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ABSTRACT The implementation of the Internet of Things and 5G communications has pushed centralized
cloud computing toward edge computing resulting in a paradigm shift in computing. Edge computing
allows edge devices to offload their overflowing computing tasks to edge servers. This procedure
may completely exploit the edge server’s computational and storage capabilities and efficiently execute
computing operations. However, transferring all the overflowing computing tasks to an edge server leads to
long processing delays and surprisingly high energy consumption for numerous computing tasks. Aside from
this, unused edge devices and powerful cloud centers may lead to resource waste. Thus, hiring a collaborative
scheduling approach based on task properties, optimization targets, and system status with edge servers,
cloud centers, and edge devices is critical for the successful operation of edge computing. The primary
motivation behind this study is to introduce the most recent advancements related to resource scheduling
techniques and address the existing limitations. Firstly, this paper presents a novel taxonomy of resource
scheduling in edge computing that includes applications, computational platforms, algorithm paradigms,
and objectives. Secondly, it briefly summarizes the edge computing architecture for information and task
processing. Resource scheduling techniques are then discussed and compared based on four collaboration
modes. According to the literature surveyed, we briefly looked at the fairness and load balancing indicators in
scheduling. Additionally, the survey conducted provides a comprehensive review of the state-of-the-art edge
computing issues and challenges. Finally, this paper highlights deep learning, multi-objective optimization,
and using green resources as key techniques for future directions.

INDEX TERMS Edge computing, resource scheduling, task offloading, fairness, load balancing.

I. INTRODUCTION
By increasing the Internet of Things (IoT) applications, more
smart devices, such as intelligent sensors and smartphones,
can access a network as the IoTs, leading to significant
network data [1], [2], [3]. Even though their processing
capacity is continually rising, they cannot meet resource-
hungry applications’ requirements [4], [5]. Cloud computing
is capable of handling highly complicated computing tasks
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and services [6]. Users can rely on a cloud computing
center’s enormous storage and computing resources to
extend their devices’ computing and storage capability and
quickly accomplish task processing under a cloud computing
paradigm [7], [8]. Despite the convenience of cloud com-
puting centers in providing easy access to computational
resources, offloading tasks to the remote cloud would mean a
significant delay in transmission, jeopardizing users’ quality
of experience (QoE) [9], [10], [11]; consequently, a better
approach is required [12], [13]. With Cloud computing
functions increasingly moving to network edges in recent
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TABLE 1. List of acronyms used in this manuscript.

years, a new trend in computing has emerged [14]. Edge
Computing (EC) is a relatively new concept in the computing
world. In conjunction with fog and Mobile Edge Computing
(MEC) [15], edge computing enables mobility-based and
location-aware services and utilities to be delivered closer
to end users, resulting in faster processing and application
response time [16], [17], [18]. Furthermore, users can enjoy a
higher Quality of Service (QoS) and QoE with closer Service
Providers (SP) in edge computing [19]. List of acronyms used
in this paper are listed in Table 1.

In the wireless network paradigm, the demand for high-
quality wireless services increases exponentially as mobile
communication expands, particularly 5G communication.
We live in an age where the IoT plays an increasingly
important role in our daily lives. A modern communication
infrastructure interconnects thousands of IoT nodes, allowing
them to collect and exchange data [20]. In addition to smart-
phones and tablets, new business scenarios are emerging
in mobile network services, including autonomous driving,
face recognition, and Augmented/Virtual Reality (AR/VR),
as well as more practical business scenarios like smart cities
and environmental sensing [21]. With the growth of these
innovative services, 5G features like time delay, energy
efficiency, and reliability are becoming more important.
In this environment, meeting the high-performance require-
ments of users is challenging due to restricted bandwidth,
latency, and high-power usage in the centralized architecture
of cloud computing. The MEC provides computing and
storage resources to the mobile network’s edge, allowing
it to run high-demand applications on user devices while

FIGURE 1. Cloud computing Vs Edge computing.

satisfying strict performance goals [22]. Through EC, cloud-
based services and functionalities are brought closer to
users by integrating cloud computing platforms with their
networks to provide powerful processing, storage, and
networking [23]. Figure 1 compares the edge and cloud
computing functionalities and EC concept is depicted in
Figure 2.
To achieve the foreseeable benefits of EC, it is imperative

to optimize its resource utilization, which is closely related
to solving the following challenges: 1) The task offloading
problem, which determines where each task should be
offloaded. 2) The task scheduling problem, in which tasks
execution order should be decided [24]. In EC, scheduling
and computational offloading policies are crucial to deter-
mining efficiency and achievable performance [25], such as
latency, energy consumption, and QoS. Resource scheduling
can be described as a multi-dimensional and multi-objective
optimization problem and is known as Non-deterministic
Polynomial time (NP-hard) [26], [27], [28]. Consequently,
formulating an efficient resource scheduling algorithm poses
a great challenge. On the other hand, task offloading problems
are always formulated as mixed integer nonlinear program-
ming, which is also NP-hard [29]. Several approaches have
been introduced to reach a near-optimal solution (within
polynomial time) for these NP-hard problems. Therefore,
many survey papers in the literature have investigated the
impacts of offloading and scheduling approaches on network
quality features and explored the potential future directions in
this era. However, most of these studies still need to include
important quality metrics like fairness and load balancing,
and only a few have provided comprehensive guidance
for future research directions. The mentioned issues have
motivated this work to fill these gaps.

The main contributions of this paper are:

1) Analyzing various elements of edge computing
resource scheduling.
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FIGURE 2. Edge computing paradigm.

2) An analysis of hierarchical edge network architecture
in information and task processing.

3) An assessment of the most recent developments in
resource scheduling and task offloading techniques
within edge computing networks by categorizing exist-
ing works multi-dimensionally concerning scheduling
objectives and collaboration approaches, particularly
focusing on fairness and load balancing.

4) Identifying future unresolved or poorly addressed
research challenges for improving resource scheduling
and computation offloading in edge computing.

This paper proceeds as follows: Section II presents the
related works. Section III analyzes different entities of edge
computing networks cooperating in resource scheduling.
Section IV lists the edge computing computational platforms
and discusses the hierarchical multi-layer architecture
widely used for task scheduling. Recent research regarding
collaborative computing is investigated in Section V.
A comprehensive discussion of computational offloading,
including analyzing different types and reviewing recent
studies demonstrated in Section VI. Fairness and load
balancing, as well as methods of scheduling related to
these concepts are presented in Section VII. Current issues
and future directions are comprehensively examined and
discussed in Sections VIII and IX. Finally, the paper
concludes itself in Section X.

II. RELATED WORKS
The purpose of this section is to review recent survey
papers on task offloading and resource allocation in EC.
A more comprehensive review of some literature studies
will then follow. Several technical terms in fog computing,
edge computing, and MEC have the same functionality and
meaning. Nevertheless, these technologies still maintain their
generality and integrity.

