0dB

. (46)

Note that Clim incorporates both the co-PSF constraint α and
the SIR margin Ni/N0dB.
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FIGURE 17. Total capacities and number of PSF channels for equal-power
nodes, as functions of IpI at maximum range, for uniform coverage
beyond range d0 within hexagonal cell.

For nodes distributed within the range interval [d0, dmax],
from (42) we can obtain the limit

lim
d0→dmax

C = mC1(Nm) =

⌈
1SIR(Nm)

α

⌉
C1(Nm)

=

⌈
Nm

α N0dB

⌉
C1(Nm)≈Clim for Nm≫α N0dB,

(47)

where ⌈x⌉ is the ceiling function.

1) NODES WITH EQUAL TRANSMIT POWER
For the given radial distribution φ(r) of equal-power nodes,
and the value of γ , the partition ranges di and the interpulse
intervals Ni can be obtained from (36) for any m. For these
values, the impact of the inter-PSF collisions can be assessed
according to (37) (see, e.g., Fig. 13). Then the maximum
achievable value of C can be calculated from (42) and (46)
for the IpI values Ni obtained for the maximum value of m
that satisfies the inter-PSF constraint (37). For example,
in Fig. 17, the maximum number of the PSF channels that
can be deployed, and the respective ratio C/Clim, are plotted
as functions of the IpI Nm at the maximum range dm = dmax.
Note that, at long ranges, the total capacity (number of

nodes) C of the equal-power arrangement approaches Clim
only when all interpulse intervals are sufficiently large, i.e.,

C ≈ Clim for N1 =

(
d1
dm

)γ

Nm ≫ αN0dB. (48)

Thus, as can be seen in Fig. 17, the total number of nodes
that can be deployed within the given maximum range dmax
declines when more nodes are placed closer to the gateway
(i.e., for smaller d0), and this effect is more pronounced for
large values of γ .

2) EQUAL-IpI NODES
In contrast, for equal-IpI nodes the condition (48) becomes
simply

C ≈ Clim for Nm ≫ αN0dB. (49)

FIGURE 18. Total capacities and number of PSF channels for equal-IpI
nodes as functions of IpI at maximum range for uniform coverage beyond
range d0 within hexagonal cell.

For example, with the SIR margins for 16-ASPM and
64-ASPM depicted in Fig. 8, the total number of nodes
approaches Clim, for any value of α < 1, when the outermost
range dmax exceeds approximately that of LoRa with SF = 9.
When all nodes use the same IpI Nm, then the partition

ranges are the same for any γ , and can be easily obtained
from (38). Then the maximum value of m can be obtained
from (39), and the ratioC/Clim can be calculated asC/Clim =

mα N0dB/Nm. As can be seen in Fig. 18, this ratio approaches
unity for m ≫ 1, for any value of γ and/or d0.

D. ENERGY EFFICIENCY
The energy consumption Ei of a single node in the i-th PSF
channel (i.e., the i-th partition) is proportional to the length
of the PSF, that is, Ei ∝ Li = Di Ni. Then, in relation to the
energy consumption of a node in the outermost partition, the
average energy consumption per node can be expressed as

Eave
Em

=
1
Em

∑m
i=1 C1(Ni) Ei∑m
i=1 C1(Ni)

=
N
Nm

⟨D⟩

Dm
≤ 1, (50)

where N is the harmonic mean of N1,N2, . . . ,Nm, and ⟨D⟩

is the arithmetic mean of D1,D2, . . . ,Dm. When all nodes
operate with the same duty cycle, (50) becomes

Eave
Em

=
N
Nm

=
dγ

dγ
m

≤ 1, (51)

where dγ is the harmonic mean of dγ

1 , dγ

2 , . . . , dγ
m . In con-

trast, when all nodes operate with the same IpI, (50) becomes

Eave
Em

=
⟨D⟩

Dm
=

⟨dγ
⟩

dγ
m

≤ 1, (52)

where ⟨dγ
⟩ is the arithmetic mean of dγ

1 , dγ

2 , . . . , dγ
m .

On the one hand, as compared to the harmonic mean,
the arithmetic mean is biased toward larger values. On the
other hand, for a given radial node density φ(r) the partition
ranges di for the equal-IpI partitioning are biased toward
smaller values than those for the equal-power partitioning
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FIGURE 19. Energy consumption per node vs IpI at maximum range for
equal-power (red lines) and equal-IpI (blue lines) nodes, for uniform
coverage beyond range d0 within hexagonal cell.

