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ABSTRACT Automatic speaking assessment methods are essential for helping non-native learners to learn
native pronunciation. The automated speaking assessment method consists of mispronunciation detection
and pronunciation quality assessment. In the past, researchers have usually focused their research on only
one specific aspect of the speaking assessment task. Research on multifaceted speaking tasks has been rare,
and model building has often led to reduced performance due to the omission of local feature details. In this
paper, we propose a multi-width band (MB) method and apply it to the Conformer model. This method can
effectively increase the ability of the model to obtain local feature information at different scales. At the same
time, we used a multi-task learning approach to train a multifaceted speaking assessment model based on
GOP features. We conducted experiments on a self-built monosyllabic Mandarin mispronunciation detection
dataset (PSC-MonoSyllable) and an English open-source pronunciation quality assessment dataset (Spee-
chOcean762), respectively. The experimental results show that the method’s mispronunciation detection
metrics in terms of phonemes, tones, and words on the PSC-MonoSyllable dataset (F1 scores) reached
70.18%, 80.06%, and 79.82%, respectively. The results of the method on the SpeechOcean 762 dataset for
the pronunciation quality assessment task also showed a certain degree of improvement in all aspects of the
phoneme- and grapheme-level correlation metrics compared with the baseline model.

INDEX TERMS Computer assisted pronunciation training, mispronunciation detection, assessment of
pronunciation quality, Conformer, dilation convolution.

I. INTRODUCTION

Automated speaking assessment is an essential autonomous
language learning technology [1], [2] that facilitates the
learning of native pronunciation (L1) by non-native speak-
ers (L2). Compared with a traditional classroom, automatic
speaking assessment is more economical and convenient,
and also allows language learners to receive timely feed-
back on their pronunciation. Due to its usefulness, automatic
speaking assessment has been extensively researched, with

The associate editor coordinating the review of this manuscript and

approving it for publication was Mounim A. El Yacoubi

most of the work focusing on mispronunciation detection and
pronunciation quality assessment for a single aspect, e.g.,
[31, [41, [5], [6], [7], [8], [9]. However, speaking assessment
tasks include many other aspects, such as mispronunciation
detection for phonemes (initials and finals), tones, and words;
pronunciation standardization for phonemes and words; and
pronunciation quality assessment for fluency and complete-
ness of discourse. However, there is a relationship between
different aspects of different tasks in speaking assessment,
and jointly modeling the different aspects may lead to a more
comprehensive representation of the speaking assessment
model. In reality, we also want to use a single model to
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carry out different aspects of the speaking assessment task
simultaneously.

In this paper, based on the Goodness of Pronunciation
(GOP) feature and the Conformer model architecture, we pro-
posed a new model, called Conformer-MB, to study mispro-
nunciation detection and pronunciation quality assessment
tasks in spoken language assessment. We conduct multi-
faceted pronunciation quality assessment and mispronunci-
ation detection experiments on the publicly available Spee-
chOcean762 dataset and the self-built PSC-MonoSyllable
dataset. The SpeechOcean762 dataset contains one phoneme-
level, three word-level, and five utterance-level labels,
including accuracy, completeness, and fluency. The PSC-
MonoSyllable dataset included speakers from universities
in the Xinjiang region, and the speakers’ accents are pre-
dominantly Lan Yin Guanhua and Zhongyuan Guanhua.
The content of each audio in the dataset is a single Chi-
nese character marked for pronunciation correctness by three
Mandarin assessment experts in terms of phonemes, tones,
and words. In the training process, we used the different
labels in the above dataset for multi-task training. Fur-
thermore, to improve the performance of the evaluation,
based on the Conformer model architecture, we use several
dilated convolutional networks with different dilation rates
to obtain local feature information at different scales. This
allows the model to acquire richer local feature informa-
tion and maintain a focus on global information. In addi-
tion, as the features extracted through the encoder become
increasingly abstract during the encoder accumulation pro-
cess, some of the detailed information of the original features
will inevitably be lost. To address this issue, we improve
the computation of the attention mechanism in the encoder
by using the residual structure to retain the original feature
information. In summary, we propose a multifaceted speak-
ing evaluation method based on the Conformer architecture
by fully considering the problems in the current research
on speaking evaluation. The evaluation assessment results
obtained from experiments on different tasks with different
datasets show significant improvements in various evaluation
metrics.

Il. RELATED WORKS

The GOP method and its variants proposed by [10] are clas-
sical speech-recognition-based spoken language evaluation
methods. The GOP algorithm is based on forced alignment
and the logarithmic posterior probability of a phoneme. The
result is a response to the confidence level between the actual
pronunciation of the phoneme and the standard pronuncia-
tion. Reference [11] proposed an improved GOP algorithm
considering the HMM transfer probability in the DNN-HMM
acoustic model of the enhanced GOP algorithm. After the
emergence of deep learning algorithms, some improvements
in GOP algorithms also used in deep learning models. Refer-
ence [12] proposed the context-dependent CaGOP algorithm,
which predicts the duration of each phoneme by feeding
the reference text into a self-attentive text-based encoder
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during GOP calculation, and uses the difference between the
expected duration and the actual duration of the phoneme
obtained by forced alignment as the penalty factor in the GOP
calculation. In addition to the studies on spoken language
evaluation tasks using GOP algorithms, there are also stud-
ies on verbal language evaluation conducted without GOP
algorithms, such as wav2vec2.0-based [13], [14], [15] and
deep learning feature-based methods [16], but because of the
limited speech data available to L2 speakers, training with
such methods usually requires the use of pre-trained models
and transfer learning.

