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ABSTRACT Nowadays, the analysis of gastrointestinal (GI) tract disease utilzing endoscopic image
classification becomes an active research activity from the biomedical sector. The latest technology in
medical imaging is Wireless Capsule Endoscopy (WCE) for diagnosing gastrointestinal diseases namely
bleeding, ulcer, polyp, and so on.Manual diagnoseswill be time taking and tough for themedical practitioner;
thus, the authors have designed computerized approaches for classifying and detecting such diseases. Many
research groups presented various machine learning (ML) and image processing methods for classifying GI
tract diseases in recent times. Conventional data augmentation and image processing methods are integrated
with adjusted pre-trained deep convolutional neural networks (CNNs) for classifying diseases in the GI
tract from WCI images. This study presents a Modified Salp Swarm Algorithm with Deep Learning based
Gastrointestinal Tract Disease Classification (MSSADL-GITDC) on Endoscopic Images. The presented
MSSADL-GITDC technique mainly focuses on the examination of WCE images for GIT classification.
To accomplish this, the presented MSSADL-GITDC technique applies median filtering (MF) technique
for image smoothening. The presented MSSADL-GITDC technique designs improved capsule network
(CapsNet) model for feature extraction where the CapsNet model is modified by the class attention layer
(CAL). Moreover, MSSA based hyperparameter tuning process is performed to improve the efficiency of the
improved CapsNet model. For GIT classification, deep belief network with extreme learningmachine (DBN-
ELM) was used. Finally, backpropagation is applied for supervised fine tuning of the DBN-ELMmodel. The
experimental validation of the MSSADL-GITDC technique takes place on Kvasir-V2 database reported the
betterment of the MSSADL-GITDC technique on GIT classification with maximum accuracy of 98.03%.

INDEX TERMS Medical imaging, gastrointestinal tract diseases, deep learning, metaheursitics, fine-tuning,
salp swarm algorithm.

I. INTRODUCTION
Gastrointestinal (GI) diseases are increasingly common in the
human digestive system. Some of the common factors of mor-
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tality are colorectal cancer, Stomach cancer, and esophageal
cancer [1], [2], [3]. Generally, Endoscopy is necessary to
diagnose diseases and it is the initial step in identifying
GI tract diseases [4]. These endoscopic examinations even
improve the analysis of the clinical characteristics of lesions
for determining their type and severity and making proper
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diagnoses [5]. Differences in the knowledge of medical
practitioner cause errors in certain cases, particularly with
regard to problematic aspects of videos and images from
endoscopy [6], [7]. These inconsistencies may result in neg-
ative impact and misdiagnoses on patient care. Automated
disease classification effectively solves this issue by offering
doctors reliable and objective identification of various GI
endoscopic images, hence improving prognosis, economizing
valuable time of clinicians, and reducing the misdiagnosis
rate [8]. The researchers are still working on automated GI
disease classification for achieving better classification accu-
racy and lesion detection.

Recently, several computerized methods are provided for
medical disease classification and detection [9], [10]. They
concentrated on renowned medical imaging modalities like
Electroencephalogram Signals, mammography for breast
cancer, carcinoma, and pathology like deep learning (DL)
exhibits great enhancement in medical image processing.
DL can be referred to as a robust machine learning (ML)
algorithm for the classification of automatic medical infec-
tions into respective categories [11]. Convolutional Neural
Networks (CNNs) is a main cast of DL to extract deep
high-level features. CNN processed input data into different
forms such asmulti-dimensional, images, videos, and signals.
A simple CNN method has numerous layers like fully con-
nected (FC), convolutional, classification, and pooling [12].
The commonly used pre-trained CNN techniques are ResNet,
AlexNet, GoogleNet, and VGG.

GI-tract disease classification of artifacts, and multi-class
diseases, from GI endoscopic imageries utilizing attention-
guided CNN, was not implemented before [13], [14]. Arte-
fact classification andmulti-class disease generalization were
necessary not only for diagnosis and even for avoiding train-
ing biases. Optimal usage of the DL method for the classifi-
cation of automated GI disease is limited by a lack of data.
Dissimilar to traditional ML-related techniques like support
vector machine (SVM) are leveraged for extracting features,
CNNhas revealed better efficiency in extracting features [15].
The effective utility of CNN has enhanced classification and
image recognition-based tasks.