(compare, e.g., (36) and (38)). As the net result, the average
energy consumption per node in the equal-IpI case remains
below that for the equal-power nodes. This is illustrated in
Fig. 19. Note that, just like for the total number of nodes
(compare, e.g., Figs. 17 and 18), the difference in the energy
efficiency between the two arrangements becomes more pro-
nounced when more nodes are placed closer to the gateway
(i.e., for smaller d0), and for larger values of γ .

V. WIDE AREAL COVERAGE WITH M-ASPM AS
COMPARED TO LoRa
Let us now illustrate the main contrast between LoRa and
equal-IpI M-ASPM when both are used for wide areal
coverage.

In LoRa, the extension of the range is accomplished by
incrementing the SF, which represents the number of bits
per LoRa waveform, thus also slightly increasing the energy-
per-bit efficiency. However, this increase is insignificant in
comparison with the reduction in the spectral efficiency η̃,
and any decrease in η̃ is not accompanied by the respective
increment in the number of available SF channels operating
at this spectral efficiency. Say, if we can ignore the impact of
inter-SF collisions, then in a single-gateway LoRa network
with SF ∈ {7, 8, . . . , 12} all six SF channels can be used
in the range below that for SF = 7. At the same time, the
range between SF = 10 and SF = 11 can be served by
only two channels, and only one SF channel (with SF = 12)
can be employed in the range above SF = 11. At the same
time, a single increment in the SF approximately doubles the
ToA of a given payload, proportionally reducing the number
of nodes (as well as their energy efficiency). As a result, the
effective range of LoRa (defined, e.g., as the mean distance
of the transmitters from the receiver, weighted by their pay-
loads) is heavily biased toward the range for the smallest SF.
For example, in a single-gateway LoRa network with SF ∈

{7, 8, . . . , 12}, operating at full capacity, about 45% of the
nodes are confined to the range below that for SF = 7, and

FIGURE 20. Example of areal coverage beyond range d0, equal to range
of LoRa with SF = 6, within hexagonal cell with circumradius equal to
range of LoRa with SF = 12. (Actual physical ranges are different for
different path-loss exponents γ .)

more than 70% of the nodes are within the range for SF = 8.
Thus the effective range of such LoRa network, expressed as
the average distance of the nodes from the gateway, remains
below the range for SF = 8.
In contrast, M-ASPM allows capacity-preserving range

extension for numerous areal distributions of the uplink
nodes, including those with the effective range approaching
the maximum range. For example, as can be seen in the upper
panel of Fig. 1, the value of Clim for 64-ASPM exceeds the
total number of nodes in LoRa with SF ∈ {7, 8, . . . , 12}.
Thus, within a given maximum range, a 64-ASPM gateway
can serve slightly more uplink nodes than LoRa, and at
a significantly larger effective range. This is illustrated in
Fig. 20 for the areal coverage beyond the range d0, equal to
the range of LoRa with SF = 6, within a hexagonal cell with
the circumradius equal to the range of LoRa with SF = 12.
For this maximum range, α = 1/2, and the SIR margin
1SIR(dmax) for BER′/BER = 10−3/10−4, 70 PSF channels
can be used for 64-ASPM, i.e., dmax = d70. Note that for
the area within d0 both LoRa and a single-channel 64-ASPM
can provide identical coverage (see Fig. 5), hence we are
interested only in the extension beyond this rage.

For LoRa, in each portion of the coverage within an annu-
lus formed by the ranges for two adjacent SFs, we use the
same (uniform) node density. With this constraint, the LoRa
effective range is maximized when all nodes within such
a portion of the coverage operate with the same SF, equal
to the largest of the two adjacent SFs. For 64-ASPM, the
node density is uniform for the whole coverage area. For
such uniform 64-ASPM node density, in Fig. 20 the effective
ranges ⟨̃r⟩ and ⟨r⟩ for LoRa and 64-ASPM are presented
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FIGURE 21. Contrast between LoRa and M-ASPM when multiple
gateways are used for wide areal coverage. Range d0 is equal to range of
LoRa with SF = 6, and within this range LoRa and single-channel
64-ASPM provide identical node densities.

in relation to δ̃0(γ ) and to each other. One can see that the
effective range of 64-ASPM is noticeably larger than that of
LoRa.