Oral language assessment studies are usually divided into
automatic mispronunciation detection and automatic pronun-
ciation quality assessment according to the task’s objectives.
However, in previous studies, only one aspect is generally
targeted, e.g., phonemes, tones, Erhua, and words in Chi-
nese; and phonemes, words, utterance, etc., in English. For
example, in the mispronunciation detection task, [3] analyzed
the pronunciation and position of each phoneme, classified
the phoneme segments according to their GOP values, and
trained them separately. Then, they trained an SVM classifier
for each phoneme for mispronunciation detection to improve
the system’s ability to discriminate pronunciation quality.
Studies such as [17], [18], [19], [20] perform mispronun-
ciation detection in terms of phonemes by building speech
recognition models at the phoneme level. References [4]
and [5] proposed an algorithm for Chinese Mandarin tone
evaluation based on the improved Fujisaki model according to
Chinese Mandarin tone pronunciation characteristics, respec-
tively. Reference [6] evaluated Mandarin tone by fusing the
MSD-HMM-based embedded tone model with the GMM-
based explicit tone model. This model also included an auto-
matic evaluation of the Erhua aspects of Mandarin Chinese.
Reference [7] proposed an Erhua evaluation model based on
an integrated classification regression tree and discussed in
detail the problem of modeling Erhua cut-offs and extract-
ing relevant acoustic features. The above mispronunciation
detection methods only model a specific aspect of Chinese
or English and do not reflect the overall pronunciation of
the speaker. There have only been a few previous efforts
on multi-granularity pronunciation assessment [8], [9].
In these works, however, only a single score is considered
for each granularity. Reference [21] first proposed a multi-
granularity pronunciation quality assessment method using a
single model. They used the open-source SpeechOcean762
dataset, which contains one phoneme-level, three word-level,
and five utterance-level labels, including accuracy, intona-
tion, and fluency. They performed multi-task training on the
Transformer model architecture using pronunciation-quality-
based features. Not only are multiple aspects of pronunciation
quality evaluated, but performance is also improved in each
evaluation task.

The vanilla Transformer model also has certain drawbacks,
such as its inability to capture details of local features.
Reference [22] proposed a Conformer model structure that
combines a convolutional neural network, which is good at
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extracting local features, with the Transformer model, signif-
icantly improving this drawback of the Transformer model.
In the speech recognition task scenario, the model constructed
using the Conformer network structure was considerably
enhanced compared with the Transformer model. However,
the Conformer model uses a convolutional network structure
with a limited ability to acquire local features, and does
not improve the evaluation results in the GOP feature-based
spoken language evaluation task. Our work builds a multi-
faceted oral assessment model based on the Conformer model
architecture, using pronunciation quality features and a multi-
task training approach. At the same time, we further improve
the convolutional module in the Conformer model. We take
advantage of the fact that dilation convolution can expand
the perceptual field and capture multi-scale contextual infor-
mation to obtain richer feature information and improve the
model’s performance in different aspects.

ill. METHODOLOGIES

A. CONFORMER-MB MODEL

Since the standard acoustic model uses MFCCs features as
input, we first extract the MFCCs features of the audio to
be evaluated. After that, as shown in Equation (1), we input
the audio feature sequences (MFCCs) prepared for evaluation
with the corresponding reference texts into the previously
trained acoustic model. The input audio feature sequences are
converted into articulatory goodness features Fipp+1pr accord-
ing to a specific algorithm (to be described in Section III-B).

Fipp+1pr = Acoustic(X, C) @))
where X = (x1,x2,...,x7) is the input sequence and
C = (c1,c2,...,cy) is the corresponding reference text.

The length of the input sequence X is 7', the size of C is
U, and the length of the output sequence Fipp4ipr 18 2 x U.
As shown in Equation (2), we use a linear layer to map
the pronunciation goodness feature dimension to the same
dimension, embedding_dim, as that of the text embedding
layer, resulting in an output of Hy € RU>embedding_dim_

Hy = Gop_projection_Layer(F') 2

Since different phonemes have different textual features that
can provide the model with usable textual information [16].
We use the embedding function in PyTorch to encode the
different phonemes in the audio text sequence to obtain the
text content features and encode the position of the phonemes
to get the position of different phonemes in different text
sequences. As shown in Equation (3), we encoded the refer-
ence textual content corresponding to the prepared evaluation
audio in the embedding layer H, € RU¢embedding dim

H. = Phoneme_Embedding(C) 3)

Reference [23] proposed an algorithm called “truncated
normal distribution”. As shown in Equation (4), while encod-
ing the text content, we use the truncated normal distribution
(Truncated_Normal) to initialize the position parameters of
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the reference text sequence, resulting in a text position encod-
in g result Hp e RU xembeddmg_dlm.

H), = Truncated_Normal(Positional_Embedding(C)) (4)

Afterward, we add the above results to be used as input to the
Conformer-MB encoder together, as shown in Equation (5).

H = Add(H;, H,, H,) (5)

The Conformer encoder module consists of two feed-forward
neural networks, a multi-headed self-attentive mechanism
module, and a convolutional module, each connected with
residuals. Figure 1 illustrates the overall structure of the stan-
dard Conformer encoder module. The internal structure of the
Conformer encoder module resembles a macaron structure,
1.e., it consists of two identical feed-forward neural networks
interspersed with a multi-headed self-attentive mechanism
module and a convolutional module [22].