This study presents a Modified Salp Swarm Algo-
rithm with Deep Learning based Gastrointestinal Tract
Disease Classification (MSSADL-GITDC) on Endoscopic
Images. The presentedMSSADL-GITDC technique employs
improved capsule network (CapsNet) model with class
attention layer (CAL). To improve the performance of the
improved CapsNet model, MSSA based hyperparameter tun-
ing process is performed. For GIT classification, deep belief
network-extreme learning machine (DBN-ELM) appraoch
with backpropagation is used. The experimental validation
of the MSSADL-GITDC technique takes place on Kvasir-V2
dataset. In short, the key contributions of the study are given
below.

• An automated MSSADL-GITDC technique encom-
passes image pre-processing, improved CapsNet feature

extraction, MSSA hyperparameter tuning, and DBN-
ELM-BP classification is presented for GTI diagnosis.
To the best of our knowledge, the MSSADL-GITDC
system never existed in the literature.

• Design an improved CapsNet model for feature extrac-
tion where the CAL is used for capturing the discrimina-
tive class-specific features for handling the class depen-
dency.

• Hyperparameter tuning using MSSA helps to enhance
the performance of the CapsNet model, which is
designed by the incorporation of oppositional based
learning (OBL) concept with traditional SSA.

• Validate the performance of theMSSADL-GITDC tech-
nique on Kvasir-V2 dataset and the outcomes are exam-
ined under different measures.

II. RELATED WORKS
Su et al. [16] introduced a new and practical approach for
identifying gastrointestinal (GI) disease in wireless capsule
endoscopy (WCE) image with CNN. The projected technique
employs 3 backbone networks improved and optimally tuned
by transfer learning (TL) as extracting features, and com-
bined classification utilizing ensemble learning was trained
for detecting GI diseases. Khan et al. [17] examined an auto-
matic structure for GIT disease segmentation and classifier
dependent upon deep feature map and Bayesian optimum
DL selective feature. The presented structure was composed
of some key steps, pre-processed to classifier. During the
subsequent stage, the authors projected a deep saliency map
to segment infected areas. The segmentation area is then
utilized for training a pre-training fine-tuned system termed
MobileNetV2 utilizing TL. The fine-tuning approach hyper-
parameter was initialization employing Bayesian optimiza-
tion (BO).

In [18], an effectual classifier approach was projected to
a GIT classifier task which comprises a smaller count of
labeled datasets and takes an instance count of imbalance
betwixt classes. Based on this method, utilizing an effec-
tual technique at last the CNN infrastructure generates the
selected efficiency while the CNN infrastructure could not
strongly be trained. Therefore, an extremely effectual long
short term memory (LSTM) infrastructure was planned and
additional to the resultant of CNN. Haile et al. [19] introduce
a concatenated neural network (NN) approach by concatenat-
ing the extracting features of InceptionNet and VGGNet for
developing a GI disease analysis method. These extracting
features are then concatenated and categorized utilizing ML
classifier approaches.

In [20], a novel approach was executed dependent upon
the fusion of geometric and CNN features. Primarily, disease
areas can be extracted in provided WCE images utilizing a
novel system termed as contrast-enhanced color feature. The
geometric feature can be extracted in segmentation disease
part. So, unique VGG-16 and VGG-19 deep CNN features
fusion can be executed dependent upon Euclidean Fisher Vec-
tor. The feature selection can be finally classified by k-nearest
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neighbor (KNN). Ramamurthy et al. [21] presented a new
approach to classifier of endoscopy images by concentrating
on feature mining with CNN. This projected method was cre-
ated by integrating a recent structure (viz., EfficientNetB0)
with custom-built CNN infrastructure termed Effimix.