Note that a constant value for the 64-ASPM node density
over the whole area is chosen simply as a desired ‘‘bench-
mark’’ feature for the areal coverage, and not for maximizing
its effective range. Needless to say, the node distribution in
64-ASPM can vary widely, based on the desired placement of
the nodes, without affecting their total number. For example,
the 64-ASPM’s node density can match that of LoRa, so that
8(ϕ, r) = 8̃(ϕ, r), or complement that of LoRa to achieve
the desired density 80(ϕ, r), so that

8(ϕ, r) =

(
1 +

C̃
C

)
80(ϕ, r) −

C̃
C

8̃(ϕ, r), (53)

where C̃ and C are the total numbers of nodes for LoRa and
64-ASPM, respectively. However, as relatively more nodes
are placed closer to the maximum range, the extension of the
effective range within a given maximum range comes at some
unavoidable penalty on the energy efficiency. This is signified
by (52), and can be seen by comparing the upper and the lower
panels in Fig, 19.

As was mentioned in Section III, we use the simple
power-law path loss model for illustration of the main scaling
properties of M-ASPM, and for its comparison with LoRa.
In fact, empirical data for the LoRa long-distance path loss
show that, when the value of the path-loss exponent is chosen
according to the specific environment and to the maximum
physical range, this simple model may be adequate for the
overall assessment of the network coverage [14], [15], [16],
[17]. For example, for the city of Bonn (Germany), with a

FIGURE 22. Using pairs of ‘‘flip’’ PSFs results in only small decrease in
M-ASPM capacity, while reducing number of pulse duty cycles and
partitions by more than half.

flat topography and a typical urban environment with tall
and medium-sized buildings, the authors report in [17] the
values of γ ≳ 3 for the ranges approximately below 2 km,
and γ ≲ 2 for the ranges above 6 km, with the value of
the path-loss exponent eventually decaying to γ ≈ 1.6 at
longer rages. For such a case, Fig. 21 illustrates the contrast
between LoRa and M-ASPM when multiple gateways (e.g.,
operating in different frequency bands) are used for wide
areal coverage. The range d0 is equal to the range of LoRa
with SF = 6, and within this range LoRa and a single-channel
64-ASPM provide identical node densities. The difference in
the maximum physical ranges (i.e., the range for SF = 12)
can be due, for example, to differences in the bandwidth
and/or in the maximum transmit power.

Further, as discussed in Section IV-A2, a pair of ‘‘flip’’
PSFs can be used for two different PSF channels sharing the
same duty cycle. Using ‘‘flip’’ PSFs leads to only insignif-
icant decrease in the total number of the PSF channels, and
thus the total number of nodes, while significantly reducing
the number of the partition ranges and the pulse duty cycles.
For example, as can be seen in Fig. 22, using ‘‘flip’’ PSF pairs
for the coverage shown in Fig. 20 reduces the number of the
PSF channels in 64-ASPM from 70 to 66, resulting in less
than 6% decline in the total number of nodes. At the same
time, the number of the partition ranges and the pulse duty
cycles is reduced by more than half, from 70 down to 33.
Thus using ‘‘flip’’ PSF pairs can noticeably simplify practical
deployment and management of M-ASPM networks.

VI. DISCUSSION
Even in an ideal world of well-known path attenuation for
each node, managing anM-ASPM network with equal-power
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nodes can be a complicated task. Indeed, a change in the
path loss of some nodes impacts their SNR. Then we would
need to adjust these nodes’ IpIs to maintain the target BER.
Clearly, this changes the SIR margins of these nodes, and
thus their tolerance to the inter-PSF interference. However,
such a modification in the IpI also changes the ToA, and thus
the channel utilization for these nodes. This, in turn, affects
the SIR values of the mutual interference for all other nodes.
As the result, reconfiguring the network in a manner that
maximizes its capacity, that is, so that all PSF channels are
fully utilized, requires solving a system of nonlinear equa-
tions and inequalities representing these interdependencies.
Then we would need to make the respective modifications to
the data rates of individual nodes (i.e., in their IpIs), the total
number of the PSF channels, and the number of nodes per
channel. These solutions, however, may be highly sensitive
to the accuracy of the path-loss data. In addition, for a wide
range of path losses, excessively strong interference from the
nodes with a small path attenuation can noticeably lower the
total network capacity and the average energy efficiency of
the nodes.

In contrast, if we are able to adjust the transmit powers
of the nodes proportionally to the path-loss changes, all
other parameters of these and all other nodes in the network
remain unchanged. If we can control the transmit power of
nodes without sacrificing the transmission efficiency, then the
energy efficiency of the network does not deteriorate. In this
paper, we outline a practical approach to implementing such
an energy-efficient M-ASPM power control, that can be used
for scaling LPWANs with realistic desired and/or actual areal
distributions of the uplink nodes under different propagation
conditions.