Compared with the structure of the Transformer encoder,
the Conformer encoder is characterized by two main features:
1. the addition of a convolutional module and 2. the division
of the feed-forward module into two parts. As convolutional
neural networks are characterized by being good at extracting
local features and weak at acquiring global representations,
the Transformer model reflects the complex spatial transfor-
mations and long-range feature dependencies that constitute
the global representation. The Conformer model blends the
features of both, embedding local features and global rep-
resentations precisely into each other, and achieves better
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performance in speech recognition tasks. The structure of
BottleNecks consists of three layers of convolutional net-
works. The first layer of convolutional networks is a separable
convolution with a convolutional kernel size of 1 x 1, aiming
at the dimensionality reduction of the input features; the
second layer of convolutional networks is a deep convolution
with a convolutional kernel size of 3 x 3, aiming at deep
feature extraction; the third layer of convolutional networks
is a separable convolution with a convolutional kernel size
of 1 x 1, aiming at dimensionality recovery. This structure
is designed to reduce the computational complexity and the
number of parameters while reducing the training time. How-
ever, such structures have a limited ability to obtain local
feature information and a weaker ability to obtain multi-scale
feature information.

Because GOP features reflect the interrelationship between
the target phoneme and other phonemes, inter-feature combi-
nations at multiple scales can better reflect the actual qual-
ity of the speaker’s pronunciation. To further enhance the
representation of local features, we propose a multi-width
band method based on the Conformer structure, which uses
convolutional kernels of the same size to capture local infor-
mation at different dilation rates and then adds them together
to obtain richer feature information. The so-called multi-scale
band uses multiple parallel convolutional layers simultane-
ously to obtain different feature information under different
perceptual fields. Then combine them to compensate for the
limited feature information obtained using a single convolu-
tional layer. We use the features of the Conformer structure
and combine them with the Conformer model structure to
build a new encoder structure, which can enhance the local
information acquisition ability of the encoder while focusing
on the global information. In addition, during the stacking of
multiple Conformer-MB modules, the features extracted by
the later modules become more and more abstract, which can
lead to the loss of some of the lower-level feature information
and result in reduced detection effectiveness. A cross-module
strategy is added to the different Conformer-MB modules
to fully retain some of the low-level fine-grained features.
Specifically, the result of the calculation of the attention score
in the current module is composed of two parts. The first
part is the attention score in the current module multiplied
by the weight coefficient, and the second part is the result of
the calculation of the attention score in the previous module.
As shown in the following equations ((6)-(9)), where H; is the
vector output from the feed-forward module FFN,0 < o < 1.

Qi =W, x H; (6)
K; = Wy x H; @)
Vl' = Wv X Hi (8)

MHSA(Q;, K;, Vi) = MHSA(Q;_1, Ki—1, Vi—1)
+ (1 —a) x MHSA(Q;, K;, Vi) (9)

The details of the Conformer-MB encoder are shown in
Figure 2. First, the Conformer-MB encoder obtains the input
feature sequence H;_1, and when i = 0, Hy = H.
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The H;_ is passed through the feed-forward network FFN|
of the standard Conformer model with the multi-headed
attention mechanism MHSA to obtain the attention context
vector H;. We use a residual structure to retain the original
feature information in this process. The final output vector
obtained by this module is H,. The specific calculation pro-
cess is given in Equation (10) and Equation (11)

H; = MHSA(FFN, (H;_1)) (10)
H, = ResNet(H;, Hi_1) (11)

A dilated convolutional neural network can increase the
receptive field of the convolutional kernels while keeping the
number of parameters constant so that the output of each
convolutional kernel contains an extensive range of infor-
mation. We then used three parallel dilated convolutional
neural networks Dilation;c1 2,3 to extract the input feature
information at different scale sizes D¢ 2,3. After this, we add
a BatchNorm layer and a Swish activation function [24] to
speed up the training and convergence of the model. Finally,
the outputs of the different inflated convolutional networks
are added together, and the output vector D is obtained using
the residual structure.

Dic1,2,3 = Dilation;(H,) (12)
Die1,2,3 = Swish(BatchNorm(Dije1 2.3)) (13)
D = ResNet(Add(Djc1,2,3), Hy) (14)
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FIGURE 3. Flow chart of the Conformer-MB model under the
mispronunciation detection task.

Finally, we feed D into the second network of feed-forward
networks with a residual structure and use the LayerNorm
function to conduct a normalization operation to obtain the
final output O of the Conformer-MB encoder.

O = LayerNorm(ResNet(FFN» (D), D)) (15)

As we use the audio content of the dataset in our mispro-
nunciation detection experiments, the audio content of the
dataset is a single Chinese character, with each character
consisting of an initial, a final, and a tone. Once we obtain
the encoder output, we need to average the output results
for the word and tone aspects as the encoding results. After-
ward, the coding results of the different aspects are fed into
the corresponding linear layers as well as the Sigmod func-
tion to obtain the final probability of correct pronunciation
P(phoneme), P(word), P(tone). This part of the calculation
process is given in Equation ((16)-(19)). Figure 3. shows the
flow of the Conformer-MB model for the mispronunciation
detection task.

P(phoneme) = Sigmod(Linearphoneme(D)) (16)

D,yg = Avenge(D) (17

P(word) = Sigmod(Linearyord(Davg)) (18)

P(tone) = Sigmod(Linearone(Davg)) (19)

We use a multi-task training approach in the model training
process; specifically, a loss function is used for each aspect
of the error detection task. [21] first average the losses of

each granularity and then sum them up with the same weight,
where Lygerance and Lyorg are averaged utterance and word
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FIGURE 4. Flow chart of the Conformer-MB model for the pronunciation
quality assessment task.

level losses of five utterance-level labels and three word-level
labels, respectively. The loss values for the word and sentence
tasks in [21] are obtained by averaging the loss values of their
subtasks. For example, the loss value of a sentence is obtained
by averaging the loss values of its five subtasks (prosodic,
fluency, accuracy, completeness, and total). In this paper, the
subtasks under each task are all mispronunciation detection
and do not require averaging. We use the same weights (we
set the weights of all losses to 1 in the experiment) to sum
the losses of each aspect and obtain a unique Loss for back-
propagation, i.e., Loss = LosSphoneme + LOSSword + LOSStone,
keeping them consistent with the loss weights for each task
in [21]. Reference [21] mentioned that other loss weighting
methods might have worked better, but this paper proposes a
new multi-scale fusion feature method for a spoken language
evaluation. Hence, a more straightforward loss weighting
method is convenient for comparing different models. In the
model inference, we classify the probability of the correct
pronunciation of the model output by setting a threshold,
i.e., we consider the pronunciation correct if it exceeds the
threshold and incorrect if it falls below the threshold. Except
for the acoustic model, the entire network structure of the
model is based on an end-to-end training approach.