Djigal et al. [30] examined howmachine learning and deep
learning methods are used for resource allocation in MEC
from three perspectives: task offloading, task scheduling,
and joint resource allocation. It investigates each perspective
regarding different resource allocation objectives, such as
energy consumption, latency, and QoS. It outlines a broad
range of challenges and future research directions associated
with applying machine learning and deep learning techniques
for resource allocation in MEC.

Feng et al. [29] described different offloading modes and
discusses various offloading objectives, such as reducing
energy consumption, minimizing delay, maximizing revenue,
and optimizing system utility. Different algorithm paradigms
are used to accomplish these objectives, categorized, and
discussed in detail, such as integer programming, heuristic
algorithms, and game theory techniques. The paper’s final
part examined computational offloading in MEC networks
from different perspectives and addressed its challenges and
future directions.

Various collaborative resource scheduling methods are
described in [19] under the architecture of edge computing.
The paper discussed resource allocation, task offloading
and resource providing as three main scheduling research
challenges in edge computing. A centralized and distributed
resource scheduling technique is discussed and compared.
A literature review and a summary of leading performance
indicators are also included.

Islam et al. [31] provided a comprehensive overview
of task offloading schemes for MEC discussed by several
researchers. A literature review has been conducted on recent
research efforts on task offloading for MEC, dividing the
models into three categories, computational model, decision-
making, and algorithm paradigm. Differently from the above
surveys, it attempted to classify and describe the architectural
model involved in task offloading. A discussion was also held
regarding the design challenges, potential research directions,
and practical use cases related to this area.

Shakarami et al. [32] presented a classical taxonomy
comprising three categories: reinforcement, supervised, and
unsupervised learning mechanisms. The performance met-
rics, case studies, methods, and evaluation tools of these three
classes are then compared. In the final section, the survey
concludes with open issues and future research challenges
that are uncovered or inadequately addressed.

By focusing on offloading modeling, Lin et al. [33]
provided a comprehensive overview of fundamental and
recent advances in computation offloading in EC. Some
basic offloading models are discussed, including channel,
computation, communication, and energy harvesting models.
The article moves on to discuss different offloading mod-
eling methods, such as convex optimization, game theory,
or machine learning. The paper concludes with a brief
discussion of research directions and challenges in offloading
modeling at edge computing networks.

An in-depth literature review is conducted in [34] to
reveal the state-of-the-art computation offloading at the edge.
Several aspects of computation offloading are discussed,
such as minimizing energy consumption, ensuring QoS, and
enhancing QoE. Additionally, their review includes insight
into resource allocation approaches, such as game theory
and heuristics-based computation offloading optimizations.
Figure 3 illustrates the contents of this comprehensive survey.
There is an in-depth comparison of the survey articles

listed above in Table 2. Various aspects of these articles
are compared along with their objectives. ‘‘Slightly covered,
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Partially covered, and Well covered’’ terms aid in better
comparison, reflecting how much material each subject
covers.

While most of the existing surveys in Table 2 examined
resource scheduling from many perspectives, almost none
focused on fairness and load balancing. This paper aims
to investigate collaboration computing and computational
offloading in edge computing and summarize the fairness and
load balancing indicators, besides other factors, according to
the literature surveyed.

III. RESOURCE SCHEDULING
Numerous Edge Servers (ES) can fulfil service requests
from IoT devices in the edge environment. Each service
request can be broken down into a series of tasks. In order
to achieve Service-Level Agreement (SLA), the resource
scheduling problem in EC determines an optimal assignment
of various submitted tasks to accomplish on the edge nodes.
The fundamental purpose of task scheduling is to assign the
proper resources to submitted tasks [35], [36], [37], [38].
In addition to reducing energy consumption for processing
and communicating, the task scheduler should satisfy the
latency constraint of computation tasks [39], [40]. Although
resource scheduling could be a more general term as opposed
to task scheduling, they have been utilized interchangeably
in the literature. In this paper, both terms determine the order
of edge computational resources allocation to EU’s tasks
and might be seen interchangeably. Resource scheduling
generally includes a set of operations and methodologies
utilized to properly assign resources to the tasks and satisfy
participants’ objectives based on resource accessibility [41],
[42]. The elements of resource scheduling can be summarized
as follows:

• Various resources exist, allowing for significant ser-
viceability and the completion of tasks in the edge
network. The three main categories of resources in
an edge network are communication, storage, and
computation [2], [43], [44].

• A task is known as a set of instructions, data, and
control information capable of being executed by com-
putational resources to accomplish some purpose. The
task categories may differ depending on the application
and objective. Data from high-definition cameras on
Connected Autonomous Vehicles (CAV) is used for an
efficient and safe driving experience [45], [46], [47].
Fields are equipped with smart agricultural sensors to
monitor temperatures and prevent fungus [48]. Body
Area Networks (BAN) data is mostly utilized for
the disease detection and prevention and healthcare
control [49], [50], while materials, people, and places
security are facilitated through surveillance camera
data [51].

• Various participants – cloud servers, edge, and users
(things) – cooperate through diverse collaborative strate-
gies to complete tasks.

• Multiple objectives are pursued by different participants
during task processing. In safety-related applications,
for example, CAVs strive for low latency, while
infotainment applications strive for high throughput
[52], [53], Unmanned Aerial Vehicles (UAV) and smart
health gadgets are designed to consume less energy and
have longer battery life [54], and AR data requires low
latency and quick data processing to ensure that accurate
information is provided to the users according to the
dynamic user’s location and orientation [55]. AR and
image-aided navigation, intelligent vehicle control, traf-
fic management, and in-vehicle entertainment are just
some of the computation-intensive applications in vehic-
ular edge networks that require massive computing and
storage resources [56], [57]. In addition to enhancing
road safety and situational awareness, increasing com-
fort, reducing traffic congestion, lowering air pollution,
and reducing costs associated with road infrastructure,
users expect these networks to lead to improved road
infrastructure [58], [59].

• Actions are the mechanism through which participants
can attain their objectives. Edge computing has three
main actions: computation offloading, resource alloca-
tion, and provisioning.

• The methodology involves the strategies, techniques,
and algorithms used to carry out better the acts
mentioned above to achieve the participants’ goals.
Two categories of methodologies can be distinguished:
centralized and distributed. A control center is required
for the centralized methodology to receive global data,
in contrast to the distributed method [60], [61].

Although edge computing improves edge network ser-
viceability by bringing powerful processing, storage, and
communication capabilities, due to the limited resources
available, task scheduling is crucial to maximizing the
QoE [62]. Billions of heterogeneous user devices are
scattered worldwide [63], and the quantity of information
created by those end devices and their associated applications
is similarly heterogeneous. Appropriate resource scheduling
solutions are required to orchestrate the restricted edge
resources to analyze those data better. The edge computing
network includes static end-devices (e.g., smart city sensors)
as well as dynamic devices (e.g., Unmanned Aerial Vehi-
cles), making resource management even more challenging
because of insecure connectivity, unpredictable resources,
and dynamic computing environments [64]. Furthermore,
various applications may have different QoS requirements.
Video frame decoding, for example, must be completed
within milliseconds to guarantee multimedia applications’
performance [65]; since, reducing latency is their primary
objective. Likewise, several Mobile Devices (MDs) and the
IoT strive for affordable data service charges. As a result,
proper resource scheduling solutions are required to meet
these objectives.