Biradher and Aparna [22] offered a novel approach to
classifier betwixt bleeding and nonbleeding classes of WCE
images. The presented system makes utilizes an easy Deep
CNN that comprises 6 convolution layers interchanged with
max-pooling layers and this approach was related to present
ones with respect to distinct performance metrics. Cao et
al. [23] examined an effectual approach for classifying dis-
tinct lesion images developed byWCE. Primarily, the authors
attain feature map of similar resolution by executing a max-
pooling function on distinct convolution layers, afterward
calculate the pooled feature map with trainable weighted
parameters, and lastly, one-by-one convolutional kernels can
be utilized for merging the integrated quantized feature maps.
The authors improve the efficiency of extracting features
by integrating multi-level convolution features, comprising
either low- or high-level features.

Wang et al. [24] examine a 2-phase endoscopic image
classifier approach that is effectual integrate complemen-
tary benefits of mid-level CNN feature and capsule net-
work (CapsNet). In detail, the main problem our technique
is a lesion-aware CNN extraction feature element that is
encoding suitably detailed data of lesions in mid-level CNN
feature and in-turn allow the subsequent capsule classifier
network for efficiently learning deformation-invariant con-
nections amongst image entities. In [25], a CapsNet improved
with radon transform for extraction feature was presented for
improving the possibility of colorectal cancer detection. The
impact of this work lies in the integration of radon transforms
from the presented method for improving the recognition
of polyps by executing effectual extraction of tomographic
features.

Khan et al. [26] introduce a DL andMoth-Crow optimizer-
based approach for GI disease classifier. Afterward, utilizing
transfer learning (TL), 2 pre-training SL techniques can be
fine-tuning and training on GI disease image. Features are
extraction in the middle layer utilizing both fine-tuned DL
approaches (average pooling). On both extraction deep fea-
ture vectors, a hybrid Crow-Moth optimizer technique was
presented and implemented. Afriyie et al. [14] examines a
less sophisticated yet effectual pre-processed system to iden-
tify endoscopic images termed as denoising CapsNets (Dn-
CapsNets). Furthermore, the authors created activation maps
(AM) utilizing the feature representation for visualizing the
outcomes.

Though several ML and DL models for for GIT classi-
fication are available in the literature, it is still needed to
enhance the classification performance. Owing to continual
deepening of the model, the number of parameters of DL
models also increases quickly which results in model over-
fitting. At the same time, different hyperparameters have a
significant impact on the efficiency of the CNNmodel. Partic-

FIGURE 1. Overall process of MSSADL-GITDC system.

ularly, the hyperparameters such as epoch count, batch size,
and learning rate selection are essential to attain effectual
outcome. Since the trial and error method for hyperparam-
eter tuning is a tedious and erroneous process, metaheuristic
algorithms can be applied. Therefore, in this work, we employ
MSSA for the parameter selection of the CapsNet model.

III. THE PROPOSED MODEL
This study has developed a new MSSADL-GITDC approach
for the examination of WCE images for GIT classification.
The presentedMSSADL-GITDC approach encompasses sev-
eral stages of operations namely median filter (MF) based
pre-processing, improved CapsNet feature extraction, MSSA
hyperparameter tuning, and DBN-ELM-BP classification.
Fig. 1 depicts the workflow of MSSADL-GITDC approach.

A. IMAGE PRE-PROCESSING
The renowned order-statistics filter is the MF, which replaced
the values of pixel with median of the gray levels in neighbor-
hood of that pixel:

f̂ (x, y) = {g (s, t)} (1)

The actual valued of the pixel can be added to the median
computation. MF is common for some types of random noise
they grant exceptional noise reduction abilities, with less
blurring compared to linear smoothing filters of the same size.
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FIGURE 2. Structure of CapsNet.

B. IMPROVED CapsNet BASED FEATURE EXTRACTION
In the presented model, the improved CapsNet model is used
for feature extraction. CapsNet architecture is established
to maintain the location of an object and its features in
image and model hierarchical relationship [27]. In the CNN
model, valuable information arrives before the pooling layer.
Furthermore, the CNN technique produces a scalar value in
neural output. The CapsNet produces vector output of same
size but with different routings since the capsule comprises
numerous neurons. The CapsNets utilize a vector activation
function termed squashing. In contrast, CNN exploits scalar
input activation functions as given in the following;

νj =
||Sj||2

1 + ||Sj||2
Sj

||Sj||
(2)

In Eq. (2), vj is capsule output j, and sj is total capsule input.
Excepting the final layer of CapsNets, the total input values

of the sj capsules can be established by weighted sum of
the predictive vector (Uj|i) in capsule as located in the lower
layer and (Uj|i) can be evaluated by multiplying the capsule
in lower layer with weight matrix (Wij) and output (Oi).