The flow diagram of the Conformer-MB model under the
pronunciation quality assessment task is shown in Figure 4.
We set five trainable CLS tokens (as shown in Equation (20))
in the input sequence of acoustic features, each corresponding
to a discourse-level label. In contrast to the mispronuncia-
tion detection task, we obtained the scores corresponding to
the different tags directly from the linear layer (regression
task). To make a fair comparison, we used the same training
method, loss function, and parameter configuration as in the
original paper [21].

C =[C, CLSy, CLS, CLS3, CLS4, CLSs] (20)
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B. THE GOODNESS OF PRONUNCIATION FEATURES

In the pronunciation quality assessment task, we conducted
comparative experiments on model validity using publicly
available data provided by [21]. In the mispronunciation
detection experiments, we train a model of standard acous-
tics by using the 863 Chinese speech dataset. The acoustic
features required for mispronunciation detection are extracted
based on this acoustic model, because acoustic models trained
with both L1 and L2 speech data can produce better align-
ment to L2 speech data and output more accurate GOP fea-
tures [25]. We used an acoustic model configuration similar
to that used in other multifaceted spoken language evaluation
studies to facilitate a better comparison. Therefore, we used
the Kaldi tools to extract 40-dimensional MFCCs features
and used them as input for the standard acoustic model.
Reference [26] is suitable for training a standard acoustic
model of Mandarin due to its balanced phoneme distribution
and comprehensive accent coverage. We used a 12-layer fac-
torized time-delay neural network (TDNN-F) as the network
structure for this acoustic model. Because the 863 Chinese
speech dataset was not divided into training, validation, and
test sets, we divided the dataset randomly in the ratio of
8:1:1. In the validation set, there are eight persons of each
gender, covering a total of 9822 sentences. In the test set, there
are nine persons of each gender, covering 10116 sentences,
and we use the remaining speech data as the training set.
Table 1 shows the specific division of the validation and test
sets according to the speaker profile. The final word error
rate (WER) for the standard acoustic model obtained through
training was 8.68%.

TABLE 1. Division of validation and test sets in the 863 dataset.

Male Female
Dev M74, M44, M32, M94 F77, F70, F98, F95
M54, M93, M36, M66 F76, F25, F68, F93
Test M21, M97, M03, M26 F22, F28, F41, F35, F23

M75,M51, M59, M39, M12 F61, F39, F18, F84

After obtaining the acoustic model, we used the acoustic
model for GOP feature extraction and GOP score calculation.
We used the log posterior probability (LPP) and log posterior
ratio (LPR) of the phonemes defined in [27] as the GOP
features. Furthermore, we used the GOP algorithm mentioned
in [10] to calculate the GOP scores. Equation (21) and (22)
show the LPP calculation process for the phoneme p.

1 a
LPP(p) ~ ————— > " log P(plo;) (21)
to—ts+ 1 =

P(plo)) = > P(slo,) (22)

sep

where f; and 7, are the temporal indices that make up the
start and end frames of the phoneme p, o; is the sequence
of observations at the moment ¢, and s is all of the states cor-
responding to the phoneme p. log P(p|o;) is the log posterior
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probability of this phoneme p within o,. The LPR of the con-
stituent GOP feature sequences is defined as follows, where
the LPR of the phoneme p; for the other phonemes p; is also
defined:

LPR(pjlpi) = log P(pjlo; 15, te) — log P(pilo; ts, 1) (23)

In previous studies, researchers have not added information
related to vocal tones to the process of calculating GOP fea-
tures. We wanted to reflect the articulation of tones through
the [LPP, LPR] feature. Therefore, we calculated the rhymes
plus tones as a separate class of phonemes. In the end, the
number of phonemes in the collated phoneme lexicon was
218, and we obtained a goodness of pronunciation feature
(Equation (24)) for a phoneme p with a vector size of 436 dim
according to the formulae for LPP and LPR.

Fipp+ipr = [LPP(p1), ..., LPP(p213),
LPR(p1Ip), ..., LPR(p213lp)] (24)

IV. EXPERIMENTS

A. DATASET

1) SpeechOcean762 DATASET

SpeechOcean762 is a free, open-source dataset released
by [28], which is designed for pronunciation quality detection
and evaluation and consists of 5000 English sentences from
250 non-native English speakers, half of whom are children.
SpeechOcean762 contains a rich set of tagging information.
Specifically, it divides pronunciation quality into utterances,
words, and phonemes and provides multiple pronunciation
quality scores in each area. For utterances, it scores each
speaker’s corpus in five areas: accuracy, fluency, complete-
ness, prosodic, and total. For words, it provides scores
in three areas: accuracy, stress, and total (from O to 10).
For phonemes, it gives scores for the accuracy of the
phoneme (0-2). Five experts independently label these scores.
The training set of this dataset consists of 2500 sentences,
15849 words, and 47076 phonemes, and the test set con-
sists of 2500 utterances, 15967 words, and 47369 phonemes.
In previous work, the part-of-speech and word-level scores
were rescaled to the range of 0-2 to bring them to the same
level as the phoneme scores. In this work, to verify the validity
of the proposed model, we use the same experimental data as
published in the paper by Yuan Gong et al.