Furthermore, edge computing networks are composed of
several entities, including edge infrastructure, edge SPs, and

25332 VOLUME 11, 2023



M. Raeisi-Varzaneh et al.: Resource Scheduling in EC: Architecture, Taxonomy, Open Issues and Future Research Directions

FIGURE 3. Edge computing: a taxonomy.

TABLE 2. This survey vs other surveys: comparison of edge task offloading and scheduling.

mobile network carriers, in addition to users. While these SPs
and operators have many resources and could provide many
services, they are all business companies looking tomaximize
their revenue by delivering services [66], [67]. Designing a
suitable resource scheduling strategy in this context can assist
them in maximizing income while minimizing costs during
service-providing competition. Moreover, edge resources are
dispersed and distributed in the edge network. Utilizing
these dispersed resources inappropriately could lead to
resource dissipation. Parked Vehicles (PV), for example,
have a significant portion of all vehicles on the roads and
offer convenient access to computational resources that can
be utilized for a wide range of computational workload
[68], [69]. They can be joined to create a cost-effective and

scalable computing resource center [70] that helps to relieve
server workloads in the edge computing paradigm.

IV. INFORMATION PROCESSING ARCHITECTURE IN EDGE
COMPUTING
Due to bandwidth constraints and severe stress on the network
infrastructure, traditional cloud computing struggles to meet
users’ high demands for real-time response and minimal
energy consumption. Nonetheless, since the edge comput-
ing paradigm lacks the same resource capacity as cloud
computing, it cannot be used to replace cloud computing.
Therefore, cloud computing and EC are mutually reinforcing
and complementary. In most cases, edge computing is in
conjunction with cloud computing to enhance and support
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FIGURE 4. Resource scheduling architecture in EC.

the performance of end devices. Thus, resource scheduling
is managed among the cloud, users, and the edge in edge
computing. The OpenFog consortium defines a logically
hierarchical architecture for information processing [71].
As part of edge computing’s three-layer architecture, the
thing layer, edge layer, and cloud layer all play a role in
resource scheduling [72], as depicted in Figure 4. Many
existing works [22], [45], [73], [74], [75] use this well-known
and accepted architecture. This model depicts the connection
between the various edge computing components. This
three-tier architecture works well with applications that are
both time-sensitive and computation-intensive. Tasks that
require a high level of computation are handled in the cloud,
while time-sensitive tasks are handled at the edge [33].

The following subsections provide a brief overview of the
three-layer architecture.

A. THING LAYER
The thing layer, most often referred to as the user layer,
consists of numerous heterogeneous end devices (known as
things), such as smartphones, wearables (e.g., Apple Watch
and Google Glass), cameras, and vehicles. There are also
several ways to refer to end devices in various works, such as
MDs or Mobile Users (MUs). Things are always generating
and collecting text, audio, video, touch or motion-based
data [76] concerning storage, processing, and interface capa-
bilities [32]. Various devices can sense and store information,
along with computational and storage capabilities. It may
sometimes be possible to perform complex analytics on the
end devices; however, battery life will be drained due to
middleware and hardware limitations [77]. Therefore, data

will be analyzed locally or sent to the edge and cloud,
depending on the end devices’ requirements [78].

B. EDGE LAYER
As part of the three-layer architecture, the edge layer bridges
the thing and cloud layers [79]. The edge layer comprises
numerous networking and computer devices, such as ES,
gateway and controller. The end devices no longer need
to be connected to a central cloud data center for their
computing and storage-intensive tasks [80]. By connecting to
large-scale and resource-rich cloud computing infrastructures
within network edge and backhaul/Core Networks (CN),
the need for a fast, interactive response can be addressed,
ensuring low latency and fast connections [81]. Typically,
the thing layer does not offer as many sophisticated storage
or computing capabilities as the edge layer. Most data
storage and computation will take place in this near-end
environment in edge computing. The resource scheduling
procedure occurs at this layer. A scheduler coordinates
all edge devices, selecting and allocating resources at the
edge layer. Scheduler determines which application modules
should be offloaded to the upper layer and which should
be placed at the edge layer based on defined scheduling
policies. It is the edge layer’s responsibility – particularly
edge scheduler – to manage edge resources to facilitate quick
task response and minimize CN bandwidth utilization, power
consumption, and communication overhead.

C. CLOUD LAYER
Acloud layer comprises pre-existing computing entities, such
as processing units and storage devices, all connected to a
CN, giving them access to the edge layer. The cloud layer
has the most sophisticated computational and storage center
SPs among all three tiers providing centralized computing,
integration, and analysis [82]. While ESs can manage
vast requests to reduce delay and power usage, the edge
computing paradigm still relies on the cloud’s processing
power and large storage capacity to perform complicated
tasks [83]. In addition, the cloud layer could also dynamically
manage resource scheduling algorithms based on network
resource distribution.

The following Section explains different collaboration
paradigms in edge computing resource scheduling of com-
puting tasks in an EC paradigm.

V. COLLABORATION RESOURCE SCHEDULING
In contrast to cloud computing, some users’ applications
can be executed on ESs close to end devices, dramati-
cally decreasing data transmitting latency and minimizing
workload in edge-cloud collaboration [84]. Edge computing
gains an additional advantage by preventing long-distance
data transmissions and ensuring user data security more
effectively. The traditional task scheduling in edge computing
involves offloading all processing tasks from user devices
to be processed on ESs. However, it may lead to wasting
processing and storage resources in Edge Devices (ED)
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and cloud computing centers. Furthermore, a large number
of users can lead to a lengthy task queue due to the
finite computing resources at edge computing servers [85].
To overcome the following issues, wemay use task offloading
to integrate the cloud and ESs with EDs to control the
computing tasks of EDs effectively. It can assist in decreasing
the load on ESs, enhancing resource usage, and decreasing
average task completion time on the edge.

A. THINGS-EDGE COLLABORATION
The things-edge collaboration takes place between the things
and the edge layer. ESs can overcome the limitations of end
devices computing capacity [86]. It is possible to execute
smart device tasks locally or to offload them to ESs. Offload-
ing decisions are based on collaboration methods, as well
as smart device QoS and QoE requirements. Ali et al. [87],
for example, recommended offloading the optimum set of
computation tasks to ESs to reduce MD energy usage.
Wang et al. [88] indicated that offloading tasks to the nearby
ES site could reduce overall system expenditures and ensure
users’ QoE. To address these issues and to enhance resource
and system utilization, Liu et al. [89] investigated a Vehicle
Edge Computing (VEC) paradigm and considered vehicles as
vehicular ESs to facilitate other fixed ESs in task processing.
Using UAVs as ESs is also a research topic [90], [91], [92].
Yang et al. [93] examined a UAV cooperated MEC paradigm,
in which UAVs process MU computation tasks to reduce
the system’s total power consumption. Unlike prior research
in which users transmit the tasks to ESs and subsequently
give the results back, Chen et al. [94] studied relay-assisted
computation offloading (RACO). A MEC-enhanced relay
platform referred to (MERS) is used in the RACO scenario
to help users share the outcomes of computational tasks by
assigning computational and communication resources.