Sj =

∑
i
bijuj|i (3)

uj|i = WijOi (4)

where, bij signifies co-efficient defined by dynamic routing
method and calculated by the following expression;

bij =
exp(aij)∑
k exp(aik )

(5)

In Eq. (5), aij shows the log-likelihood. The amount of
relation coefficients amongst capsules i, and capsule in the
topmost layer is 1 and the preceding log probability can
be defined using Softmax. In CapsNet, a margin loss was
introduced to define whether the object of specific class is
existing and evaluated by Eq. (6);

Lk = Tkmax(O,m+
− ∥vk∥)2

+ λ(1 − Tkmax(O, ∥vk∥ − m))2 (6)

The Tk value is 1 when class k is presented. In addition,
m+

= 0.9 and m−
= 0.1 signifies hypervariable and the

down weight of the loss. The vector length can be evaluated
in the CapsNet and represents the probability, when vector
direction encompasses the variable datasets such as texture,
size, color, position, etc. Fig. 2 represents the architecture of
CapsNet.

By using the extracting feature in pre-trained, CapsNet is at
a high level and directly fed to FC layer for generating multi-
label predictions, it can be difficult for learning the high-order

probabilistic dependence via recurrent feeding with related
features. Thus, a CAL is exploited to explore features regard-
ing each class. With sizeW×W×K , and 1vl represents the l-
th convolution filter in CAL layer and it can be accomplished
as follows:

Ml = X ∗ wl, (7)

In Eq. (7), l extent from 1 to numerous classes and ∗ signifies
convolution function. Then, a CAL layer, in which the filter
count is equal to class, is added to produce class specific fea-
ture depictions regarding entire classification. With enough
training, they can learn class-wise attention mapping. It can
be monitored that class attention mapping highlights distinc-
tive regions for different classifications and determines nearly
no activation regarding missing classes. Subsequently, class
attention mapping Ml are transformed to class wise feature
vector vl of W 2 dimension through vectorized.

C. HYPERPARAMETER TUNING USING MSSA
To optimize the performance of improved CapsNet model,
theMSSA hyperparameter tuning technique is used. The SSA
goes to the family of Salpidae which has tubular and transpar-
ent body structure [28]. The mathematical modeling of a Salp
chain can be divided into follower and leader groups. The
leader leads and directs the group, and the follower follows
one after the other (and the leader indirectly or directly). Like
other approached, the position of Salps can be described in n-
dimension searching space, whereas n refers to the count of
parameters. A 2D matrix named x stores the position of each
Salp. Also, a food source named F is considered a target of
collection in the search space. In order to update the location
of leader, the subsequent equation has been used:

x1i = Fi + c1
(
(ubi − lbi) c2 + lbj

)
c3

≥ 0Fi − c1 ((ubi − lbi) c2 + lbi) , c3 < 0 (8)

Let, x1i be the initial Salp location (leader) at ith parame-
ter, Fi refers to the food source position at ith dimensional,
ubi and lbi signify the upper as well as lower limits of
ith parameter, c1, c2, and c3 represent the random number.
A leader upgrades the locationwith respect to the food source,
as demonstrated by Eq. (8). In this work, co-efficient c1 is cru-
cial since it gives a tradeoff amongst search and exploitation:

c1 = 2e
−

(
4l
L

)2
(9)

In Eq. (9), l indicates the existing iteration and L shows an
overall amount of iterations. c2 and c3 are uniformly gener-
ated random numbers in [1, 0]. The direction of jth variable
following location movement to negative or positive infinity
and step size are defined as c2 and c3. Newton’s law of motion
can be utilized for updating the follower’s location as follows.