2) PSC-MonoSyllable DATASET

The PSC-MonoSyllable dataset is a Chinese speech dataset
we constructed for researching Mandarin mispronunciation
detection, consisting of audio for 23,428 monosyllabic Chi-
nese characters recorded by 185 university students from the
Xinjiang region, with an effective duration of 4.14 hours.
The dataset consists of two main parts (PSC-MonoSyllable-
115 and PSC-MonoSyllable-60). The audio data in the
PSC-MonoSyllable-60 section were recorded by 60 Xinjiang
University students using computer microphones in a quiet
environment. Three Mandarin assessment experts marked
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TABLE 2. The correlation between the manual scoring of
PSC-MonoSyllable and the words.

PSC-MonoSyllable-115 PSC-MonoSyllable-60
Expert 1 Expert2 Expert3 Expert 1 Expert 2 Expert 3

Expert 1 1 0.711 0.697 1 0.667 0.58
Expert 2 - 1 0.685 - 1 0.582
Expert 3 - - 1 - - 1

TABLE 3. Overview of the PSC-Monosyllable dataset.

Phoneme
Train Test
Correct 35211 7871
Error 2743 1031
Count 37954 8902
Word
Train Test
Correct 13907 2980
Error 5070 1471
Count 18977 4451
Tone
T1 T2 T3 T4

Train Test Train Test Train Test Train Test
Correct 4010 854 3840 841 3098 764 4031 848
Error 757 265 817 248 1485 299 939 332
Count 4767 1119 4657 1089 4583 1063 4970 1180

the speakers’ pronunciation according to their pronuncia-
tion status in graphemes, tones, and phonemes. Table 2
shows the correlation between the manual scoring of PSC-
MonoSyllable and the words.

We divided the PSC-MonoSyllable dataset into a training
set and a test set in the ratio of 8:2. The training set con-
sisted of 18,977 words, 18,977 tones, and 37,954 phonemes,
and the test set consisted of 4451 words, 4451 tones, and
8902 phonemes. Table 3 shows the distribution of pronun-
ciation correctness and error in different aspects.

B. EXPERIMENT DETAILS

In the mispronunciation detection experiments, we used an
acoustic model trained on the 863 dataset and extracted pro-
nunciation goodness features based on this acoustic model.
At the same time, we used the self-built PSC-MonoSyllable
dataset for training and evaluation. In our construction of the
Conformer-MB model, we set the embedding layer dimen-
sion to 512, used three layers of Conformer-MB encoders,
and set the number of attentional heads per encoder to one.
Meanwhile, in the Conformer-MB encoder, we set the con-
volutional kernel size of the convolutional module to 31 x 31
and the dilation rates to 1, 5, and 9. For the actual training
process, we used the Adam optimizer with an initial opti-
mization rate of le-4 and a batch size of 128, using the mean
square error (MSE) as the loss function. In terms of threshold
setting, we first obtained the model with the smallest MSE
by model training and then divided it into multiple thresholds
in the range of 0.1 to 0.95, according to a spacing of 0.05,
and used these thresholds to test the phonemes, tones and
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FIGURE 5. The threshold selection process of the Conformer-MB model in
the mispronunciation detection task.

words tasks separately under different models. If the model
output exceeded this threshold, it was classified as correct
pronunciation (1). Otherwise, it was classified as incorrect
pronunciation (0). This approach is similar to the threshold
selection proposed by [10]. We used precision, recall, and
F1-score as metrics to measure the model results, calculate
the metrics, and compare them according to the two cate-
gories of correct and incorrect pronunciation. As shown in
Figure 5, which illustrates the F1-score of the mispronuncia-
tion detection metric for each task at different thresholds for
the Confomer-MB model obtained through training, it can be
concluded from the figure that the model performs optimally
when the thresholds for the phonemes, tones and words tasks
reach 0.75, 0.5 and 0.5, respectively.

In the pronunciation quality assessment experiments,
we used the same experimental data, training approach, and
evaluation metrics (PCC) as in [21]. We adopted the same
dimensionality of the embedding layer of the constructed
pronunciation quality assessment model as that used in the
original text, using the same encoder structure and parameters
as in the mispronunciation detection task. In both experi-
ments, we trained 100 epochs for each job and cut the learning
rate in half every five epochs after the 20th epoch. We used
23090 Nvidia GPU graphics card for training, CUDA version
11.6, Pytorch version 1.10.0, and AMD Ryzen 9 5900X CPU
model.

1) MISPRONUNCIATION DETECTION

Research on multi-level pronunciation error detection for
Mandarin is scarce. This paper’s mispronunciation detection
experiment is the first study on multi-level Mandarin mis-
pronunciation detection with a multi-task learning approach.
Therefore, we constructed the LSTM, Transformer model as
a baseline for the pronunciation error detection task, follow-
ing the model comparison approach in [21]. We also com-
pared some traditional mispronunciation detection methods.
We compared the following six models:

1) Classification using GOP scores using pre-set fixed
thresholds. The threshold was set to -0.15 for
phonemes, -0.10 for words, and -0.15 for tones;
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TABLE 4. Results of mispronunciation detection experiments.