B. THINGS-EDGE-CLOUD COLLABORATION
Despite its great potential, the things-edge collaboration
method neglects the massive computing resources provided
by the Cloud servers. In the age of smart devices and
applications that consume a great deal of resources, focusing
entirely on edge layer resources to meet smart device service
requirements will become increasingly challenging. As a
result, it is critical to fully utilize Edge and cloud computing
to develop a collaborative network. Through the adoption of
hybrid FibreWireless Access Network (FiWi), Guo et al. [95]
presented a generic architecture and proposed a distributed
collaborative computation offloading scheme by adopting
the game theory. Integrating cloud computing FiWi and
edge computing provides great scalability, high mobility and
reliability, supporting various wireless access technologies,
and low latency. A multi-hop IIoT-edge-cloud collaborative
computation offloading paradigm is proposed in [96] for
resource-intensive applications to reduce power consumption
and task processing time. The concept of ‘‘heterogeneous
multi-layer MEC’’ is proposed in [97]. Suppose ESs cannot
provide an acceptable completion time for an offloaded task.

In that case, it could be transmitted to the cloud center in
HetMEC to reduce communication and computation time.
Dwelling on the same issue, but within a different context,
Dinh et al. [98] regarded renting virtual machines from
the cloud to extend the edge layer, thereby reducing the
processing cost at the edge and the cost of using clouds VMs.

C. EDGE-EDGE COLLABORATION
Collaborative computing between the edge-edge infrastruc-
tures is a current research hotspot, which can solve the
contradiction between limited resources in a single ES
for intelligent computational-intensive applications and long
transmission time for communication-intensive tasks to use
resourceful cloud servers [99]. In general, the edge-to-edge
collaboration paradigm does not occur in isolation. It is often
linked to the things-edge or things-edge-cloud collaboration
models. There is another option for task processing through
edge-to-edge collaboration. This type of partnership has been
the subject of numerous research. Huang et al. [68] proposed
the concept of Parked Vehicle Edge computing (PVEC)
as a new computing paradigm, which allows idle PVs’ to
be effectively used. VEC servers in a PVEC architecture
seek appropriate resources from PVs to serve workloads.
Na et al. [100] proposed using edge gateways to facilitate
task processing in the edge layer to reduce the workload
on ESs. In order to enhance the efficiency of IoT systems,
a resource coordination method between EGs and ES is
also proposed. Alameddine et al. [24] presented a novel
approach to address the task offloading, application resource
allocation and the task scheduling problems in a MEC
network, where the task assignment of applications and the
sequence in which they are executed are both taken into
account. To meet User Equipment’s (UE) QoE requirement,
tasks that cannot be handled by their corresponding ES
could be transmitted to another ES. Miao et al. [101]
suggested an intelligent offloading technique, in which tasks
are distributed across MDs, ESs, and the cloud, to decrease
overall task latency. Furthermore, under this technique, the
ES can choose to share its overload with other ES via edge-
edge collaboration. On the other hand, Thai et al. [102]
offers horizontal and vertical collaborations in a cloud-edge
computing paradigm to reduce the overall cost. Horizontal
collaboration refers to offloading tasks between nodes in the
same layer, whereas vertical collaboration corresponds to
offloading tasks between nodes in different tiers.

D. EDGE-CLOUD COLLABORATION
Significant delay will be obtained if many processing
requests are conducted in the cloud computing center in
the proposed three-layer architecture, which violates users’
QoE. Rimal et al. [103] showed task delay problems can
be mitigated by transmitting some tasks from cloud centers
to the edge. Many applications can benefit from edge-
cloud collaboration. Mobile client shopping, for example,
has grown in popularity, with clients frequently operating the
shopping basket. The shopping basket status is changed in
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TABLE 3. Resource scheduling: A comparison of different collaboration methods.

the cloud center for the first time, and then the product view
on the MD is updated, resulting in considerable latency. The
video transcoding application is another example. MUs need
high QoE for video streaming, and online video traffic on
MDs is expanding network traffic exponentially [104], [105].
Video transcoding has evolved into an efficient method of
transmitting video data. Video transcoding, on the other hand,
requires a lot of computing and storage resources; thus, it is
usually done on a remote offline media server. Unfortunately,
during video streaming, the redirecting latency may increase,
and the real-time streaming service may be inaccessible.
Yoon et al. [106] recommended running video transcoding
on edge nodes. Experiments have shown this approach to be
efficient, scalable, and transparent. Furthermore, Xu et al.
suggested in [107] that EC services can be provided by
micro data centers at the edge layer. A Zenith paradigm was
also presented, where resource utilization and task execution
time could be handled efficiently by service and infrastruc-
ture providers’ collaboration. Likewise, Zhang et al. [108]
proposed that SPs be deployed in the edge layer to handle

MU task processing. In an edge-cloud collaboration, SPs can
deliver high-quality services by offloading tasks to the cloud
or edge while optimizing the benefits of all SPs. Table 3
summarizes a review of articles concentrating on different
collaborative methods for resource scheduling.

VI. COMPUTING TASK ANALYSIS
The computing tasks are then evaluated to guarantee
the desired results, such as the shortest task completion
time and the least energy usage, by effectively allocating
them to the right node. This procedure is known as task
offloading. In practice, edge-cloud computing must address
task offloading as a critical challenge, as it decides when
and where tasks are performed [109]. Many benefits can
be gained from it, including prolonged battery life, reduced
latency, and better performance [110]. A decision must be
made on whether a task can be divided and whether or not
subtasks are interdependent based on task attributes [111].
Simple or highly integrated tasks cannot be separated and
must be processed locally at corresponding EDs or totally
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FIGURE 5. Offloading computational tasks at the edge: a taxonomy.

transmitted to ESs. They can be separated into many pieces
and offloaded if they can be subdivided based on their
code [112], [113]. Locally performed computing-intensive
tasks result only in delays caused by local processing. The
delay, however, represents the sum of the time it takes for
data to be transmitted to the ES, the time it takes for the
ES to process the data, and finally, the results transmission
time. Therefore, offloading computing-intensive tasks to ESs
directly impacts user QoS [29]. Figure 5 depicts the taxonomy
of computational task offloading in the edge environment.

In summary, there are three modes for given computing
tasks [114]: local execution, partial offloading, and full
offloading as illustrated in Figure 6. Based on the current
network state, a specific offloading site should be selected
to process the tasks. Tasks offloading is meant to decrease
application execution times and reduce UE energy consump-
tion [31]. The analysis of different offloading scenarios is
summarized in Figure 7.

A. LOCAL EXECUTION
To determine whether edge computing tasks should be
performed locally, EDs’ resources and the network and
resource conditions of ESs should be considered [115].
The computing task can only be completed locally if
sufficient network bandwidth is unavailable to transmit a task
successfully. Furthermore, if the computing resources of ESs
are unavailable, causing the computing tasks to be delayed,
the tasks must be completed locally. If an ED’s computational
capacity is sufficient to meet service requirements, it executes
tasks locally, minimizing the ES workloads and network
bandwidth demands [12].