In our presentation, one of the main simplifying assump-
tions was that the path loss is a monotonically increasing,
and thus invertible, function of the range. Then the node
density function 8(ϕ, r) allows us to estimate the path-loss
dependent parameters of the nodes according to their loca-
tions. Therefore, 8(ϕ, r) becomes a useful analytical tool
for a meaningful comparison between the equal-power and
the equal-IpI M-ASPM arrangements, and between LoRa
and M-ASPM. In many practical environments, however, the
path loss may be neither monotonic nor even single-valued
function of the range.

Nevertheless, let us assume that we can reasonably accu-
rately obtain the values of the path loss, specific to the
gateway, for each node. This can be done, for example,
in a manner described in Section III. Further, let us use
the equal-IpI M-ASPM approach to network management.
Then the capacity of a single-gateway network can be max-
imized under the guideline of a basic procedure outlined
below.

First, for a sufficiently large Nm, the number of the PSF
channels can be calculated as m = ⌊Nm/(αN0dB)⌋ ≫ 1.
Next, we can obtain the values Li, i ∈ {1, 2, . . . ,m}, for
m-quantiles [22] of the nodes’ path losses. Provided that
Li > Li−1, the nodes with the path loss between the

(i − 1)-th and the i-th m-quantiles (i.e., in the inter-
val ]Li−1,Li]) are assigned to the i-th PSF channel, and their
duty cycles are set to Di = (Li/Lm)Dm. With this, if the
total number of nodes is much larger than the number of
the PSF channels, all channels will contain approximately
equal numbers of nodes and will have effectively the same
utilization. Subsequently, the payloads of the nodes can be
maximized according to the co-PSF constraint α. In addition
to its conceptual simplicity, this equal-IpI approach is also
more robust to changes in the propagation conditions, and to
imprecisions in the path-loss data.

Among appealing features of M-ASSPM is its extensive
versatility in trading multiple PHY parameters to reconcile
often conflicting LPWAN technical concerns. In this paper,
a major such concern was the transmission efficiency. There-
fore, we imposed the equal-amplitude constraint on the M-
ASPMpulses. Then the transmit power becomes proportional
to the pulse duty cycle, and this can be used for energy-
efficient M-ASPM power control. However, other technical
requirements can be equally or even more important than the
energy efficiency, thus requiring various adjustments to the
M-ASPM parameters, and/or additional constraints on these
parameters.

For instance, it may be desired that all M-ASPM links
within the coverage area are insensitive to the nodes’ motion
with the speeds below some value 1v. If we use the value
3c/(4π1/21vfc) for the Doppler coherence time [23], where
fc is the carrier frequency and c is the speed of light, then the
PSF length L would be constrained by the condition

L = DNp ≲ 0.423
Fs
fc

c
1v

. (54)

For example, for the maximum 64-ASPM range correspond-
ing to LoRa with SF = 12, the carrier frequency fc =

915MHz, 500 kHz bandwidth, and 1v = 40m/s (90mi/h),
the pulse duty cycle would be restricted to below about 56%.

Or, for the pulse-position encoding, performance of nonco-
herent M-ASPM in multipath propagation can be improved
by increasing the minimum time interval between the pulse
positions corresponding to different symbols, so that this
interval becomes sufficiently large with respect to the delay
spread. This minimum time interval can be expressed as
⌊δN/(M − 1)⌋/Fs, where the maximum pulse-position off-
set δN in the encoding is subject to the inequalities

4(M − 1) ≤ δN ≤ ⌊(1 − D)Np⌋. (55)

Thus, for a given IpI, increasing M-ASPM’s resistance to
delay spreads may require reduction in the pulse duty cycle.
This may need to be taken into account when choosing the
maximum pulse duty cycle Dm in the equal-IpI M-ASPM.
For example, for 500 kHz bandwidth and the maximum 64-
ASPM range corresponding to LoRa with SF = 12, to exceed
25µs minimum time interval between the pulse positions
(corresponding to the distance of 7.5 km) would require
that Dm ≲ 75%.
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VII. CONCLUSION
By providing long range wireless access to the Internet of
Things (IoT), various LPWAN technologies have been one
of the main drivers of the IoT expansion. In this paper, our
main focus was to outline a practical approach to imple-
menting an energy-efficientM-ASPMpower control, that can
be used for scaling LPWANs with realistic desired and/or
actual areal distributions of the uplink nodes under diverse
propagation conditions. As we demonstrate, M-ASPM is par-
ticularly well suited for development of energy-efficient and
highly practically scalable LPWANs, adding to the flexibility
in addressing a broader range of IoT applications, both static
and mobile.