Correct Pronunciation Detection

Mispronunciation Detection

Initial and Final (Phoneme)

PR RE F1 PR RE F1
GOP [10] 97.99% 39.65% 56.45% 16.91% 93.79% 28.66%
SVM [3] 94.12% 69.14% 79.72% 22.15% 67.02% 33.29%
LSTM 94.16% 98.25% 96.16% 79.97% 53.44% 64.07%
Transformer 95.78% 96.49% 96.13% 71.61% 67.51% 69.50%
Transformer-I 95.38% 97.65% 96.50% 78.01% 63.92% 70.29%
Conformer 95.66% 96.89% 96.27% 73.66% 66.44% 69.86%
Conformer-I 96.16% 95.64% 95.90% 68.03% 70.81% 69.39%
Conformer-IT 95.72% 97.17% 96.44% 75.44% 66.82% 70.92%
Conformer-IIT 95.44% 97.76% 96.59% 79.02% 64.31% 70.91%
Conformer-MB 95.83% 96.65% 96.25% 72.61% 67.90% 70.18%

Tone

PR RE F1 PR RE F1
GOP [10] 95.95% 19.14% 31.91% 28.67% 97.57% 44.31%
SVM [3] 90.82% 61.04% 73.01% 41.05% 81.47% 54.60%
LSTM 89.93% 93.89% 91.87% 78.86% 68.44% 73.28%
Transformer 90.48% 93.98% 92.20% 78.38% 61.20% 74.65%
Transformer-I 92.48% 89.88% 91.16% 71.97% 78.06% 74.89%
Conformer 91.24% 94.19% 92.69% 79.23% 74.46% 76.77%
Conformer-I 92.60% 92.87% 92.73% 78.40% 77.70% 78.05%
Conformer-IT 93.32% 92.93% 93.13% 79.04% 80.04% 79.54%
Conformer-IIT 94.32% 91.08% 92.67% 75.71% 83.54% 79.44%
Conformer-MB 92.45% 95.03% 93.72% 83.71% 76.71% 80.06 %

Word

PR RE F1 PR RE F1
GOP [10] 92.46% 19.33% 31.97% 37.20% 96.81% 53.75%
SVM [3] 85.35% 67.05% 75.01% 53.46% 76.68% 63.00%
LSTM 86.95% 90.77% 88.82% 79.48% 72.40% 75.77%
Transformer 88.71% 88.89% 88.80% 77.41% 77.09% 77.25%
Transformer-I 87.79% 90.74% 89.24% 79.87% 74.44% 77.06%
Conformer 88.54% 91.28% 89.89% 81.15% 76.07% 78.53%
Conformer-I 88.48% 92.25% 90.32% 82.81% 75.66% 79.08%
Conformer-IT 88.70% 92.69% 90.65% 83.70% 76.07% 79.70%
Conformer-IIT 88.98% 91.58% 90.26% 81.86% 77.02% 79.37%
Conformer-MB 88.76% 92.72% 90.69 % 83.78% 76.21% 79.82 %

2) A support vector machine classifier (SVM)-based
model using the SVM classifier from the scikit-learn
library with the parameters set to default;

3) An LSTM-based model;

4) A Transformer model used for training;

5) A Transformer model used for training. The output
from each layer of the Transformer encoder is collected
separately and stitched together to train the pronuncia-
tion error detection model (Transformer-I);

6) Training using the standard Conformer model,

7) Training using the standard Conformer model. The
output from each layer of the Conformer encoder is
collected separately and stitched together to train the
pronunciation error detection model (Conformer-I);

8) Training using the Conformer-MB model. Convolution
kernel size set to 1, 3, 5 and dilation rate set to 1
(Conformer-II);

9) Training using the Conformer-MB model. Convolution
kernel size set to 1, 5, 9 and dilation rate set to 1
(Conformer-III);

10) Training using the Conformer-MB model.
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Except for model 1, all models used pronunciation goodness
features as input to the models. To make a fair comparison
between different aspects of the detection task, models 3, 4,
5, 6,7, 8,9 and 10 above had the same depth, and embed-
ding dimensions were trained with the same settings during
evaluation. Also, we have tried other multi-scale feature
methods for better comparison. For example, in the model
5 and 7, we extracted features of different scales from each
encoder layer and stitched them together for pronunciation
error detection. In model 8 and 9, we use different-sized
convolution kernels to collect information at different scales
and set the dilation rate to 1. Finally, we selected the best
results for each model based on the test results. All of the
above models are based on acoustic models trained with the
same 863 data, using the same GOP features. Therefore,
we conducted fair comparison experiments to demonstrate
that the performance differences were not due to the GOP
features.

The experimental results (Table 4) show that in the mul-
tifaceted mispronunciation detection task, models 3, 4, 5, 6,
7, 8, 9 and 10 with the multi-task learning scheme showed
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TABLE 5. Results of the ablation experiment for the mispronunciation detection task.

Correct Pronunciation Detection (F1)

Mispronunciation Detection (F1)