B. FULL OFFLOADING
Full offloading (Also known as binary offloading) is a
method that allows relatively simple or highly integrated
tasks to be executed either locally at the ED or offloaded
completely to the ES. In order to determine whether or

FIGURE 6. Different offloading modes.

not edge computing tasks are totally offloaded to an ES
or scheduler, the resources of EDs, the existing network,
and the availability of ES resources must be examined [73].
Suppose the currently available network bandwidth ensures
successful task transmitting, or the ESs or other ED are
idle, and the successfully offloaded computing tasks can
be processed immediately. In that case, the results of local
execution and full offloading are compared to deciding on
task offloading or local execution. If the objective is to
reduce the time it takes to complete a task, for example,
it is vital to compare the local execution time with the time
it takes to offload to an ES/cloud computing center. Tasks
should be processed locally if the local execution time is
less. Otherwise, they should be processed on edge or cloud
servers.
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FIGURE 7. Different offloading scenarios.

It has been stressed in numerous studies that each user
request should be fully offloaded and handled by a single
ES in MEC networks. To reduce average task response
time and total system energy consumption while ensuring
task offloading performance, Tong et al. [116] proposed an
integrated trust evaluation mechanism in Deep Reinforce-
ment Learning (DRL) in combination with a Double Deep
Q-network (DDQN) algorithm. Materwala et al. [117]
proposed an offloading algorithm based on the Evolu-
tionary Genetic Algorithm (EGA) to optimize the energy
consumption of edge and cloud servers simultaneously in
vehicular networks by maintaining the application’s SLA
concerning latency and processing time. Tang et al. [118]
offered a method for joint optimization based on the discrete
binary particle swarm optimization algorithm (JOBPSO),
designed to minimize the system’s energy consumption, load
and delay. Using deep Q-learning, Tang and Wong [119]
proposed a distributed algorithm to address the unknown load
dynamics at edge nodes. This approach allows each MD to
make its own offloading decisions without being aware of
other MDs’ information (e.g., task models and offloading
decisions). Dropped task ratio and average delays can be
reduced with the proposed algorithm. Based on a Markov
decision process, Yang et al. [120] developed a strategy
to select optimal offloading nodes by applying a Value
Iteration Algorithm (VIA) for addressing delay-sensitive task
offloading in a MEC system, concerning task uploading
time, task execution time, and results downloading time.
Energy-efficient task offloading problem in MEC formulated
in [121] as a stochastic optimization problem to minimize
energy consumption while maintaining average queue length.
This paper proposed an energy-efficient dynamic offloading
algorithm called EEDOA by transforming the stochastic

problem into a deterministic optimization problem. The
decision of task offloading can be made dynamically with
polynomial-time complexity.

C. PARTIAL OFFLOADING
Leveraging parallelism between the network and end devices
makes partial offloading more suitable for time-sensitive
applications than full offloading. Additionally, since the
communication network’s bandwidth is limited, offloading
partial applications is more reasonable than offloading the
entire application [122]. It is beneficial to offload partial
segments of a complex task composed of multiple parallel
segments in order to enhance efficiency [123]. It is possible
to partition the program into two portions, one being executed
on the ED and the other offloaded for ES execution while
scheduler tries to assign an optimal processing unit to
each sub. Xu et al. [124] proposed an algorithm based
on game theory to minimize the energy consumption of
each MD and meet the delay constraints in the cloud-edge-
terminal collaboration scenario. Partially offloading tasks
under dynamic conditions, including energy consumption,
transmission rate and task arrival, is investigated in [125].
It introduces a feasible method for characterizing dynamic
factors in offloading tasks called the Time-Expanded Graph
(TEG). Lastly, practical algorithms based on TEG are
devised to maximize IoT terminal utility under surplus
energy constraints in both singular and multiple terminal
environments. Yu et al. [126] developed a UAV-assisted
cooperative offloading system that utilizes Block Coordinate
Descent (BCD) to minimize energy consumption by user
terminals. Methodologically, the problem is decomposed
into three convex subproblems, and the number of local
computation tasks, number of computing offloaded tasks
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and trajectories of UAV are further optimized. In order
to minimize energy consumption and task response time,
Wu et al. [127] developed an energy-efficient dynamic task
offloading algorithm. By applying the Lyapunov optimization
technique, different applications and dynamic scenarios can
be controlled regarding computation and communication
costs. An online and polynomial-time complexity algorithm
has been developed by leveraging the Lyapunov optimization
technique to formulate the offloading decision problem as
an optimization problem. Using the Lyapunov optimization
technique, determine where and whether to offload in such a
way that the IoT device’s energy consumption is reduced by
only sacrificing some delay. Table 4 compares recent studies
on full and partial offloading.

VII. FAIRNESS AND LOAD BALANCING
Fairness and load balancing can be mentioned among
the scheduling objectives that have received less attention
in previous articles, particularly in survey papers. This
section briefly reviews these two factors and the related
scheduling methods. The concept of fairness has been
explored from several social justice and welfare economics
perspectives, including those advanced by Nash Jr [128] and
Rawls [129]. As per Rawls’s theory of justice, resources
should be allocated to the least fortunate users to increase
satisfaction and utility to the greatest extent possible. The
Nash bargaining theory offers an alternative view, which
states that resources should be reallocated to those who will
benefit more from them than those who lose them.

Schedulers must be fair as one of their essential char-
acteristics. Schedulers were traditionally designed to share
resources between processes fairly, which had been inter-
preted in the context of tasks. Schedulers must treat users
fairly rather than just tasks, as recently realized [130].
Through a fair scheduling system, competing users get their
fair share of resources over a long period of time. When
dealing with connection and disconnection from Roadside
Units (RSUs) as the vehicle moves from one RSU to another,
Strugeon et al. [131] proposed an agent-based approach to
ensure long-term fair allocation of computing resources in
the autonomous driving domain. In order to assess whether
resource allocation is fair, a fairness ratio is employed.
Zhao et al. [132] formulated the UAV’s energy consumption
minimization problem as a mixed integer nonlinear pro-
gramming problem, where the UAV’s trajectory, resource
allocation, task decision, and bits scheduling are jointly
considered to ensure fairness among Ground Nodes (GN).
In addition to protecting the UAV from being overwhelmed
by the data from one or more GNs, this approach guarantees
fairness across all operations, such as local computing,
task offloading for computing and caching, and avoids
the situation where the UAV caches all offloaded bits.
Xu et al. [133] developed a job scheduling algorithm based
on Berger’s distributive justice theory in cloud environment.
A fair schedulingmodel with trust enhancement for the cloud-
fog-edge environments was described in [134]. Blockchain

technology is used to build a decentralized trust framework
to address the service credibility. Lastly, it proposed the
concept of service fairness and an evaluation method based
on Berger’s theory of wealth distribution. A scheduling
strategy was proposed by Mukherjee et al. [135] to maximize
the number of tasks completed within their corresponding
deadlines in a dual queue system in edge/fog environment
while keeping both queues strongly stable. The queued
tasks were scheduled using the Lyapunov drift-plus-penalty
function. The scheduling policy decides how many tasks
should be offloaded to underloaded nodes to take advantage
of all the computational resources in the network.