X ij =
1
2
at2 + v0t (10)

If i ≥ 2, x ij shows the i
th follower location at jth variable, t

indicates time, v0 represent the initial velocity and a =
vfinal
v0
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is determined where we have v =
x−x0
t . Meanwhile, time is

constant, and the difference between them is 1, such that Eq.
(7) can be formulated in the following, consider v0 = 0.

X ij =
1
2
at2 + v0t (11)

If i ≥ 2, x ij is the Salps position of ith follower in jth

dimension. Then, simulate Salp chain using Eqs. (8) and (11).
The transient response of processes can be represented by
2 significant factors: the closeness of output to the input and
the speed of response. The error signal can be formulated as
follows:

e (t) = u (t) − y (t) (12)

By using OBL concept, the MSSA can be derived. It is an
optimization algorithm that is used for enhancing the quality
of initial population solution by differentiating the solution.
It involves opposite and original solutions [29]. Eventually,
the OBL approach gets the optimum solution from each
solution.

• Opposite number: x represent a real number over interval
x ∈ [lb, ub]. The opposite number of x can be indicated
as x̃ and it is represented as follows:

x̃ = lb+ ub− x (13)

Eq. (13) is generalized for employing it in a search space
with multi-dimensional. Consequently, each searching-agent
location and thier opposite location would be characterized
by the subsequent Eqs. (14) & (15):

x = [x1, x2, x3, . . . , xD] (14)

x̃ =
[
x̃1, x̃2, x̃3, . . . , x̃D

]
(15)

The values of each element in x̃ is expressed by:

χ̃ = lbj + ubj − χj where j = 1, 2, 3, . . . ,D (16)

If f (x̃) fitness value of the opposite solution is better than
f (x) of novel solution x, then x = x̃; otherwise ; x = x.

Algorithm 1 Pseudocode of SSA
Initialize Salps population with respect to lb, ub while (stop-
ping condition is met)

Compute the objective function for all agents
Choose the optimal search factor
Upgrade c1 by (9)

for each salp
if (i == 1)

Upgrade the leader Salps’s location by (10)
else

Upgrade follower location by (11)
end

end
Check the Salps position is in the range of lb, ub End

Return optimal salps

• The process for incorporating OBL with SSA is dis-
cussed below:

a) Initialize the salp position X as xi whereas (i =

l, 2, . . . n).
b) Define the opposite position of salp population

OX as x̃ whereas (i = l, 2, . . . n).
c) Selecting the n best salps in X ∪OX and signifies

the early population of SSA.
The MSSA approach derived a fitness function (FF) to have
a better classifier outcome. It determined positive values
for signifying superior outcomes of the candidate solutions.
In this article, the reduction of classifier error rate will be
treated as the FF, as follows.

fitness (xi) = ClassifierErrorRate (xi)

=
number of misclassified samples

Total number of samples
∗ 100

(17)

D. IMAGE CLASSIFICATION USING DBN-ELM MODEL
In this study, the DBN-ELMmodel is employed for GIT clas-
sification. SinceHinton et al. developed theDBN that is effec-
tively used in dimensionality reduction, classification, regres-
sion, etc [30]. The conception of unsupervised pretraining
was introduced for DBNwhich aims at the problem of falling
into local minima and slow convergence caused by random
initialization of parameters, and simultaneously the prob-
lems of setting labeled training samples are resolved. Once
unsupervised pretraining was utilized and there exist training
instances, generalization and training errors are considerably
decreased. In the presented method, BP and pretraining ini-
tial parameters to fine-tune the network for increasing the
efficiency and accuracy of classification. Generally speaking,
DBN-ELM comprises DBN for ELM and feature extraction
as classifier. Assume DBN involves n − th hidden layer, n-l
layer is initialized by greedy traind, offset and weight from
n− l to n− th hidden layers and from n to following layers.

m∑
i=1

βig(Wi · On−1 + bi) = yj, j = 1, . . . , l (18)

The better prediction result is attained by minimal output
error:

m∑
i=1

∥yj − tj∥ = 0 (19)

Furthermore, a βi is attained, making the subsequent formula
true, as:

m∑
i=1

βiOn,j = tj, j = 1, . . . , l (20)

The abovementioned equation is rehabilitated to:

Onβ = H (21)

where, On signifies the output from n-lth to n− th layers that
is formulated as follows:

On(W1,...,Wm , b1, . . . , bm,On−1,1, . . . ,On−1,i)
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FIGURE 3. Sample images.