Phoneme Tone Word Phoneme Tone Word
Training Mask
Only Phoneme 96.54% - - 69.70% - -
Only Tone - 93.45% - - 79.51% -
Only Word - - 90.23% - - 79.20%
Joint 96.25% 93.72% 90.69 % 70.18% 80.06 % 79.82%
Attention Heads
1 96.25% 93.72% 90.69% 70.18% 79.07% 80.20%
4 96.34% 92.52% 90.03% 71.59% 76.94% 78.65%
8 96.38% 93.04% 91.04% 70.84% 79.61% 80.12%
Embedding Dimension
64 (337K Params) 95.91% 86.73% 87.09% 64.07% 65.70% 72.40%
128 (1216K Params) 96.06% 92.08% 89.56% 67.05% 73.30% 77.83%
256 (4595K Params) 96.17% 92.41% 89.17% 69.18% 75.90% 77.06%
512 (17840K Params) 96.25% 93.72% 90.69 % 70.18% 80.06 % 79.82%
1024 (70284K Params) 96.40% 93.42% 90.67% 71.04% 79.50% 80.56%
2048 (278981K Params) 96.39% 93.31% 89.66% 70.08% 78.36% 79.38%
Layers
1 (6174K Params) 96.16% 92.95% 88.81% 69.20% 78.89% 78.53%
3 (17840K Params) 96.25% 93.72% 90.69 % 70.18% 80.06 % 79.82%
6 (35340K Params) 96.45% 92.67% 90.39% 70.43% 78.29% 79.88%
9 (52840K Params) 96.52% 92.93% 90.08% 69.35% 78.44% 78.55%
TABLE 6. Results of the pronunciation quality assessment experiment.
Phoneme Score Word Score (PCC) Utterance Score (PCC)
MSE PCC Accuracy Stress Total Accuracy Completeness Fluency Prosodic Total
Transformer [21] 0.084 0.613 0.537 0.320 0.551 0.718 0.194 0.758 0.766 0.747
HiPAMA [29] 0.084 0.616 0.575 0.320 0.591 0.730 0.276 0.749 0.751 0.754
Embedding(12)

Conformer 0.084 0.617 0.565 0.299 0.580 0.721 0.110 0.750 0.750 0.747
Conformer-MB 0.083 0.625 0.574 0.317 0.593 0.725 0.079 0.761 0.757 0.748
Embedding(24)

Conformer 0.083 0.622 0.563 0.296 0.579 0.718 0.181 0.749 0.744 0.743
Conformer-MB 0.084 0.622 0.567 0.279 0.583 0.723 0.14 0.764 0.762 0.746
Embedding(48)

Conformer 0.084 0.615 0.565 0.300 0.580 0.724 0.112 0.754 0.752 0.747
Conformer-MB 0.084 0.621 0.565 0.285 0.579 0.721 0.128 0.756 0.754 0.746
Embedding(96)

Conformer 0.084 0.62 0.569 0.290 0.584 0.727 0.030 0.757 0.757 0.75
Conformer-MB 0.084 0.624 0.572 0.276 0.588 0.727 0.163 0.766 0.764 0.752

significant improvements in mispronunciation detection
compared with a single modeling approach using GOP scores
and support vector machines for a particular aspect. In partic-
ular, using the Conformer-MB model was particularly effec-
tive in detecting pronunciation errors in words and tones,
demonstrating that better detection can be achieved using a
multi-task learning solution.

Secondly, in the experimental comparison using the multi-
task learning scheme, there was a significant improvement
in the detection of words and tones using the standard Con-
former model structure, with a gain of 1.28% and 2.12% in
the F1 metric for the mispronunciation detection category,
respectively, compared with the Transformer model. This
indicates that using a convolutional network that pays more
attention to local information can effectively enhance the
mispronunciation detection of the model.

In addition, the results of comparing Model 4 with Model
5 and Model 6 with Model 7 demonstrate that the use
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of multi-scale feature fusion can effectively improve the
pronunciation error detection performance of the models.
Also, model 8 and model 9 showed significant improvement
in mispronunciation detection performance for phonemes,
tones and words tasks compared to models 6 and 7. This
result demonstrates that extracting features at different scales
using multiple convolutional networks is more effective for
mispronunciation detection tasks. Our proposed Conformer-
MB model uses the dilation convolution method to obtain
features at multiple scales, the final results compared to
models 8 and 9, which further improve the error detection
performance for the phoneme and grapheme tasks. Thus,
the structure of the Conformer-MB model is more effective
in extracting feature information at different scales, thus
improving the overall (tones and words) performance. The
model’s mispronunciation detection is improved.

Finally, our proposed Conformer-MB model achieves opti-
mal results in error detection for phonemes, tones, and words
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compared with all of the models mentioned above. The exper-
imental results demonstrate the effectiveness of our proposed
multi-width band approach, which allows the model to learn
local feature information at different scales, significantly
increasing the model’s overall mispronunciation detection
effectiveness.

We conducted a series of ablation studies to show the
effect of various factors on performance. We set the model
mentioned in Section III with three Conformer-MB encoders
and an embedding layer dimension of 512 as the base
model and trained it with all phoneme, tone, and grapheme
evaluation tasks, then changed one factor at a time to observe
performance changes. Table 5 shows the results of the
ablation experiments of the Conformer-MB model in the
mispronunciation detection task. Firstly, the Conformer-MB
model trained using multi-task learning showed a significant
improvement in mispronunciation detection in phonemes and
words compared with the training method using a single task.
The results of this experiment demonstrate that the multi-
task learning approach allows the model to perform mul-
tiple aspects of mispronunciation detection simultaneously
and improves the performance of individual tasks. Second,
we compare the effect of different Conformer-MB encoder
sizes on mispronunciation detection performance. We find
that error detection performance is not further improved by
increasing the encoder depth, suggesting that small mod-
els are preferred with relatively small datasets. In addition,
we compared encoders using different numbers of atten-
tion heads, and the experimental results indicate that better
results were obtained when using an attention head of 1. This
experimental result is consistent with the conclusion reached
in [21], demonstrating that increasing the number of attention
heads in the encoder does not improve the effectiveness of
model error detection. Meanwhile, although the GOP features
are 436-dimensional, we experimentally demonstrate that,
as the embedding layer becomes progressively more signif-
icant in terms of dimension, the encoder can capture enough
rich information from it to enhance the modeling effect fur-
ther. In particular, error detection is optimal for tones when
the embedding size is 512 dimensions and for phonemes
and words when the embedding size is 1024. However, since
increasing the embedding dimension leads to an increase in
the number of parameters, we choose an embedding size of
512 dimensions as the optimal result of our proposed method.