The literature on mobile computation offloading has stud-
ied fairness, most of which focused on energy consumption
and some on the distribution of resources. Multicast-based
computation offloading by device-to-device is designed
in [136] to ensure fairness based on each MU’s delay
constraint and battery level. MIMO-based MEC systems
examined in [137] by analyzing the min-max power con-
sumption of MDs in offloading computation tasks and
optimizing resource allocation. Mao et al. [138] discussed the
max-min energy efficiency optimization problem in wireless
powered full-duplex MEC systems, which aims to achieve
fair energy efficiency among multiple mobiles through
the optimization of computation offloading and resource
allocation. To ensure fairness in wireless-powered MEC,
Ji et al. [139] studied max-min energy efficiency problem,
where energy efficiency is defined as the amount of energy
harvested per unit of the user throughput. Zhou et al. [140]
distributed computing resources proportionally according to
the weights of the live jobs on each server to ensure fairness.
Furthermore, Kim et al. [141] and Zeng et al. [142] assessed
fairness in application throughput and data transmission rates.

Since users consume different resources, the system is
prone to load imbalances if resource allocation is unfair [143].
It is beneficial to utilize the load balancing feature at
the edge network level in order to reduce latency, energy
utilization, and bandwidth consumption [144]. It is possible
to interpret fairness at the server level as load balancing.
Whenever some edge nodes are overloaded, computing
tasks become more challenging, so the load should be
passed to less overloaded nodes. Edge nodes require load
balancing to minimize resource consumption and response
times, thereby increasing resource utilization [145]. In this
way, communication overhead is further reduced at the
edge, enhancing the whole process [146]. For vehicular
applications, Dai et al. [147] proposed integrating load bal-
ancing with offloading. It formulates the joint load balancing
and offloading problem as a system utility maximization
problem with permissible latency constraints. Through a
combination of joint optimization of selection decisions,
offloading ratios, and computation resources, the joint
algorithm for selection decision, computation resource and
offloading (JSCO) algorithm was then developed with a low
complexity. A study was conducted to minimize processing
delays in FiWi-enhanced vehicular edge computing networks
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TABLE 4. Comparison of papers focusing on different offloading techniques.

in [148]. This paper proposes an architecture for task
offloading based on SDN and formulates the offloading
problem as a constrained optimization problem. It solved
this problem, using game theory-based offloading schemes
in order to balance the workload of the MEC servers.
A Deep Reinforcement Learning Based Resource Allocation
(DRLRA) scheme, proposed in [149], enables adaptive
allocation of computing and network resources, thereby
reducing average service times and balancing resource
usage in varying MEC circumstances. A comparison of the
proposed DRLRA method to the classical Open Shortest
Path First (OSPF) algorithm revealed significantly better
performance. Xu et al. [150] proposed a blockchain-based
computational offloading technique named BeCome to
decrease edge computing devices’ offloading time and energy
consumption. In this work, Blockchain technology is utilized
in tandem with nondominated sorting genetic algorithms
for generating optimal resource allocation strategies in EC.
Yang et al. [151] constructed a multi-UAV-aided MEC
system, which provides computing offloading services for
ground IoT nodes without sufficient computing power. The
access problem is modelled as a generalized assignment
problem and is solved with near-optimal algorithms using
differential evolution-based multi-UAV deployment. This
allows IoT nodes to balance their load while maintaining
coverage constraints and ensuring their QoS.

VIII. OPEN ISSUES
The edge computing paradigm provides lower task commu-
nication delays than cloud computing because ESs have more
powerful processing and storage resources. Furthermore, the
task scheduling issue in edge computing is NP-hard due to
the scarcity of edge resources. Providing high-performance
approaches are extremely important, but it is impossible
to achieve a precise global optimal solution for large
problems in general. Despite the huge number of studies
on collaborative task offloading and scheduling in EC, the
following concerns need be addressed.

A. SECURITY
Edge Computing poses significant security risks compared to
traditional cloud computing. EDs will face many new threats
that cannot be managed with the security solutions of cloud
computing [152]. Security in resource scheduling means
providing mechanisms such as confidentiality, integrity,
availability, access control, and authentication between EDs
and servers to protect the scheduling and computation
offloading process. Due to its multi-tier architecture, EC is
prone to hostile attacks regarding resource scheduling [153].
Information may be stolen or tampered with by attackers
accessing ESs. Eavesdropping and traffic injection attacks
are also ways malicious attackers can gain control over
communication networks [154], [155]. In an attack on an
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edge node, the system integrity and robustness of the entire
edge system may be compromised, rendering the resource
scheduling ineffective. Thus, resource scheduling in edge
networks must be subjected to further security research. It is
common to find security issues related to cloud computing in
this context as well. However, the limited number of EDs and
wireless access are specific characteristics of EC that make
security mechanisms more challenging. Edge computing
does not have sufficient studies on security threats; therefore,
it can be considered an open issue. A practical approach must
be developed to predict, prevent, protect, and recover the edge
network in case of catastrophic events.

B. PRIVACY
Regularly, ESs return confidential information in their com-
puting results. For example, a patient’s personal information
may be included in the analysis data retrieved from the
ES in intelligent healthcare. Therefore, it is crucial to take
privacy protection into account. Unauthorized users threaten
end-user privacy by leaking information about their location,
usage, and data through IoT networks. A large amount
of private information is involved in resource scheduling,
especially computation offloading. The existing research
fosters unconditional trust and easy access to user data,
EN interactions, and computing data at the edge [156]. Many
layers of protectionmust be applied at the network edge or the
cloud to protect this huge amount of data generated by EDs.
The privacy problem, however, cannot be circumvented by
existing resource approaches. To maintain data integrity and
privacy, scheduling approaches should account for the risk
of data replication/sharing attacks, data altering attacks, and
data loss at the edge or cloud level in the future.

C. HETEROGENEOUS TASKS AND RESOURCES
There has been a tendency among studies to assume that
the target edge computing system has a bounded number
of similar computing resources. However, the use of hybrid
architectures, such as multiple cores and GPUs, has become
more common in high-performance computing systems.
In order to support the growing number of IoT applications
in the future, SAGIN is predicted to be the future trend
by integrating multidimensional networks like space, air,
and ground [157]. New resource allocation issues have
emerged as a result of these novel architectures. In most
previous studies on resource scheduling, computation tasks
were also assumed to be homogeneous. Scheduling models
can be oversimplified with this assumption [158]. There
are, however, different tasks that need to be accomplished
in practice. Some tasks are pre-emptive (i.e., they could
pre-empt other tasks), while others are not. As a result of
this heterogeneity of tasks, scheduling becomes significantly
more difficult. To cope with hybrid tasks and resources,
modern mechanisms must be investigated.