=

[
g(W1 · On−1,l + b1) . . . g(Wm · On−1,l + bm)

...

...

... g(W1 · On−1,l + bi) . . . g(Wm · On−1,l + bm)
]

(22)

β =

[
βT1

...HT
m

]
,H =

[
HT
1

...HT
m

]
(23)

Currently, the network is trained to achieve a Ŵ , bi, β̂, such
that:

∥om(Ŵi, b̂i)β̂ − H∥ = ∥on(Ŵi, b̂i)β̂ − H∥ (24)

Wi and βi parameters are selected randomly in the last layer.
Once the two variables are defined, the output H can be
exclusively attained by:

β̂ = OTmH (25)

BP model divide learning method into two phases: Initially,
signals are broadcasted forward, and the input was processed
by hidden, input and output layers; then, error BP: when there
is an error betwixt the actual and expected output, then the
error is divided to unit of every layer for correcting the neuron
weight of all, and the layers error signal will go back together
previous route. Such processes are reiterated until the network
error satisfies the requirement.

IV. PERFORMANCE VALIDATION
In this section, the experimental validation of the MSSADL-
GITDC approach is tested using the Kvasir-V2 dataset.
Pathological observations, polyp removal, and anatomical
landmarks are among the 8 groups that make up the database
with 1000 images as given in Table 1. The images in the
dataset range in resolution in 720 × 576 to 1920 × 1072 pix-
els. The dataset holds 8000 images. Few sample images are
shown in Fig. 3.
The proposed model is simulated using Python 3.6.5 tool

on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB
SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch
count: 50, and activation: ReLU.

TABLE 1. Details of dataset.

TABLE 2. GIT classification outcome of MSSADL-GITDC system on 80:20
of TR/TS databases.

The GIT classification performance of the MSSADL-
GITDC model is presented in the form of confusion matrix
under training (TR) and testing (TS) databases in Fig. 3. The
results indicated that theMSSADL-GITDCmodel has recog-
nized WCE images into 8 class labels. For example, on 80%
of TR database, the MSSADL-GITDC model has recognized
752 into C-1, 712 into C-2, 691 into C-3, 721 into C-4,
738 into C-5, 720 into C-6, 754 into C-7, and 749 into C-8.
Eventually, on 20% of TS database, the MSSADL-GITDC
approach has recognized 167 into C-1, 188 into C-2, 177 into
C-3, 180 into C-4, 194 into C-5, 177 into C-6, 194 into
C-7, 197 into C-8. Meanwhile, on 70% of TR database,
the MSSADL-GITDC methodology has recognized 670 into
C-1, 633 into C-2, 608 into C-3, 639 into C-4, 606 into C-5,
584 into C-6, 683 into C-7, 656 into C-8.

In Table 2 and Fig. 5, overall GIT classification out-
comes of the MSSADL-GITDC model under 80% of TR
and 20% of TS databases are given in terms of different
measures such as accuracy (accuy), precision (precn), recall
(recal), F-score (Fscore), AUC score (AUCscore), and Mathew
Correlation Coefficient (MCC). The outcomes signified that
the MSSADL-GITDCmodel has accurately recognized eight

25964 VOLUME 11, 2023



M. Obayya et al.: MSSADL-GITDC on Endoscopic Images

FIGURE 4. Confusion matrices of MSSADL-GITDC system (a-b) TR and TS
databases of 80:20 and (c-d) TR and TS databases of 70:30.

FIGURE 5. Average outcome of MSSADL-GITDC system on 80:20 of TR/TS
databases.

classes under all aspects. For example, on 80% of TR
database, the MSSADL-GITDC method has offered average
accuy of 97.80%, precn of 91.23%, recal of 91.21%, Fscore
of 91.19%, AUCscore of 94.97%, and MCC of 89.95%. More-
over, on 20% of TS database, theMSSADL-GITDC approach
has offered average accuy of 98.03%, precn of 92.16%, recal
of 92.13%, Fscore of 92.11%, AUCscore of 95.50%, and MCC
of 91.01%.