APPENDIX A
ACRONYMS
ACF: autocorrelation function; A/D: Analog-to-Digital;
ASPM: Aggregate Spread Pulse Modulation; AWGN: Addi-
tive White Gaussian Noise; BER: Bit Error Rate; CDMA:
Code Division Multiple Access; D/A: Digital-to-Analog;
IoT: Internet of Things; IpI: Interpulse Intrval; LoRa: Long
Range (modulation technique for LPWANs based on
chirp spread spectrum); LPWAN: Low-Power Wide Area
Network; M-ASPM: M-ary ASPM; PA: Power Ampli-
fier; PAPR: Peak-to-Average Power Ratio; PHY: physical
layer; PSD: Power Spectral Density; PSF: Pulse Shap-
ing Filter; RC: Raised-Cosine; SF: Spreading Factor (for
LoRa); SIR: Signal-to-Interference Ratio; SINR: Signal-
to-Interference-plus-Noise Ratio; SNR: Signal-to-Noise
Ratio; TBP: Time-Bandwidth Product; ToA: Time-on-Air.

APPENDIX B
COMMENTS ON NOTATIONS
Whenever a particular notation is introduced in the paper,
it is immediately defined. Some notations are used only once.
The notations that are used consistently (and more that once)
throughout the paper include:
α co-PSF collisions constraint (channel utilization)
B bandwidth
β roll-off factor of RC pulse
C network capacity or number of end nodes (with or

without subscripts)
d range or distance between transmitter and receiver

(with or without subscripts)
D pulse duty cycle (with or without subscripts)
δ̃0(γ ) range of LoRa with SF = 7
1SIR SIR margin
Eb energy per bit
Ei energy consumption of node in i-th PSF channel
η spectral efficiency (with or without subscripts)
fb bit rate
fp pulse rate
Fs sample rate
ϕ angular coordinate (in density function; with or

without subscripts)
φ(r) radial node density

8(ϕ, r) node density function expressed in polar coordi-
nates centered at gateway

γ path-loss exponent (in power-law path loss)
0 SNR
0′ SINR
k sample index (in digital signal representations)
L PSF length (with or without subscripts)
M number of states in M-ary encoding
N average interpulse interval (with or without sub-

scripts)
N0dB average interpulse interval for 0 dB SIR margin

0 one-sided noise PSD
s oversampling factor

Pb bit error probability
r distance from receiver/gateway (radial coordinate

in density function)

Some notations may have different contextual meaning in
different parts of the paper. This change in meaning normally
affects the letters commonly representing integer numbers
(e.g., ‘‘i’’ and ‘‘j’’), such as subscripts and/or summation
indices. For example, the letter ‘‘j’’ can be used as the (inte-
ger) number indicating a particular pulse in the designed
pulse sequence x̂[k] (e.g., kj is the sample index of the j-th
pulse, andmj is its ‘‘state’’). However, jmay also relate to the
j-th transmitter, or j-th range value, or j-th pair of ‘‘flip’’ PSFs.
Whenever such change occurs, the respective clarification is
provided.

In the mathematical notations we reserve the letters ‘‘ζ ,’’
‘‘g,’’ and ‘‘h’’ for pulse shaping filters, with g and h being the
real and the imaginary parts, respectively, of ζ . For example,
we denote the finite impulse response of a PSF applied to
a designed pulse train as ζ̂ [k], where k is the sample index.
As the focus in this paper is on the single-sidebandM-ASPM,
the PSF components g and h are related to each other through
the Hilbert transform, e.g., h(t) = ±H (g)(t) (in analog
domain) or h[k] = ±H{g[k]} (in digital representation).

To distinguish between the respective quantities for LoRa
andM-ASPM, those for LoRa are marked by overhead tildes.

Further, we find it convenient to use the ‘‘hat’’ operator for
ζ̂ [k], ĝ[k], and ĥ[k] to distinguish them from their respective
matched filters ζ [k] = ζ̂ ∗[−k], g[k] = ĝ[−k], and h[k] =

ĥ[−k]. We also use the hat symbol in Section II to denote
the designed pulse train x̂[k], as opposed to the shaped trains
obtained by applying PSFs to the designed pulse sequence.
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