D. MOBILITY
Due to the mobility of most connected things, including
MDs, vehicles, and drones, the IoT suffers from frequent

link failures among devices and servers. This problem
compromises QoS and security of edge systems [159]. The
support of high-mobility devices is a critical issue for future
networks [160]. Maintaining the connection with the ES
despite leaving the area of origin to receive high-dynamic
services is very important [161]. Reaching an effective task
scheduling and offloading mechanism is highly challenging
when users are frequently mobile. In some cases, offloading
decisions made at this moment may not apply in the future,
or the node may no longer be within the service range of
the user [45]. Current research rarely explores users’ mobile
characteristics in different application scenarios, and most
studies idealize and disregard mobile characteristics.

E. SCALABILITY
The scalability of a system refers to its ability to provide
elastic services efficiently without compromising QoS.
Network architectures must be scalable to handle the growing
demands, requests, and services, such as MDs in edge
networks. There has been a rapid increase in the number
of connected things, which may impair the QoS and cause
network bottlenecks due to an enormous amount of data being
generated [84]. Some mobile applications require high data
rates’ offloading, such as AR, VR, online gaming, and self-
driving. Despite the heterogeneity of MDs and the dynamic
behaviour of requests from the applications mentioned in
the edge computing environment, edge computing systems
should be scalable in terms of the number of servers and
services required.

F. FAULT TOLERANCE
Ahigh functional failure probability is always associatedwith
EDs due to their distributed nature. Thus, there are many
possible causes for device failure, including hardware failure,
software failure, and user error. Furthermore, connectivity,
mobility, and power source also play an important role. The
ability of a system to continue working despite faults is
referred to as fault tolerance [162]. While the concept of
fault-tolerant computing refers to using systems that can
perform correctly in the presence of errors [163]. Any failure
of a central controller will result in retransmission in all
computing paradigms. The retransmission of a submitted task
when it fails causes delay because the task is again offloaded
to the same or a different host. A scheduling system must
be highly reliable to cope with disasters and bad situations
because it is impossible to offload applications without faults.

G. ENERGY MANAGEMENT
Due to the distributed nature of edge computing, energy
consumption will be high, increasing costs. Therefore, a new
energy protocol for edge computing systems needs to be
optimized and developed to address this issue [164]. Another
area of future research is the challenges associated with
greenhouse gas emissions and carbon emissions, which were
not addressed by most of the techniques studied. With the
help of green resources, such as light and wind, IoT devices
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can significantly reduce carbon emissions and pollutionwhile
consuming less power and expecting longer battery life. In the
field of energy harvesting and wireless charging-enabled
edge computing, many studies are being conducted
[123], [165]. It is more complex to schedule resources
when extra energy supplements are introduced since energy
consumption during task transmission, task processing, and
the harvested energy must be considered.

H. LOAD BALANCING AND TASK DISTRIBUTION
The task distribution or load balancing process is perhaps the
most challenging step in scheduling. In order to obtain the
best scheduling performance, several parameters and metrics
must be considered. According to various descriptions,
it is an NP-hard problem to determine the optimal way
to distribute tasks to reduce application processing time
and minimize failure rates [166]. Therefore, it can take
considerable computing resources to distribute these tasks
intelligently and efficiently. It may be possible to manage
edge networks’ dynamic and heterogeneous characteristics
with hybrid load balancing techniques. The development of
load balancing mechanisms in edge networks is obvious in
light of the evolution of IoT-based applications. Most existing
load balancers do not consider fault tolerance mechanisms
in an edge environment. In order to avoid a disruption in
overall performance the ESs, it must be possible to detect
failed edge nodes and send requests to the nearby ESs. Aside
from response time and overall cost, energy consumption is
another key factor that potential researchers could address.
Due to the dynamic nature of IoT-based applications, the
energy requirements of ESs are substantially increasing.
This means that load-balancing approaches must be able
to cope with energy consumption. A load balance between
all devices on the network remains an open issue from the
macro perspective. Task processing requests should not be
directed only to the most powerful devices on a network
or should not be directed only to a few network nodes.
Therefore, algorithms should be designed to utilize the
computational and network resources to the fullest extent
possible. Several devices can be overloaded, and many can
be idle simultaneously if they are not managed properly,
which can negatively affect the performance of networks and
applications.

I. INTEROPERABILITY
Edge computing encounters interoperability issues due to het-
erogeneous platforms, architectures, and infrastructure [167].
In order to deploy edge computing successfully, interop-
erability is the major challenge [168]. Load balancing in
edge domains is difficult by the nodes and servers’ variety
and distribution. Interoperability is, therefore, an essential
component of success. There are many SPs out there.
Therefore, consumers search for their favorites as well as
looking for important factors like price and functionality.
Through interoperability, consumers can change between
IoT/edge products or combine different services and products

to create smart environments tailored to their needs [169].
For interoperability to be possible, an intermediate interface
and controller must be provided to facilitate communication
between the system’s entities. Developing such interconnec-
tions between EDs and servers requires a flexible architec-
ture and system model. To successfully fulfill offloading,
researchers must develop new methods for addressing
interoperability issues directly due to the highly dynamic
behavior of MEC environments with high data rates on the
one hand and heterogeneity on the other.

J. COST AND PRICING
Edge networks dynamically allocate resources for storage,
computing, and communication, based on the demands of
users. Due to these differences, optimal pricing policies
differ from legacy pricing policies. It is common for edge
environments to have multiple actors offering services at
different prices. In addition to different operating models,
management models, and policy approaches, these actors
also have different payment methods. When customers care
about the price, the pricing policy significantly affects
the edge and cloud’s profit [170]. The rational person
hypothesis [171] states that suppliers want to maximize
their profits, while purchasers want to obtain the best
service quality at an affordable price. Higher prices generally
increase profits, but lower purchase intentions, which are also
impacted by commodity quality. The existence of competitors
also influences transaction probabilities. Thus, for systems
stakeholders, a balanced profit margin is desirable from a
commercial perspective which can achieve by frequently
updating the data offloading price and edge network profit
model in response to network conditions. There is still much
work to be done on the issue of balancing users’ costs with
SPs’ revenues.

K. SUBTASKS DEPENDENCIES
As ESs have limited computing resources, larger tasks are
usually divided into interconnected subtasks offloaded to
remote cloud servers. This allows multiple ESs to serve users
collaboratively. Resource scheduling presents challenges in
minimizing the time to complete a task due to dependency
on its subtasks and the dependency between the input of one
subtask and the output of another [172], [173]. Specifically,
subtask resource allocation should consider not just the
number of allocated resources but also the starting point of the
allocated time slot. A user’s task may also contain multiple
online requests [120]. To guarantee concurrent execution
of various tasks, resources should be allocated to subtasks
according to the supertask delay constraint.