Finally, We have conducted relevant experiments in terms
of inference time. We experimented with the inference times
of the Transformer, Conformer, and Conformer-MB mod-
els in the mispronunciation detection task based on the
test set. The results showed that the Transformer model
had the shortest inference time of 1.27+0.02 seconds, and
the Conformer model had the longest inference time of
1.3540.01 seconds. The inference time of the Conformer-
MB model is 1.32+0.01 seconds, which is faster than the
Conformer model, but slightly slower than the Transformer
model.
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2) PRONUNCIATION QUALITY ASSESSMENT

In the pronunciation quality assessment task, we mainly
compared the Transformer model proposed by [21]. In our
experiments, we set the encoder depth and the number of
attentional heads to the same as those of the baseline for the
Conformer model and the Conformer-MB model. We set the
embedding layer vector dimensions to 12, 24, 48, and 96 to
compare the experimental results with different embedding
layer vector dimensions, respectively. For a relatively fair
comparison, we used the same experimental data and features
as in the original paper, while keeping the training method the
same.

Table 6 shows the experimental results of the pronuncia-
tion quality assessment task. First, we compared the overall
scoring effect of the Conformer model with the Conformer-
MB model for different embedding layer dimensions. Our
proposed Conformer-MB model has a slightly higher scor-
ing correlation than the Conformer model in all sizes and
achieves optimal scores at the phoneme and word levels at
an embedding dimension of 12 and an embedding dimension
of 96. Secondly, we used the Conformer model structure
compared with the Transformer model, which showed a slight
increase in pronunciation accuracy scores at the phoneme
level and pronunciation accuracy and overall scores at the
word level, but a decrease in the correlation of scores in
some aspects (accuracy, completeness, and thyme) at the part-
of-speech level. The reason for this is that the Transformer
model, which focuses more on the global representation of
the feature sequence, scores better at the part-of-speech level,
while the Conformer model, which takes into account the
global representation while paying more attention to local
feature details, scores better at the phoneme and word lev-
els. Our proposed Conformer-MB model solves this problem
to some extent. The experimental results show that when
the embedding dimension reaches 96, there is a specific
improvement in pronunciation accuracy, completeness, flu-
ency, rthythm, and overall score at the discourse level com-
pared with the Conformer model. At the same time, the
correlation between pronunciation accuracy and overall score
at the word level achieved the best results, reaching 0.572 and
0.588, respectively. Thus, the effectiveness of our proposed
method using multi-scale local feature fusion in pronuncia-
tion quality assessment tasks is demonstrated experimentally.

In addition to this, we also compared other multifaceted
pronunciation quality assessment studies. The HiPAMA
model is a multifaceted pronunciation quality assessment
method proposed by [29], which uses the same experimen-
tal configuration as [21] to improve the overall assessment
performance by stratifying different aspects of the assess-
ment task through an attention mechanism. According to
the comparative experimental results, the HIPAMA model
improves the total scores in words and the accuracy and
completeness scores in utterances, mainly due to the use of
convolutional layers to capture the local information among
phonemes. However, the improvement in phoneme accuracy
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and sentence fluency, and prosodic scores are minor because
the model structure must fully utilise the global feature infor-
mation sequence. Although our proposed model is slightly
less effective than the HIPAMA in words score, it is higher
than HiPAMA regarding phoneme accuracy, fluency, and
prosodic scores under different embedding layer dimension
sizes. It demonstrates that our proposed model can improve
the overall performance of the model not only by using local
feature information among phonemes but also by capturing
global information of the whole part of speech.

V. CONCLUSION

In this paper, we proposed an improved Conformer model
based on inflated convolution and applied it to the character-
istics of speaking assessment tasks. The model is made more
representable by obtaining different local feature information
at different scales, thus improving the performance of various
aspects of speaking assessment. Using different datasets for
the mispronunciation detection task and the pronunciation
quality assessment task, we demonstrate that our proposed
approach can simultaneously evaluate multiple aspects of
the speaking assessment task and improve the model per-
formance in different aspects of such a task. The F1 indi-
cators in the mispronunciation detection task were enhanced
by 0.68% (phonemes), 5.41% (tones), and 2.57% (words)
relative to the baseline model (vanilla Transformer), and
by 0.32% (phonemes), 3.29% (tones), and 1.29% (words)
relative to the Conformer model, respectively. At the same
time, the effectiveness of our proposed model in detecting
errors in words and tones is further improved with differ-
ent multi-scale feature fusion methods. In the pronunciation
quality assessment task, the score correlations of our pro-
posed method were significantly higher for phonemes and
graphemes compared with the baseline model (Transformer).
Thus, the above experiments demonstrate the validity of our
proposed method.

In addition, we propose an approach based on the tra-
ditional approach to spoken language assessment using an
acoustic and a spoken language assessment model for the spo-
ken language assessment task. First, we use an acoustic model
to obtain confidence features and build a speaking evaluation
model based on this feature to perform the evaluation. In this
process, the final assessment results are susceptible to the per-
formance of the acoustic model and accumulate errors in the
subsequent steps, continuously amplifying them. The use of
an end-to-end approach for speaking assessment is a popular
method to improve this problem significantly, but most of
the existing studies using end-to-end approaches for speak-
ing assessment only model a single aspect, e.g., phoneme,
tone, Etc. At the same time, some studies demonstrate the
effectiveness of using wav2vec2.0 and Hubert features to
improve the effectiveness of speaking assessment. Later,
we will build on the model structure proposed in this paper to
improve the effectiveness of spoken language assessment fur-
ther using an end-to-end approach and speech features such as
wav2vec2.0.
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