In Table 3 and Fig. 6, an overall GIT classification out-
come of the MSSADL-GITDC methodology under 70% of
TR and 30% of TS databases is given. The experimental
values implied that theMSSADL-GITDC approach has accu-
rately recognized 8 classes under all aspects. For instance,
on 70% of TR database, the MSSADL-GITDC approach has
offered average accuy of 97.67%, precn of 90.72%, recal of

TABLE 3. GIT classification outcome of MSSADL-GITDC system on 70:30
of TR/TS databases.

FIGURE 6. Average outcome of MSSADL-GITDC system on 70:30 of TR/TS
databases.

FIGURE 7. TACC and VACC analysis of MSSADL-GITDC system.

90.64%, Fscore of 90.65%, AUCscore of 94.66%, and MCC of
89.34%. Furthermore, on 30% of TS database, theMSSADL-
GITDC system has attained average accuy of 97.51%, precn
of 90.13%, recal of 90.17%, Fscore of 90.09%, AUCscore of
94.38%, and MCC of 88.71%.
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FIGURE 8. TLS and VLS analysis of MSSADL-GITDC system.

FIGURE 9. Precision-recall analysis of MSSADL-GITDC system.

FIGURE 10. ROC curve analysis of MSSADL-GITDC system.

The TACC and VACC of the MSSADL-GITDC approach
are investigated on GIT classification performance in Fig. 7.
The figure demonstrated that the MSSADL-GITDC system
has exhibited superior performance with maximal values of
TACC and VACC. It can be observable that the MSSADL-
GITDC algorithm has obtained higher TACC outcomes.

The TLS and VLS of the MSSADL-GITDC approach are
tested on GIT classification performance in Fig. 8. The figure
pointed out that the MSSADL-GITDC system has revealed
better performance with least values of TLS and VLS. The
MSSADL-GITDC system has resulted in lesser VLS out-
comes.

A noticeable precision-recall study of the MSSADL-
GITDC system in the test database is demonstrated in Fig. 9.
The figure revealed that the MSSADL-GITDC approach has
led to maximal values of precision-recall values.

A ROC study of the MSSADL-GITDC algorithm in the
test database was portrayed in Fig. 10. The outcome implied

TABLE 4. Comparative analysis of MSSADL-GITDC methodology with
other algorithms [8], [31].

that the MSSADL-GITDC system has outperformed their
capability in classifying in several class labels.

To assure the better performance of the MSSADL-GITDC
model, a wide range of comparison study is made in Table 4.
The experimental values indicated that the ResNet-18 model
has shown least performance while the ECA-Net and LR Tree
models have accomplished closer performance. Although the
other DL models have exhibited reasonable performance, the
MSSADL-GITDCmodel has shown its superior performance
with precn of 92.16%, recal of 92.13%, accuy of 98.03%, and
Fscore of 92.11%. These results reported that the MSSADL-
GITDC model has accomplished maximum performance on
GIT classification.

V. CONCLUSION
This study has developed a new MSSADL-GITDC system
for the examination of WCE images for GIT classification.
The presented MSSADL-GITDC technique comprises sev-
eral stages of operations such as MF based pre-processing,
improved CapsNet feature extraction, MSSA hyperparam-
eter tuning, and DBN-ELM-BP classification. In the pre-
sented model, the improved CapsNet model is used for fea-
ture extraction where the CAL is used for capturing the
discriminative class-specific features for handling the class
dependency. At the same time, hyperparameter tuning using
MSSA helps to optimize the performance of the CapsNet
model, which is designed by the incorporation of the OBL
concept with traditional SSA. The experimental validation
of the MSSADL-GITDC approach occurs on Kvasir-V2
dataset. The simulation results reported the betterment of the
MSSADL-GITDC technique on GIT classification. Thus, the
MSSADL-GITDC technique can be employed for accurate
classification of GIT on WCE images. In the future, the per-
formance of the MSSADL-GITDC technique was enhanced
by deep ensemble fusion models.
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