L. PARTITIONING AND INTEGRATION
Granularity and partitioning of offloaded code are the factors
relating to the size of the code that can be offloaded to run
remotely to make the application run more efficiently under
time or resource-constrained conditions. When designing the
life cycle of an application, some aspects of granularity
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TABLE 5. List of challenges and potential future direction with their hotness and trends.

are considered. Computational tasks might be divided
into two parts, either offloaded to remote edge nodes or
executed locally. According to most existing works, the
offloaded section of a task is represented by an offloaded
ratio [174]. An optimal ratio of offloaded resources and other
optimization variables is determined in resource scheduling.
This part of the task is directly offloaded once the optimal
offload ratio is obtained [54]. An optimization solution for
a certain task may not result in a divisible part that is the
same as the optimal offloaded part. For this reason, future
research should further explore how task partitioning can be
used during computation offloading. The dispersed results of

the task must be integrated after it has been partitioned and
processed by different nodes. This process may also raise the
question: Are the integrated results the same as those obtained
through non-partitioning? Therefore, it will be important to
investigate how to integrate the results of processing from
different nodes.

M. JOINT SCHEDULING OF ALL RESOURCES
Processing nodes should receive task data and cache it in a
data queue, waiting to process the offloaded tasks. Real-time
task processing relies heavily on the caching and queuing
process. However, several existing works ignore the caching
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FIGURE 8. Challenges hotness and research trends.

and queuing processes in calculating the total task processing
time, considering only the sum of the local processing,
transmission, and offloading times. Moreover, a few attempts
have combined communication and computing resource
allocations. Caching and queuing should be considered for
future research on the joint scheduling of edge computing
resources.

N. MULTI-OBJECTIVE OPTIMIZATION
An edge network does not have any mechanism for defining
QoS parameters that will influence resource scheduling.
For example, some algorithms disregard such variables
as scalability, reliability, and security in favor of energy,
cost, or response time. Future multi-objective optimization
methods should incorporate QoS parameters into scheduling
decision-making and establish a trade-off between them.

O. SIMULATION PLATFORM
Simulation involves modeling a real scenario using math-
ematical formulas and implementing it with programming
languages. Using simulations gives us a better understanding
of the system and enables us to conduct experiments at a
lower cost. Many resources are required for experiments and
testing on real-world edge computing infrastructure, which is
not feasible for all researchers. The researchers, instead, are

more likely to use simulation platforms to implement their
new ideas in EC. The next generation of simulation platforms
must reinforce end users’ mobility and the migration of
tasks and provide an energy consumption model for servers
and end users. Simulation tools such as iFogSim [175],
EdgeCloudSim [176], and MyiFogSim [177] are generally
used in current research to evaluate the performance of
scheduling algorithms. A general simulation platform such
as MATLAB is also used for this evaluation. Only a few
studies have evaluated their algorithms in real edge systems.
Despite edge computing being investigated, most researchers
do not yet have access to a real testbed, and most assessments
were conducted using simulators. Since the results of the
discussed algorithms in a real testbed may differ from those
in a simulation, implementing them in a real environment can
be challenging. Therefore, additional effort will be needed
to develop testbeds or prototypes for evaluating scheduling
algorithms in real systems.

IX. RECOMMENDATIONS FOR FUTURE RESEARCH
DIRECTIONS
Before concluding this survey, this section provides a useful
overview of current research and future directions. Some
topics are expected to get more attention in the future in
resource scheduling domain in edge networks. Some of
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the previously mentioned research directions are introduced
and strongly recommended for resource scheduling in edge
computing.

• Security and privacy are two significant directions
being pursued that could enhance performance and the
end user experience. Resource scheduling in EC may
cause user information leakage and is prone to various
potential hostile attacks. Therefore, a substantial amount
of research is needed in this area to address privacy
and security concerns. Distributed ledger as a new
burn technology can ensure tamper-proof and traceable
resource scheduling records, which makes blockchain
an appropriate candidate to support resource scheduling
in untrustworthy environments for future research.

• In most previous works, scheduling methods have been
investigated in homogeneous environments. However,
this assumption is simplistic according to the various end
devices and different computing, communication, and
storage resources within the edge network. Therefore,
researchers must explore modern mechanisms to handle
hybrid tasks and resources in a heterogenous environ-
ment.

• The mobility of most connected things, including MDs,
vehicles, and drones, causes frequent link failures
between devices and servers, compromising the schedul-
ing QoS. Sometimes, the scheduling decisions made
at this moment may not apply in the future, or the
node is no longer in the user’s service range. Achieving
an efficient task scheduling and loading mechanism is
challenging when users are often on the move, which
can be a hot topic for future research.

• As a newly emerging computing paradigm, edge com-
puting can make 5G and IoT applications more robust
and reliable. However, the nature of geographically
distributed edge resources is often characterised by
unreliable communications and constantly changing
environments, resulting in a diversity of potential
vulnerabilities and instability. Consequently, adopting a
fault-tolerant scheduling methodology in collaborative,
distributed, and dynamic environments prone to failures
and faults takes work. Task execution can be affected
adversely by such faults. To counter these devastating
consequences and ensure the accuracy and consistency
of collaborative scheduling, fault-tolerant strategies are
urgently needed.

• Edge computing capabilities will need to be expanded
and scaled in response to the ever-growing number of
devices and endpoints that generate huge amounts of
data that require management and oversight. These num-
bers can fluctuate, requiring efficient and comfortable
resource system management to track and process them
as end users need.

A total of twenty survey papers have been reviewed
to understand the challenges mentioned, future directions,
and the impressions they have on the current state of
research. According to the information extracted from these

survey papers and the number of publications on each topic
retrieved from Google Scholar, the challenges hotness, and
research trends are illustrated in Table 5 and Figure 8 above.
Table 5 demonstrates that the most recent survey papers on
edge resource scheduling have introduced security, privacy,
and resource heterogeneity as critical future directions.
Furthermore, edge computing researchers are becoming
increasingly interested in heterogeneous resource scheduling.
Additionally, there has been little research on scalability,
which makes it a super-hot topic.

Similarly, the Treemap chart shown in Figure 8 compares
the fifteen hottest future directions in task scheduling
proposed by contemporary edge computing studies. Bigger
rectangles represent challenges with a larger share of edge
computing publications in the last five years. The challenges
hotness is also illustrated using a color spectrum from light
green to dark red, representing very hot and idle challenges.

X. CONCLUSION
Since the early days of emerging edge computing, when
computing and storage nodes are positioned close to mobile
devices and sensors, industry investment in this paradigm
has grown dramatically. The crucial role that resource
scheduling is massively involved in evolving the edge, has
attracted research trends toward this niche area. The resource
scheduling process aims to ensure the quality of services by
assigning the proper resources to submitted tasks.

This paper provides a comprehensive survey related to
remarkable studies in resource scheduling conducted in the
past few years. First, the paper has analyzed and described
collaboration methods and computation task analysis for
resource scheduling in edge computing. Then, the structure
and features of all four collaborative computation scenarios
are explored in detail. For executing computing tasks, there
are three well-known approaches: local execution, partial
offloading, and full offloading, which have been described
clearly. Additionally, the most recent studies have been
examined, compared, and covered thoroughly. Moreover, this
survey has demonstrated fairness and load balancing and
provided a decent insight into principles. Finally, the paper
has introduced several open issues in the resource scheduling
field. The significance of each was investigated by scanning
the literature to pave the way for possible research directions.
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